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ABSTRACT
We propose a framework for automatically generating multiple clips
suitable for video editing by simulating pan-tilt-zoom camera move-
ments within the frame of a single static camera. Assuming impor-
tant actors and objects can be localized using computer vision tech-
niques, our method requires only minimal user input to define the
subject matter of each sub-clip. The composition of each sub-clip
is automatically computed in a novel L1-norm optimization frame-
work. Our approach encodes several common cinematographic
practices into a single convex cost function minimization prob-
lem, resulting in aesthetically pleasing sub-clips which can easily
be edited together using off-the-shelf multi-clip video editing soft-
ware. We demonstrate our approach on five video sequences of a
live theatre performance by generating multiple synchronized sub-
clips for each sequence.

Categories and Subject Descriptors
I.3.8 [Computer Graphics]: Applications; I.4.9 [Image process-
ing and Computer Vision]: Applications

General Terms
Computer Vision, Computer Graphics

Keywords
Video Editing, Video Processing

1. INTRODUCTION
High quality video uses a variety of camera framings and move-

ments edited together to effectively portray its content on screen.
To produce such video from a live event, such as a theater per-
formance or concert, requires source video from several cameras
to capture multiple viewpoints. These individual camera videos,
or rushes, are then edited together to create the final result. The
requirement of a “multi-camera shoot”, including having multiple
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synchronized cameras each with a skilled operator capable of cre-
ating good framings and camera movements, makes it expensive
and intrusive, and therefore impractical for many scenarios.

In this paper, we introduce an approach to create multiple syn-
chronized videos from a live staged event that are suited for editing.
Our key idea is to use a single non-moving camera that captures
the entire field of view of the event and simulating multiple cam-
eras and their operators as a post-process, creating a synchronized
set of rushes from the single source video. This strategy allows us
to avoid the cost, complexity and intrusion of a multiple camera
shoot. A pan-tilt-zoom (PTZ) camera can be simulated simply by
cropping and zooming sub-windows of the source frame. The chal-
lenge we are addressing here is simulation of a competent camera
operator: choosing the different virtual viewpoints such that their
results are videos that are likely to be useful for editing. This means
that each video must not only obey cinematic principles to be "good
video" but also have properties that make it easier to edit with the
other rushes.

Our solution, illustrated in Figure 1, takes as input a single “mas-
ter shot” — a high resolution video taken from the viewpoint of a
member of the audience. Because we consider staged events (such
as theater performances or concerts), we can assume that this van-
tage point is sufficient to see all of the action (otherwise, the au-
dience would miss it as well). Computer vision techniques are
used as a pre-process to identify and track the actors. Our method
then creates videos by simulating each of the cameras individually.
Each virtual camera takes a simple specification of which actors
it should contain and how they should be framed (screen position
and size). A novel optimization-based algorithm computes the dy-
namic framing for the camera i.e. the movement of a sub-window
over the master shot. The optimization considers the specification,
cinematic principles of good camera movements, and requirements
that the videos can be cut together.

The output of our method is a set of synchronized videos (or
rushes) that provide multiple viewpoints of the staged event. These
rushes can then be edited together using traditional multi-track video
editing software. This allows a human editor to use their creativity,
expertise in editing, and understanding of the content, to create a
properly edited video. Our approach automates the synthetic rush
generation process, which is tedious to perform manually.

The central idea of our approach is that we can cast the problem
of determining a virtual camera movement, that is the size and posi-
tion of the subregion of the master clip over time, as an optimization
problem. Specifically, we cast it as a convex program allowing for
efficient and scalable solution. The key insight is that many of the
principles of good camera motion, including what camera shots are
useful in editing, can be cast within this optimization framework.



Figure 1: Our method takes as input a high resolution video from a single viewpoint and outputs a set of synchronized subclips by breaking the
groups into a series of smaller shots.

2. RELATED WORK
The problem of creating a multi-view edited video from limited

input camera views has been considered previously in very spe-
cialized scenarios. The Virtual Videography system [14] used vir-
tual PTZ to simulate multiple cameras from a lecture video. The
MSLRCS [23] and AutoAuditorium [5] systems use a small set of
fixed views including input of presentation slides. These systems
achieve full automation, albeit at the expense of allowing for cre-
ativity and human input in the editing process. They are also lim-
ited to working in the more constrained environment of usually a
single presenter in front of a chalkboard or a slide screen. Extend-
ing to the richer environment of multiple actors in more complex
stagings would be challenging, especially as it requires a richer set
of shot types to be generated. In contrast, our system addresses
only the rush generation aspect, but can generate a rich range of
shot types from more complex scenarios including multiple actors.

Remarkably little work as been devoted specifically to the prob-
lem of optimizing the composition of a virtual PTZ camera in post-
production. Recent work has focused more on providing interactive
control of the virtual PTZ camera in real time [17, 8, 9]. A method
for automatic editing of basketball games was recently proposed
by Carr et al. [6] employing both robotic and virtual PTZ cameras.
The robotic camera follows the centroid of the detected players and
then a virtual camera is employed to crop subregions of the ob-
tained images to compensate for motor errors. Because they are
targeting online applications, their method makes decisions in near
real time (with a small delay), which can lead to sub-optimal so-
lutions. To the best of our knowledge, our technique provides the
first general solution to the problem for offline computation of a
virtual pan-tilt-zoom camera shot given a list of visual targets over
the entire duration of a recorded performance.

The question of a computational model to describe “good” cam-
era movements, particularly in terms of subwindows of video, has
been considered by work in video stabilization. While most video
stablization work simply aimed to remove jitter, Re-Cinematography
[11] formalized cinematic principles in terms of movement in the
frame for computation. Grundmann et al. [13] showed that this
can be formulated in an optimization framework. We build on this
computational formulation of camera movement, extending it to the
problem of multiple rush generation.

Our work is also related to the general problem of automatic
video editing. Our main contribution is this area is concerned with
generating rushes that can easily be cut together. To the best of our

knowledge, this has not been addressed in previous work. Berthouzoz
et al. [4] have looked at the problem of when to place cuts and tran-
sitions during dialogue scenes, based on audio analysis, assuming
that the input shots are correctly framed. We solve the complemen-
tary problem of generating correctly framed input shots. Wang et
al. [22] proposed an approach for automatic editing of home videos.
Their method selects important parts of the scene based on detec-
tions and motion saliency and summarizes video by removing parts
of the video both temporally and spatially. Our method does not re-
move parts of the video temporally and generates multiple shots for
the entire duration of the video with controlled camera dynamics.
Arev et al. [2] looked at the problem of selecting rushes and editing
them together using a large number of viewpoints taken by "social
cameras" (i.e. cameras operated by the audience) possibly with re-
duced resolution. We are solving the opposite problem of using a
single high-resolution viewpoint. Interestingly, multiple cameras
focusing on the same attention point give a heuristic measure of the
importance of that attention point, which can be used to automat-
ically edit the video without deep understanding of the scene. In
our case, we cannot rely on such heuristic and instead focus on the
rush generation problem, leaving the "final cut" to the user.

A general framework for automatically cropping sub-clips from
a panoramic video and editing them together into a movie in real-
time has been proposed for the case of sports events [7, 20]. Oper-
ating in real-time limits the capability of that system to tracking of
simple targets. Because we are focusing on post-production, rather
than live broadcast, we are able to perform tracking and recognition
of multiple actors even in complex cases, which makes our method
more generally applicable to rich cultural heritage content. Further-
more, our method can be used to generate arbitrary shot composi-
tions, which better addresses the challenges of post-production.

Using computer vision to control cameras and create full-edited
movies is not a new idea. Pinhanez and Bobick [19] have inves-
tigated the use of low-level motion tracking to control TV cam-
eras but their method is limited to closed-world domains (exem-
plified by cooking shows) and requires extensive domain-specific
knowledge. In contrast, our approach is domain-agnostic and relies
on general principles of image composition and film editing. Our
method assumes a pre-processing stage, where actors are tracked
and the location of their heads and floor projections are recovered
in each frame of the input video. In this paper, we implemented
a simple offline tracker based on actor specific detections [10] but
any suitable tracker can be used instead, including interactive track-



Figure 2: Input to the system are the upper body bounding boxes for
each actor (shown with squares) and the points where the actors touch
the stage floor (shown with cross markers).

ers introduced recently by Bailer et al. [3] which are well suited for
the task of video production.

3. VIRTUAL CAMERA SPECIFICATION
Given a single video covering the entire stage our method al-

lows the user to create different reframed shots or rushes with a
simple description for each shot. Each reframed video is generated
by computing a virtual camera trajectory over the master shot i.e.
choosing a cropped window over the master shot at each time. The
core component of our approach is an optimization framework to
compute the virtual camera trajectory with optimal composition,
movement and “cuttability”. In this section, we present and ex-
plain our shot specification scheme in details, and review some
fundamental concepts in cinematography that motivate our opti-
mization approach. Several established video production books
emphasize the role of composition and cutting in cinematography
[1, 16, 15, 18]. Mascelli [16] identifies five main topics in cin-
ematography: camera angles (where to place the camera relative
to the subject); continuity (making sure that actions are fully cov-
ered); cutting (making sure that transitions between cameras are
possible); close-ups (making sure that important parts of actions
are emphasised); and composition.

Since we are working from a single camera angle (the camera po-
sition chosen for the input master shot) and the action is recorded
in full continuity, camera angles and continuity are given as an in-
put to our method. On the other hand, we need to take special care
of composition and cutting when computing virtual camera move-
ments to compensate for the constant camera angle.

3.1 Actor detection
The input to our method is a list of all actors present in the mas-

ter shot and their bounding boxes. We assume they are given as
(bx,by,bs,bh) where bx,by are the center coordinates of the upper
body bounding box, bs is the actor’s upper body size and bh is the
actor’s height on stage(all in pixels). An actors height on stage is
the length from top of the upper body bounding box to the point it
touches the stage floor. An example of the input bounding boxes
and corresponding floor points are shown in Figure 2.

For standing posture the stage height (bh) of an actor is approxi-
mately four times the size of the upper body bounding box (bs). But
this ratio may not be true for other postures like sitting or bending
and it becomes important to take into account the floor points to
compute the stage height of the actor.

3.2 Virtual camera geometry
The images of two virtual PTZ cameras with identical camera

centers are related by a projective transformation (homography).

In principle, a virtual PTZ camera image can therefore be speci-
fied exactly from the master camera image with four points (eight
parameters).

In practice, we use a rectangular cropping window with a fixed
aspect ratio as a simplified model of a virtual PTZ camera. Thus our
camera model is specified with just three parameters : the virtual
camera center f x, f y and the virtual camera height f s (all in pixels),
where ( f x, f y, f s) lie within the space of the master image. This
has the benefit that the virtual camera does not create unwanted
geometric deformations in the virtual image and it preserves the
resolution of the master camera image. The virtual camera image
can therefore be obtained by isotropic re-sampling of the cropped
image from the master shot.

3.3 Shot naming conventions
Based on common practice in video production [21], shots are

specified by their subject matter and size. The subject matter for
a shot is typically the list of actors who should be onscreen. Op-
tionally, objects or stage locations can also be subject matters for a
virtual camera shot, although this is not used in this paper. The size
for a shot is typically defined by specifying the average screen size
occupied by each actor. We use classical conventional shot size
names including "long shot" (LS), "full shot" (FS) and "medium
shot" (MS) as a specification.

Our system lets users choose the subject matters and shot sizes
for each virtual camera independently. Those specifications are
given for the entire duration of the master shot. For instance, the
specification for a virtual camera can simply be a "full shot of actor
A and actor B" or just "FS A,B". Figure 3 shows that a total of five
virtual cameras can be specified using only two shot sizes and two
actors.

Given the actor bounding boxes, the subject matters and shot
sizes for all virtual cameras, the task is now to compute virtual
camera trajectories resulting in good composition for each camera,
and preserving possibilities for cutting between cameras.

3.4 Composition
As emphasized by Mascelli [16], good camera work begins with

composition, which includes not just the composition of objects in
a static frame, but also the composition of movements in a dynamic
frame.

Framing, or image placement, is the positioning of subject matter
in the frame[16] and is the most important aspect of shot compo-
sition in our context. For our purpose, the most important fram-
ing principles emphasized by Mascelli are that (a) subjects should
not come into contact with the image frame; (b) the bottom frame
should not cut across subject’s joints (knees, waist, elbows, ankles)
but should instead cut between joints; (c) subjects must be given
more space in the direction they travel and the direction they look.

The subjects in our case are the actors in the shot specification.
To ensure that the subjects do not come into contact with the image
frame, we define an inclusion region for the given shot specifica-
tion. This inclusion region is then encoded as a hard constraint
in our optimization framework to make sure that the subjects are
always nicely kept inside the virtual camera frame. Examples of
inclusion regions with two different shot specifications are shown
in Figure 4 and Figure 5 with shaded rectangles. The inclusion re-
gion is defined using four coordinates (xlt ,xrt ,yut ,ybt). The values
xlt , xrt and yut denote the leftmost, rightmost and the topmost co-
ordinate of the upper body bounding boxes of actors included in
the shot. The coordinate ybt is defined differently for the full shot
and the medium shot. For a single actor in a medium shot ybt is the
topmost coordinate plus twice the size of its upper body bounding



Figure 3: The figure shows the possible set of framing with two actors (A,B) and two shot sizes i.e. the medium shot (MS) and the full shot (FS).
Even with a simple case of two actors a total of 6 camera choices are available including the original wide shot (WS).

Figure 4: Inclusion region for shot specification "FS A,B" i.e. the
full shot of Actor A and Actor B. A full shot of two actors is a tightest
window which keeps both of them entirely inside the frame.

box. In the case of full shot of an actor ybt is the point where the
actor touches the stage floor. In case of multiple actors, the lower
coordinate is computed for each actor individually and ybt is taken
the as maximum value among them. A shot size penalty in the
optimization cost function tries to keep the virtual camera framing
close to the inclusion region maintaining a nice composition. The
penalty is explained with detail in Section 4.2.

The shot size penalty and hard constraints ensure that the actors
specified in the shot are nicely framed inside the virtual camera.
But other actors may still come in contact with virtual camera win-
dow. To avoid this we add another penalty term in the optimization
framework which avoids chopping external actors and tries to keep
them either fully outside or pulls them fully inside the virtual cam-
era window. This is explained in detail in Section 4.6.

3.5 Cutting rules
An another important consideration in our work is to make sure

that the virtual PTZ cameras produce shots that can easily be edited
together. In this paper, we enforce “cuttability” of the shots by
maintaining screen continuity of all actors and by creating only
“sparse” virtual camera movements.

When cutting between cameras showing the same actors with

Figure 5: Inclusion region for shot specification "MS A" i.e. the
medium shot of Actor A. The boundaries of nearest actors on the left
and the right are also shown in this figure.

different compositions, it is important to keep them in similar screen
positions. To enforce such screen continuity, we give a preference
for virtual shot compositions where the actors keep the screen po-
sitions from the master shot. An example is given in Figure 3 with
two actors. The actor on the the left is kept on the left side in the
virtual camera shot composition "MS A" and the actor on the right
is kept on the right side of the virtual camera shot composition "MS
B".

Cutting during camera movement is difficult because the move-
ments of the two cameras should be matched. As a result, film
editors typically prefer to cut when none of the cameras are in mo-
tion.To maximize the number of opportunities for cutting, we there-
fore give a preference to virtual cameras with sparse pan, tilt and
zoom movements. As will be explained in the next section, we en-
force this preference by regularizing the first order derivative of the
virtual camera coordinates in the L1-norm sense.

3.6 Camera movement
Importance of a steady camera has been highlighted by Thom-

son’s ‘Grammar of the shot’ [21]. It is of no use to prepare a well-
composed shot only to have its image blurred or confused by an
unstable camera. As discussed in earlier section, a steady camera



is also beneficial for cutting. Also the camera should not move
without a sufficient motivation as it may appear puzzling to the
viewer.

The goal of avoiding movement as much as possible still leaves
the question of what kinds of movements to use when they are nec-
essary. Thomson in his book [21] mentions that a good pan/tilt shot
should comprise of three components: a static period of the cam-
era at the beginning, a smooth camera movement which "leads" the
movement of the subject and a static period of the camera at the
end.

As mentioned in the earlier section, we use L1-norm regulariza-
tion over the first order derivative of virtual camera coordinates to
get the static camera behavior. In order to obtain smooth transi-
tions between the static segments we add L1-norm regularization
term over the third order derivative of the virtual camera coordi-
nates. This will tend to give segments of constant acceleration and
deceleration, creating the ease-in and ease-out effect. This is ex-
plained with detail in Sections 4.3 and 4.4.

An instant problem which may arise while moving a cropping
window inside the master shot is that the actual motion of the actor
on stage may not be preserved inside the virtual camera. For ex-
ample, an actor which is static on stage may appear moving/sliding
inside the virtual camera frame or an actor moving on the left on
stage may appear moving on the right in the virtual camera frame.
We introduce another penalty term in the optimization framework
to preserve the apparent motion of the actors. This is explained
with detail in Section 4.5.

4. OPTIMIZATION
In this section we show that how different cinematographic prin-

ciples explained in the previous section are defined as different
penalties or constraints and are combined in a single convex cost
function which can be efficiently minimized to obtain the virtual
camera trajectory for a given shot specification. We first summa-
rize the notation and then explain each term of the cost function in
detail.

Notation: The algorithm takes as input the bounding boxes (bxm
t ,

bym
t , bsm

t , bhm
t ) for each actor (m = [1 : M]) and time t. The algo-

rithm also takes as input the inclusion region {xlt ,xrt ,yut ,ybt} and
the external actor boundaries {xl

′
t ,xr

′
t ,xtlt ,xtrt}, which are derived

using the actor tracks and the shot specification.
The algorithm outputs a cropping window ξ = { f xt , f yt , f st} for

each frame (t = [1 : N]), where ( f xt , f yt) are the coordinates of the
center and ( f st) is the size i.e. half of the height of the cropping
window.

We also define xt =
1
2 (xlt + xrt) as the midpoint of the left and

the right coordinates of the inclusion region and yt =
1
2 (yut + ybt)

as the midpoint of vertical inclusion coordinates. We define st =
1
2 (ybt − yut) as the desired size of the cropping window and Ar
as the required aspect ratio. The variable f st denotes the vertical
half length of the cropped window and the horizontal half length is
given by Ar f st .

4.1 Inclusion constraints
We introduce two sets of hard constraints, first that the crop-

ping window should always lie within the master shot and sec-
ond that the inclusion region should be enclosed within the crop-
ping window. Hence, the left most coordinate of cropping win-
dow f xt −Ar f st should be less than xlt and should be greater than
zero. Similarly, the right most coordinate of cropping window
f xt +Ar f st should be greater than xrt and less than the width (W )
of the master shot . Formally, we define the horizontal inclusion

constraints as:

0 < f xt −Ar f st ≤ xlt and xrt ≤ f xt +Ar f st ≤W. (1)

Similarly, we define the vertical inclusion constraints:

0 < f yt − f st ≤ yut and ybt ≤ f yt + f st ≤ H, (2)

where H is the height of the master shot.

4.2 Shot size penalty
As explained earlier, to maintain the desired composition the vir-

tual camera cropping window should remain close to the inclusion
region. So, we want f xt to be close to the midpoint of left and right
coordinates of the inclusion region. Similarly, we want f yt to be
close to the midpoint of the top and the bottom coordinates of the
inclusion region. Also, we want f st to be close to the height of the
inclusion region. Any diversion from the desired position and size
is penalized using a data term:

D(ξ ) =
1
2

N

∑
t=1

(( f xt − xt)
2 +( f yt − yt)

2 +( f st − st)
2). (3)

This term by default always centers the given set of actors. This
may not be always good for editing later, where an appropriate
look-space is preferred. As discussed in Section 3.5, this problem
can be resolved by maintaining the screen positions of the actor in
the master shot. To do this, we pre-compute a vector ht which is 1
at time t if the actor is rightmost on stage; -1 if the actor is leftmost
on stage; and 0 if the actor is between other actors. Now appropri-
ate look-space can be created by modifying the term ( f xt − xt) in
Equation 3 to ( f xt +0.17Ar f stht − xt).

4.3 First order L1-norm regularization
Simply computing compositions independently at each time step,

may lead to a noisy virtual camera motion. As discussed in previ-
ous section, a steady camera behavior is necessary for a pleasant
viewing experience. Also, long static camera segments are favor-
able for the purpose of cutting. To obtain the desired static cam-
era behavior we introduce an L1-norm regularization term over the
first order derivative. When L1-norm term is added to the objec-
tive to be minimized, or constrained, the solution typically has the
argument of the L1-norm term sparse (i.e., with many exactly zero
elements). Hence, adding L1-norm term to the velocity will tend to
give piecewise constant segments combined with fast transitions.
This will filter out the noisy camera motion.

The term is defined as follows:

L11(ξ ) =
N−1

∑
t=1

(| f xt+1− f xt |+ | f yt+1− f yt |+ | f st+1− f st |). (4)

This is illustrated in Figure 6 with a synthetic one dimensional sig-
nal. This signal can be interpreted as the x coordinate of crop-
ping window computed based on the inclusion region derived from
noisy actor tracks. The middle plot in Figure 6 shows the optimized
signal minimizing the closeness term to original signal (shot size
penalty in one dimension) with L1-norm regularization on velocity
term. We can observe that adding the L1-norm on velocity tends to
give piecewise constant segments(with exactly zero motion). Using
a more common L2 norm tends to spread the movement over many
frames, leading to continual drifting motions, rather than distinct
periods of zero movement.

4.4 Third order L1-norm regularization
When the camera moves it should move smoothly. The camera

movement should start with a segment of constant acceleration and
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Figure 6: Top: Synthetic one dimensional data x. Middle: Op-
timized signal r, minimizing the sum of squares closeness term
to original data with L1-norm regularization on velocity. Bot-
tom: Optimized signal r, minimizing the sum of squares close-
ness term to original data with L1-norm regularization on both
velocity and jerk.

should end with a segment of constant deceleration. Using only L1-
norm on velocity will lead to sudden start and stop of the camera
(sharp corners in middle plot of Figure 6). It also leads to a stair-
case artifact (slopes in middle plot of Figure 6). Previous work [13]
on camera stabilization has shown that a combination of first order
L1-norm regularization with higher order L1-norm regularization
on camera coordinates can be used in an optimization framework
to obtain smooth camera trajectories with jerk free transitions be-
tween static segments. In the same spirit we introduce a third order
L1-regularization term which is defined as follows:

L13(ξ ) =
N−3

∑
t=1

(| f xt+3−3 f xt+2 +3 f xt+1− f xt |

+ | f yt+3−3 f yt+2 +3 f yt+1− f yt |
+ | f st+3−3 f st+2 +3 f st+1− f st |). (5)

Introducing L1-norm on third order derivative will give jerk free
transitions at the start and stop of the camera movement, with seg-
ments of constant acceleration and deceleration. We can observe
this in bottom plot of Figure 6 that using a combination of L1-norm
on both velocity and jerk gives the desired camera behavior show-
ing smooth transitions between long piecewise constant segments.

4.5 Apparent motion penalty
To preserve the sense of activity on stage, the actual motion

of the actors should be same as the apparent motion seen in the
cropped window on the virtual camera. We introduce two differ-
ent penalty terms to include this in the optimization cost function.

The first term penalizes any cropping window motion if the actor
included in shot specification is static.

M1(ξ ) = ∑
m

N−1

∑
t=1

(cxm
t | f xt+1− f xt |+ cym

t | f yt+1− f yt |

+ csm
t | f st+1− f st |). (6)

Here cxm
t , cym

t and csm
t are pre-stored binary vectors which take a

value of 1 if the actor is static in the position and size co-ordinates
respectively. For example, cxm

t is 1 if (bxm
t+1− bxm

t ) is less than a
threshold else it is 0, where bxm

t is x-coordinate of the center of the
bounding box of the given actor (m) at time (t). This penalty is
added for each actor specified in the shot description. If the actor is
static, a penalty equivalent to the cropping window motion is added
to the cost function, else this term is zero.

The second term adds a penalty if the direction of apparent mo-
tion is not preserved:

M2(ξ ) = ∑
m

N−1

∑
t=1

(max(0,−( ˙bxm
t − ˙f xt) ˙bxm

t )

+max(0,−( ˙bym
t − ˙f yt) ˙bym

t )

+max(0,−( ˙bsm
t − ˙f st) ˙bsm

t )). (7)

Here, ˙bxm
t = (bxm

t+1− bxm
t ) gives the the actual horizontal motion

of the actor on stage, ˙f xm
t = ( f xm

t+1− f xm
t ) is the horizontal motion

of the virtual camera cropping window and ( ˙bxm
t − ˙f xt) is the ap-

parent motion of the actor inside the virtual camera cropping win-
dow between consecutive time instants. The term ( ˙bxm

t − ˙f xt) ˙bxm
t

is positive if the apparent direction of motion is same as the actual
direction of motion on the stage. A penalty is added if the term is
negative, otherwise the penalty is zero. This is summed over the set
of actors included in the shot description.

4.6 Pull-in or keep-out penalty
To avoid being cut by the frame, each actor must either be in or

out of the virtual camera window. For actors included in the shot
description, this is ensured by a hard constraint on the inclusion
region. But other actors may still come in contact with the virtual
camera frame (if they come in close vicinity of the inclusion region
or cross across it). So we would like to add a penalty if the right-
most coordinate of the cropping window f xt + Ar f st lies within
the right external actor boundaries xr

′
t and xtrt (please refer to Fig-

ure 5). Similarly, we would like to add a penalty if the leftmost
coordinate of the cropping window f xt −Ar f st lies within the left
external actor boundaries xl

′
t and xtlt (please refer to Figure 5). But

such a conjunction is not convex.
To approximate this within the convex framework, we use a heuris-

tic that pre-computes binary vectors tl and tr which take a value of
1 if a touch event occurs from the left or the right respectively or
they take a value of zero. A touch event occurs if an outside actor
comes in close vicinity of the inclusion region for a given shot spec-
ification. Using these two vectors, we define two separate penalty
terms Eout and Ein. The Eout penalty is only applied when no touch
event is occurring on the left or the right inclusion regions. It is
defined as follows:

Eout(ξ ) =
N

∑
t=1

((∼ tlt)max(0,xl
′
t − f xt +Ar f st)

+(∼ trt)max(0, f xt +Ar f st − xr
′
t)). (8)

When no touch event occurs any instance of the cropping win-
dow frame touching the closest external actor on the left or the right



Figure 7: Screenshot of a multiclip sequence generated using a set of four sequences in Final Cut Pro. In the middle we see the four
sequences including the original master shot and three reframed sequences (MS A, MS B, FS All) which were generated using the
proposed method. On the right, we see the edited sequence.

is penalized. For example, if the right edge of the cropping win-
dow f xt +Ar f st is greater than xr

′
t , a penalty of f xt +Ar f st−xr

′
t is

added, otherwise the penalty is zero. Similarly, the penalty is also
defined for left edge. The no touch event in Equation 8 is defined
as the logical not (∼) of the left and the right touch vectors tlt and
trt .

When a touch event occurs, the penalty term Eout switches to
Ein, which is defined as follows:

Ein(ξ ) =
N

∑
t=1

(tlt max(0, f xt −Ar f st − xtlt)

+ trt max(0,xtrt − f xt −Ar f st)). (9)

Here, xtr and xtl denote the leftmost and rightmost coordinate
of the upper body bounding box of an outside actor (not included
in shot specification) touching from the left or the right side re-
spectively. For example, if an outside actor is touching from the
right, the rightmost coordinate of the cropping window f xt +Ar f st
should be greater than the rightmost coordinate of the tracking win-
dow of the touching actor xtrt , otherwise a penalty of (xtrt − f xt −
Ar f st) is added to the cost function.

4.7 Energy minimization
Overall the problem of finding the virtual camera trajectory given

the actor bounding boxes and the shot specification, can simply be
summarized as a problem of minimizing a convex cost function
with linear constraints. Which is defined as follows:

minimize
f x, f y, f s

(D(ξ )+λ1L11(ξ )+λ2L13(ξ )+λ3Eout(ξ )

+λ4Ein(ξ )+λ5M1(ξ )+λ6M2(ξ ))

subject to
0≤ f xt −Ar f st ≤ xlt ,

xrt ≤ f xt +Ar f st ≤W,

0≤ f yt − f st ≤ yht ,

ybt ≤ f yt + f st ≤ H, t = 1, . . . ,N.

(10)

Here, λ1, λ2, λ3, λ4, λ5 and λ6 are parameters. They can be ad-
justed to control the amount of regularization and the weight of
each penalty term. In this paper, we use only two parameters with
(λ1 = λ2) and (λ3 = λ4 = λ5 = λ6), giving a similar preference to

each penalty term. But this can be adjusted in special cases where
higher preference may be required for a specific penalty term. One
major advantage of our method is that any standard off the shelf
convex optimization toolbox can be used to solve Equation 10. In
our case we use cvx [12].

5. RESULTS
We present results on five different sequences from Arthur Miller’s

play ‘Death of a Salesman’. The sequences were recorded during
rehearsals at Célestins, Théâtre de Lyon. Each of these sequences
were recorded from the same viewpoint in Full HD (1920×1080).
Those sequences were chosen from scenes with two, three and four
actors to demonstrate the versatility of our approach.

For each of these master shots, we generate a variety of reframed
sequences with different shot specifications. The reframed sequences
are generated with a resolution of (640× 360), maintaining the
original 16 : 9 aspect ratio. These generated sequences can be di-
rectly imported and edited in a standard video editing software as a
multi-clip. Figure 7 shows example of a multi-clip sequence con-
sisting of the original sequence (master shot) and the three reframed
sequences generated using our method. All the original videos and
generated rushes are available online1.

Qualitative evaluation. The results on two different sequences
are shown in Figure 8 and Figure 9. Each figure shows a few
selected keyframes from the original video and the correspond-
ing frames from the virtual camera sequences generated using our
method. A plot of the horizontal position fx of the virtual cam-
era trajectory against time is shown for each of the generated se-
quences. The generated sequences allow the editor to highlight de-
tails which may be not be so easy to notice in the original sequence.
Also, it provides much more variety to keep the viewer interested.
Now we discuss the generated sequences on three important aspects
of cinematography:

Composition. We can observe that the virtual cameras main-
tain a nice composition based on the shot specification. For exam-
ple, the virtual cameras "MS A" and "MS B" in Figure 8 keep a

1https://team.inria.fr/imagine/vgandhi/cvmp_
2014/
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Figure 8: Reframing results on a sequence with two actors (A,B). The top row shows a set of selected keyframes from the original
video. The corresponding keyframes from the three different virtual camera sequences are shown below. The three reframed
sequences include the medium shot of each actor (MS A, MS B) and a full shot of both the actors (FS All). A plot of the horizontal
position fx of the virtual camera trajectory against time is shown for each of the three reframed sequences. The position of the
keyframes on the plot is marked with red dots.

stable medium shot of both actors avoiding the actors to come in
contact with the image frame. The generated shot also preserves
the screen continuity, for example the camera "MS B" keeps the
actor B at 1/3 right as she is positioned on the right side of the
stage. Similarly, the camera "MS A" keeps actor A on 1/3rd left as
he enters from the left. Another example can be seen with camera
"MS B" in Figure 9, where the camera keeps the actor in the center
as it stays between two other actors on stage.

The virtual cameras also avoid cropping the actors not mentioned
in shot specification. For example, the camera "MS B" in Figure 8
pulls in actor A when it comes close to actor B at keyframe 6. Sim-
ilar example can be seen with camera "FS B,C" in Figure 9, which
maintains a tight full shot of actors B and C but pulls in actor A
when it comes close to the camera frame.

Camera motion. The plots of fx in Figure 8 and Figure 9
show that the virtual camera path smoothly transitions between
long static segments. Observe how the virtual camera remains
static for long period between keyframes 4 to 5 and keyframes 6
to 7 in Figure 8 as the actors do not move significantly. When the
camera moves, it moves smoothly preserving the apparent motion
of the actors on stage. For example, observe how the camera "MS
A" in Figure 8 moves to the right as the actor A enters the stage
between keyframes 3 and 4.

Cuttability. Good composition, screen continuity and long
static cameras in the generated virtual camera sequence provides
the editor plenty of choices to cut. For example the editor can
switch among all four possibilities (including the original) at keyframe
4 and 5 in Figure 8. Similarly, the editor can switch among all five
options at keyframe 1 in Figure 9. In a few scenarios the generated
virtual cameras may not be cuttable, for example cutting between
camera "MS A" and "MS B" at keyframe 6 in Figure 8 in not pos-
sible because it would create a jump cut. This happens because,
due to the pull in event both cameras end up framing the same ac-
tors with slightly different compositions. In some cases, the virtual
camera framing comes too close to the framing of the original mas-
ter shot and cutting between them may lead to a jump cut. An
example of this can be seen in keyframe 3 of camera "FS All" in
Figure 8.

6. LIMITATIONS AND FUTURE WORK
Currently in our system, optimization is performed separately for

each given shot specification. This may lead to jump cuts in few
cases as discussed in previous section. In future work, we plan to
perform a joint optimization for the set of given shot specifications.
The proposed work focuses on framing actors present on stage but
does not allow to include objects in the shot specification. In future
work, we plan to integrate some simple objects in the shot naming
conventions using standard objects detectors. The Full HD mas-
ter shots used in the experiments in this paper did not provide us
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Figure 9: Reframing results on a sequence with three actors (A,B,C). Selected keyframes from the original sequence and 4 virtual
camera sequences are shown in this figure. The four virtual camera sequences include the full shot of all three actors (FS All), full
shot of actors two actor (FS B,C) and medium shots of two of the actors (MS A, MS B). A plot of the horizontal position fx of the
virtual camera trajectory against time is shown for each of the four reframed sequences. The position of the selected keyframes on
the plot is marked with red dots.

enough resolution to go closer than medium shots. But the method
can be easily applied to master shots with higher resolutions (4K
or 6K), which will allow to extend the range of shots to medium
close-ups (MCU) and close-ups (CU).

The reframed rushes obtained from our method are automatically
annotated with actor and camera movements which makes them
suitable for automatic editing. In future work we plan to investigate
the problem of automatic camera selection given the rushes.

7. CONCLUSION
We have presented a system which can generate multiple re-

framed sequences from a single viewpoint taking into considera-
tion the composition, camera movement and cutting aspects of cin-
ematography. We have cast the problem of rush generation as a
convex minimization problem and demonstrated qualitatively cor-
rect results in a variety of situations. To our knowledge this is the
first time that the problem of rush generation has been addressed

and validated experimentally. In effect, our method provides a cost-
effective solution for multi-clip video editing from a single view-
point.
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