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Course Abstract

Level set methods, an important class of partial differential equation
(PDE) methods, define dynamic surfaces implicitly as the level set (iso-
surface) of a sampled, evolving nD function. The course begins with
preparatory material that introduces the concept of using partial
differential equations to solve problems in computer graphics, geometric
modeling and computer vision. This will include the structure and
behavior of several different types of differential equations, e.g. the level
set equation and the heat equation, as well as a general approach to
developing PDE-based applications. The second stage of the course will
describe the numerical methods and algorithms needed to actually
implement the mathematics and methods presented in the first stage.
The course closes with detailed presentations on several level set/PDE
applications, including image/video inpainting, pattern formation,
image/volume processing, 3D shape reconstruction, image/volume
segmentation, image/shape morphing, geometric modeling, anisotropic
diffusion, and natural phenomena simulation.

Prerequisites

Knowledge of calculus, linear algebra, computer graphics, geometric
modeling, image processing and computer vision. Some familiarity with
differential geometry, differential equations, numerical computing and
image processing is strongly recommended, but not required.
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Course Schedule

Session 1 - PDE and Level Set Fundamentals
8:30 Welcome - Breen
8:40 Introduction to PDEs and Their Application to Imaging - Sapiro
9:40 Introduction to Level Set Methods - Osher

10:15 Break

Session 2 - Numerical Methods and Applications
10:30 Dynamic Visibility in an Implicit Framework - Osher
11:00 Level Set Numerical Methods - Whitaker
11:25 Level Set Surface Reconstruction and Processing - Whitaker
11:55 Level Set Methods on a Streaming Architecture - Whitaker

12:15 Lunch Break

Session 3 - PDE/Level Set Applications
1:45 Image Inpainting - Sapiro
2:15 Computing Generalized Geodesics for Computer Graphics - Sapiro
2:45 Algorithms for Level Set Modeling - Museth
3:10 Level Set Surface Editing Operators - Museth

3:30 Break

Session 4 - Level Set Segmentation and Simulation
3:45 3D Volume Segmentation (framework, multiple non-uniform datasets,
diffusion tensor MRI, sinograms) - Breen
4:30 Simulation of Water, Fire and Smoke - Fedkiw

5:30 Course Ends
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Osher Home Page
http://www.math.ucla.edu/~sjo

UCLA CAM Technical Reports
http://www.math.ucla.edu/applied/cam

Level Set Systems, Inc.
http://www.levelset.com

Sapiro Home Page
http://www.ece.umn.edu/users/guille

Whitaker Home Page
http://www.cs.utah.edu/~whitaker

VISPack Web Site
http://www.cs.utah.edu/~whitaker/vispack

Fedkiw Home Page
http://www.graphics.stanford.edu/~fedkiw

Museth Home Page
http://gg.itn.liu.se

Breen - Geometric Modeling and Deformable Models
http://www.cs.drexel.edu/~david/geom_mod.html
http://www.cs.drexel.edu/~david/deform_mod.html

Sethian Home Page
http://www.math.berkeley.edu/~sethian
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Basic curve evolution 55
.

J Planar curve:

U General flow:

— =aT + BN

1 General geometric flow:

ic

- BN
at B
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Mathematical morphology: Definitions

A®B:={a+b,a€EAbEB}=U A,
bEB
ABB:= (A°@B)" = N A,
bEB
AoB:=(AGB)®B= U A,

{y:B,CA}

A*B:= (A®B)OB

SIGGRAPH 2002

Guillermo Sapiro

Moving Curves
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Mathematical morphology

O Classical theory, based on Minkowsky addition.
U The old and (probably wrong) way of doing geometric
image analysis.
U Has very important lessons to learn!!!!
1 Basic definitions:
® A: Image in Euclidean space (R or Z)
@ B: Structuring element (symmetric)
® Nothing else than Minkowsky addition
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Mathematical morphology: Is it good or bad?

O Advantages:
® Nice mathematical properties (set theory)
® Extension to Lattices
U Disadvantages:
® Discrete Minkowsky addition does not look good, has to bg’

replaced by better ways of puting “discrete di:
1 Major important concept: Level-sets
f:RYN =R, g:RY — {0,-}

f®g= max {f}

support of g
©® Commutes with thresholding (level-sets): Do binary on each
level sets or do gray-level on all the image => same result

O Itis in certain sense a particular case of curve evolution
(before the lattices part)

SIGGRAPH 2002
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Mathematical morphology via curve evolution

Convex structuring elements B:
AG®BBC)=(A®B)OC
A®(rB)= A®rnB®r,B®...

—_— —
TN
N
Huygens principle
SIGGRAPH 2002 .
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Planar differential geometry

0 Euclidean invariant 0 Affine invariant
parametrization parametrization

) _ icw ot _

s Js  ds

=0

<G e, Cul = 0
C, 1C,

e kC, +Cy =0
x:= [Cy

x=[C. Gl
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Planar differential geometry (cont.)

d(X,C(s) = <X =C(s), X =Cls)>| d(X.C(s)) 1= |X~C(s) . C(s)]
» X X
C(s) C(s)
dd
ZZ - <x-cC,C dd
AR RN SO
b0 -0
=) L C(s) X =C(s) Il Cyy(s)
X = C(s) Il Cyi(s)

Distance has a local extrema iff X is on the norma
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Mathematical morphology via curve evolution (cont.)

O General velocity:

p =sup,{r(0)-N}

O Examples:
p=N B =disk
B =max{N N} B = diamond
B =IN +IN | B = square

0 Nothing else than changing the metric (distance).

1 Can be explained also based on dynamic programming
and time of arrival

O See Sapiro et al., Brocket-Maragos, Alvarez et al., Evans, Falcone
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Planar differential geometry (cont.)

O Curvature constant for circles | O Curvature constant for
or straight lines (=0) ellipses (>0), hyperbolas (<0),
and parabolas (=0)

O Curvature defines curve up to

O Curvature defines curve up to " p
affine motion

Euclidean motion

O At least 4 points with dk/ds=0 | - At least 6 points with dk/ds=0

0 Defined only for convex
curves: segment at inflection
points

O Defined for all curves

SIGGRAPH 2002 0
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3D Differential geometry

1 Remember mean and Gaussian curvatures?

[ Each regular surface has two principal curvatures. The
average is the mean curvature, the product the Gaussian.
These are also related to the tangential map, etc, etc. See
DoCarmo for details.

SIGGRAPH 2002 2
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Riemannian geometry, Lie theory

1 What about other non-Euclidean metrics?

] What about invariants to other (Lie) groups, e.g.,
projective?

1 What about differential invariants? Semi-differential
invariants? Are there any general theories?
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Invariant shape deformations 5

0 Formulate shape deformations
® Geometric
@ Invariant to camera transform
® The “best” possible
® Change only the desired features
J Motivation:
©® Mathematics:
+ From static di i y to
+ Beautiful
©® Computer vision and image processing:
+ Invariant shape segmentation and analysis

+ Image p! ing via image defor
® Robotics:
+ Motion planning
3 ic object ion and

+ Robot manipulation and grasping
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What and why invariant A Iy

Camera
motion

<

U Camera/object movement in the space

llwﬂ'»

1 Transformations description (for “flat” objects):
® Euclidean
+ Motion parallel to the camera and planar projection
® Affine
+ Planar projection
® Projective
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Smoothing by classical heat flow 5
IC _ AC P - Yo
at Vi Ypp
O Linear

1 Equivalent to Gaussian filtering
1 Unique linear scale-space

1 Non geometric
U Shrinks the shape
O Implementation problems
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Basic planar differential geometry 5

O For every Lie group we will consider, exists and
invariant parametrization s, the group arc-length

a1y

U For every such a group exists and invariant
signature, the group curvature, k

Low curvature

High curvature

Negative curvature

SIGGRAPH 2002
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Euclidean geometric heat flow 5

0 Use the Euclidean arc-length: ||| = 1

U The deformation:

ic _ ¢

= kN
at ds®

©® Smoothly deforms to a circle (Gage-Hamilton, Grayson)
® Geometric smoothing
©® Reduces length as fast as possible

SIGGRAPH 2002
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Affine geometric heat flow (sapiro-Tannenbaum) 5

0 Use the affine arc-length: HCS x CssH =1

1 The flow:

_ U3 ) T

Cy =K "N+ fxx)T
Jc _ [Cg non - inflection

ar 0 inflection

SIGGRAPH 2002
Guillermo Sapiro 19
General invariant flows v 55

1 Theorem: For every sub-group of the projective group the
most general invariant curve deformation has the form

aC _ 9*C
a1 = 95 S K K o)

U Theorem: In general dimensions, the most general
invariant flow is given by

u, = if(curvatures)

" E®

® u: graph locally representing the surface
® g: invariant metric
® E(g): variational derivative of g

O See Olver et al., Alvarez et al., Caselles-Sbert
SIGGRAPH 2002
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21

Introduction

0 Goal: Object detection

1 Approach: Curve/surface deformation
©® Geometry dependent regularization
® Image dependent velocity

[ Characteristics:
® Unifies previously considered independent approaches
® Relates segmentation with anisotropic diffusion
® General:
+ Any topology
+ Any type of image data
+ Any dimension
® Holds formal results
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Affine geometric heat flow (cont.) 5

J Geometric smoothing (preserving area if desired)
® Total curvature decreases
® Maxima of curvature decreases
° of inflections
U Smoothly deforms a shape into an ellipse
[ Decreases area as fast as possible (in an affine form)
U Existence also for non-smooth curves
® Viscosity framework (Alvarez-Guichard-Morel-Lions)
® Polygons (Angenent-Sapiro-Tannenbaum)

1 Applications:

® Curvature computation for shape recognition: reduce noise
(Morel et al.)

® Simplify curvature computation (Faugeras ‘95)
® Object recognition for robot manipulation (Cipolla ‘95)
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General Geometric Framework For
Object Segmentation
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Notation

0 Deforming curve: C (p): [0,]] — R*

QOlmage: I [011x[0,1] = R* (")

T

S

SIGGRAPH 2002
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Basic active contours approach ~¥ Geodesic active contours (caselles-Kimmel-Sapiro) ~¥

0 Terzopoulos et al., Cohen et al.

EC) = AfC(pY dp + vfIC"(p)dp - fIVI(C)dp

[ Generalize image dependent energy

U Eliminate high order smoothness term
EC) = )»ﬂC'(p)‘z dp + yﬂC”(p)‘z dp - ﬂVI(C)\ dp { Equal internal and external energies

U Drawbacks: E(C) = [IC(p)fdp + [lIVI(C(p)dp
© Too many parameters
©® Non-geometric

® Handling topology changes 0 Maupertuis and Fermat principles of dynamical systems
i S
NL)o= E(C) = [glIVI(C(s)llds
SIGGRAPH 2002 SIGGRAPH 2002
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Geodesic computation Further geometric interpretation

1 Gradient-descent [ The geodesic flow
E(C) = sds =~  9C _ N
at JC _ _ _
7=g1<N—Vg~N (+gN)
t
E(C) = [glIVI(C(s)llds = %C = gkN - Vg-N
t
O Level-sets (Osher-Sethian)

IC _ N = 9P _ pwal = E
it gt \A E

°/ 0

@ﬂ
o vV

SIGGRAPH 2002 » S e S =
Model correctness L Extensions Y

0 Theorem: The deformation is independent of the level-sets E(C) = [glIVI(C(s)l]ds
embedding function

0 Theorem: There is a unique solution to the flow in the U Gray-level values
viscosity framework ® ds - length element (geodesics)

O Theorem: The curve converges to ideal objects when ® Ordinary edge detector (gradient)
present in the image 0 Surfaces

0O Related work:
® Kimia-Tannenbaum-Zucker
® Caselles et al.

® ds - area element (minimal surfaces)
® 3D edge detector

® Malladi-Sethian-Vemuri 1 Vector-valued images (color, texture, medical, etc)
® Kichenassamy at al. @ ds - length element
© Tek-Kimia, Whitacker ® Vector-valued edge detector (vector geodesics)
0O New work: + Eigenvalues of the first form in Ri ian space
® Chan-Vese O Invariant detection (affine area geodesics)
® Paragios-Deriche ® ds - affine length element (area related)
® Yezzietal.

® Affine invariant edge detector

® F t al.
augeras et al ® Affine norm for “gradient descent”

SIGGRAPH 2002 SIGGRAPH 2002

Guillermo Sapiro Guillermo Sapiro 80



Why color edges?

SIGGRAPH 2002
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Color edge computation

1 Given a metric (Euclidean) =AX= EAX2

U Compute first fundamental form

_iX.0X
&1 = 577,

O Compute eigenvectors and eigenvalues
1 Edge: maximal eigenvalue and its eigenvector

(A, Aot .00)

1 Basic properties:
® Eigenvectors are orthonormal
©® Minimal eigenvalue is not zero

SIGGRAPH 2002
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Anisotropic diffusion

Isotropic vs. Anisotropic Smoothing

<—?—>
}

Isotropic Anisotropic
smoothing smoothing

SIGGRAPH 2002
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Notation

O Image

X:[0,N]KO,N] = R"

L'a*p*

U Texture: Gabor decomposition

SIGGRAPH 2002
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Moving Images
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Isotropic diffusion (Koenderink, Witkin)

O All “equivalent:”
® Gaussian filtering of the image (P
® Heat flow

I _ Ap
Jt

® Minimize the L2 norm

JIvel

SIGGRAPH 2002
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Isotropic diffusion: Good things

1 Gaussian filtering if and only if
® Linear
® Shift-invariant
® No creation of zero crossings
O Gaussian filtering if and only if
® Linear
® Shift-invariant
© Semi-group property
® Scale-i iant (di
U Unique linear filter that defines a scale-space: Do not
creates information at coarser scales
1 Where everything started (Koenderink, Witkin)

SIGGRAPH 2002
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Perona-Malik anisotropic diffusion

1 Replace the L2 by a different norm (e.g., L1, Rudin-Osher-
Fatemi; Lorentzian, Black et. al.; etc)

Jd . , \%!
Ve = 22 . dw(h(l)m]

SIGGRAPH 2002
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Robust anisotropic diffusion

1 General theory for selection “h”, based on the theory of
influence functions in robust statistics

1 Edges should be considered outliers: At certain point, h’,
the influence, should be zero.

SIGGRAPH 2002
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Isotropic diffusion: Bad things and possible solutions

 Non-geometric
1 Problems with implementations

1 Who said linear? Replace heat flow by “parabolic” PDE’s
(Hummel’s original idea)

1 Why parabolic? Because of the maximum principle.

SIGGRAPH 2002
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Selection of “stopping term” h

J How do we select h?
dh=x*x => L2 =>linear => Isotropic diffusion
O h=x => L1 (Rudin-Osher-Fatemi)

Jcve) = %qt) - K

SIGGRAPH 2002
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Directional diffusion

O Diffuse in the direction perpendicular to the edges (Avarez
etal.)

2

P kv oy,

ELVD
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From active contours to anisotropic diffusion

0 Replace embedding function in level-sets formulation

by image itself

P

Cr = &DKVO| + Ve Ve

al

Sr = 8D KVI| + Vg(l) - VI

! / \

Anisotropic diffusion Shock-filters
(Alvarez et al.) (Osher-Rudin)

-
l ==
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Concluding remarks

Terzopoulos snakes

Geometric interpretation
Dynamical systems

Terms Level-sets

c Lutiopimination
urve evolution Geodesic active
active contours contours

. . . Use image as embedding
Geometric dlffuswon

Shoclfilters | Add
Divide by gradient

Perona-Malik flow

Variational interpretation

Total Variation = Robust Estimation

Self- k Mumford-Shah

SIGGRAPH 2002
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ADP in MRI

Review: MAP Estimation

O 3classes: sulcus, gray matter, white matter
O Prior probability: Pr(class=C)
O Posterior probability: Pr(class=C | data)

O MAP: Choose class C that maximizes posterior:

C* = arg max Pr(class=C | data)
(o]
O Bayes’ Rule:

Pr(class=C | data) = Pr(data | class=C).Pr(class=C)
Pr(data)

O What is our prior, Pr(class=C)?
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Relation with Perona-Malik anisotropic diffusion

22 - (D K[VO| + Ve VO
)
)0
— = |vo dlv[g(l) ]
It V1|
D _ o VI
greD = 52 - o)

Total variation, Robust estimation Anisotropic diffusion

SIGGRAPH 2002
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Anisotropic Diffusion
of the Posterior

SIGGRAPH 2002

Guillermo Sapiro

ADP: Common Techniques

MAP Estimation: Uniform Prior

Classification

SIGGRAPH 2002
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ADP: Results

Anisotropic smoothing of posterior (teo-sapiro-wandell

Smoothed
Posterior Posterior

A&

Classification

SIGGRAPH 2002 N
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SAR segmentation via vector probability processing

With A. Pardo (see also Haker-Sapiro-Tannenbaum)
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Goal and approach (Ringach-Sapiro)

U Goal:
® Enhancement of vector valued data
® Extend classical theories of scalar PDE’s in image
processing

Q Approach:
® Work in vector space
©® Compute vector edges
® Anisotropic diffusion

O Important: Works for any vector data

O See also: Cumani, Di Zenzo, Chambolle
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ADP: Comparisons

Comparison with manual segmentation

Automatic
(2 min)
MR Image Manual
(18 hours)
SIGGRAPH 2002 50
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Anisotropic Diffusion in Vector Space
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Notation

O Image

X:[0,N]O,N] = R"

L'a*p*

U Texture: Gabor decomposition
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Color edge computation

1 Given a metric (Euclidean) =AX= EAX2

U Compute first fundamental form

_iX.0X
&1 = 577,

1 Compute eigenvectors and eigenvalues
1 Edge: maximal eigenvalue and its eigenvector

(A,A-.0,.6-)

 Basic properties:
® Eigenvectors are orthonormal
® Minimal eigenvalue is not zero

SIGGRAPH 2002
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Level lines for vectorial images (Chung-Sapiro)

Vector and scalar representation
sharing level-lines
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Beyond the flat manifolds
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Color anisotropic diffusion

O Direction: Minimal change (9_)
U Strength: g(/l_'_ AZ)

IX_or A )X
T g(+,_)a62_
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Contrast Enhancement (sapiro-Caselles, and Caselles-Lisani-Morel-Sapiro)

O Contrast enhancement via image deformations
® Approach: Histogram modification

=
d1(x,y)
t

2 = [(x,y) - (#pixels of value = 1(x,y) )
J

Uy = %;[1@)—1/2}2 dx - ig (I(F)-1()]dZdZ

® Characteristics:
+ Sil and

+ First explanation of histogram modification in image domain
+ Extended to local

+ First semi-global partial differential equation in image processing
+ Formal existence results

SIGGRAPH 2002
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The main problem and our goal (Tang-Sapiro-Caselles)

O Goal: Enhancement and analysis of directional data (and
data on non-flat manifolds)

U Problem: Directions are unit vectors:
® Regular images vs Directions

2 N 2 N-1
I:'R -R vs LR —=S§
QO Applications:
® Optical flow, Gradients
® Vector data (normalized)
@ Color image enhancement
© Surface normals and principal directions
@ Flows in general manifolds
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Average
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Anisotropic Diffusion

Isotropic
(Heat equatiO/)/
i

"

31(;,}’J)=A1 ‘”(g’y’t)=div(g(|VIl)VI)
t t

SIGGRAPH 2002
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Anisotropic Diffusion

Isotropic
(Heat equatiO/)/ 15
i

"

II(x,y,0) _ AT %:div(g(lVll)Vl)

Jat

SIGGRAPH 2002
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Most popular previous approaches

O Work with angles: Operations on the sphere
® Average, median, etc
® Statistics of directional data, Mardia
© “Orientation Diffusion,” Perona (1998)

0 Tensor diffusion
® Wei t, Granlund-K

[ See also Chan-Shen

SIGGRAPH 2002
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What have we learned from images?

Robust Estimationmin, Sgo(IVII)dQ
U Robust function

Gradient Descent: wqﬁv oYL
!

! l VI
Influence function

VII (defines outliers)

g:

Anisotropic Diffusion%=div(g(lvmvﬁ

SIGGRAPH 2002
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Back to Directions: Basic Idea

1 Use the theory of harmonic maps

® Find a map | from two manifolds (M,g) and (N,h) such that

minI:MﬁNf"VMI”p dvol,,
Q

@ In particular, liquid crystals:

i “V I“p dvd
min_, £ x dy
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The Gradient-Descent Equations

Gred (-2

a1
oA+ A <V LY, 1>

ligidaysds

al )
T div([VIIP? V) + 1IVI|”

SIGGRAPH 2002
Guillermo Sapiro

Intermezzo: Visualizing Directions

J Arrows
U Color Map

1 Line Integral Convolution

E—
E——
I

SIGGRAPH 2002
Guillermo Sapiro

69

3D vector (Isotropic)

SIGGRAPH 2002

Guillermo Sapiro "

A Few Theoretical Results (over hundreds relevant)

1 For 2D unit vectors (n=1), and p=2, a unique solution exists
and singularities are isolated points (if they exists at all).
For smooth data, singularities do not occur.

O Singularities occur for 3D unit vectors (p=2).
[ Singularities well characterized for 1<p<=2.
1 Energy well characterized for 1<p<=2.

1 No singularities for manifolds with non-positive curvature.
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Examples (Isotropic)
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Denoising
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Optical flow Optical flow (cont.)
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Gradient Gradient (cont.)
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Color Image Enhancement Color image enhancement (cont.)

e

SIGGRAPH 2002 SIGGRAPH 2002

Guillermo Sapiro Guillermo Sapiro

Color image enhancement (cont.) Vector probability diffusion (with Alvaro Pardo)

Q Perform diffusion on the hyperplane representing
probabilities

min . ., f”V I"p dx dy
Q

? A, I +A(I)<V, IV, 1>
t

% = div(|VI|"”vI)

S Gainormo Sapivs e S Gainormo Sapies
Vector probability diffusion (cont.) Vector probability diffusion (cont.)
O The numerical implementation also stays on the 0 Diffuse posterior probabilities (following Teo-Sapiro-Wandell
hyperplane and Haker-Sapiro-Tannenbaum)

0 The numerical implementation also holds a maximum and
minimum principle

SIGGRAPH 2002 SIGGRAPH 2002
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WHY THE WORLD LOVES THE LEVEL SET
METHOD (AND RELATED) METHODS

Stan Osher

Mathematics Department
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Level Set Systems, Inc.
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sjo@levelset.com

Google: “Level Set Methods”
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Osher-Sethian original paper (1988)

Now cited = 720 times (web-of-science)
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New Book
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Level Set Methods and
Dynamic Implicit Surfaces
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Given an interface in R”, call it T, of codimension one,

Move it normal to itself under velocity v

v = v (x, geometry, external physics)

O & Sethian (1987)

Also: Unreferenced papers by
Dervieux, Thomassett, (1979, 1980).

Some of the key ideas in obscure proceedings.




Trivial fact
Zero level contour
¢(x,1)=0
d
B 1),t) =0
= P(x(2),0)

Normal to T:7 Ve
Vol
@, +V, | V‘p |= 0
vV
v)l =V — (p
Vol
Merging is difficult

3D is difficult
VOF Reparametrization needed
Advect x(x)=1if xeQ
= 0 outside
+ Merging ok
-- Spurious discontinuity

-- Hard to compute curvature.

Phase field
e.g.

Mean Curvature

u, = Au——J,

get curvature

interface O(e)
width

But Ax < ¢, otherwise
(Thm: MBO, phase field gives the wrong answer)
Need adaptive grid,

NO ¢ in our approach.

(1) Reinitialize
¢ — signed distance to I' (SSO).
(2) v, — extends smoothly off of I' (CMOS).

(3) Local level set (near interface) |¢| < .

Easy to implement

Near boundary singularities, 2 or 3D.




Also

v, v, () = y(ﬂ]

Vol
Vo
o +|Vely =0
Vo]

High order accurate ENO schemes for HJ equations
(Kinks develop)
[OSe] [OSh]

Theoretical Justification

Viscosity solutions for scalar 2 order (or 1% order)

Evolution eqns.

Motion by mean curvature e.g.

Vo
@ =|Vo|V-——
' Vol

ESS showed same as classical limit

1
u, =Au—-—f,
€

as € | 0

Got e.g. motion of square by mean curvature.

Level Set Dictionary

L L | (x,0) =0}
Q(bdd by T()

Q) = | p(x,1) <0}

2. Unit normal
_ Vv
=l
Vo
3. Mean curvature
K=V- Y(p
Vol

4. Delta function on an interface

o(9) Vel

5. Characteristic function , of Q()
x=H(-p)

H(x)=1 if x>0
H(x)=0 if x<0

6. Surface integral of p(x,7) over I’

[rx.06@) | Ve |dx

®"

7. Volume integral of p(x,¢) over Q

[PEDH (-p)dx

8. Distance reinitialization d(x,7) = signed distance to

nearest point on I’

|[Vd|=1 d<0 in Q, d>0 in QF
d=0 on T

Wy signp(Vy |-1)=0
T

ast! Y —d very fast near d = 0.




9. Smooth extension of a quantity e.g. v, onT, off of T.

Let v, =p(x,0)

ag . Vo
—+(signg)l —— Vg |=0
o g W(\V(pl q

q(x,0) = p(x,1)
very fast near d = 0.

10. Local level set method.

Solve PDE within 6Ax or so of d = 0.

11. Fast marching method: Tsitsiklis (1993)

Rediscovered by (1995): Helmsen P.C.D.,..., & Sethian

@ +v, ()| Vel=0

v,>0

Use heap-sort, Godunov’s Hamiltonian (upwind,

viscosity soln)

Solve in O(N log N)

(First order accurate), jazzed up hyperbolic space

Marching.

For this problem, probably fastest.

Although local level set more general & accurate.

For more complicated Hamiltonians
H(Z,Vp)=c(X)>0

H convex in grad phi

0
Can do a simple local update  (xo using a new

Formula of Tsai, et. al. (2001)

Sweep in pre-ordained directions. Converges rapidly. No
heap sort. No large search and initialization regions.

Zhao: “convergence theorem” in special cases.

Now, with Kao, Jiang & O, can do a very simple sweeping

method in very general cases.




Level Set Methods:
An Overview and Some Recent Results *

Stanley Osher |
Ronald P. Fedkiw *

September 5, 2000

Abstract

The level set method was devised by Osher and Sethian in [64] as a
simple and versatile method for computing and analyzing the motion
of an interface T' in two or three dimensions. T' bounds a (possibly
multiply connected) region Q. The goal is to compute and analyze
the subsequent motion of T' under a velocity field ¢. This velocity
can depend on position, time, the geometry of the interface and the
external physics. The interface is captured for later time as the zero
level set of a smooth (at least Lipschitz continuous) function ¢(&,t),
ie, I'(t) = {Z|p(Z,t) = 0}. ¢ is positive inside 2, negative outside
and is zero on I'(¢). Topological merging and breaking are well defined
and easily performed.

In this review article we discuss recent variants and extensions,
including the motion of curves in three dimensions, the Dynamic Sur-
face Extension method, fast methods for steady state problems, diffu-
sion generated motion and the variational level set approach. We also
give a user’s guide to the level set dictionary and technology, couple
the method to a wide variety of problems involving external physics,
such as compressible and incompressible (possibly reacting) flow, Ste-
fan problems, kinetic crystal growth, epitaxial growth of thin films,

*Research supported in part by ONR N00014-97-1-0027, DARPA /NSF VIP grant NSF
DMS9615854, AFOSR FQ8671-9801346, NSF DMS 9706827 and ARO DAAG 55-98-1-
0323.

TDepartment of Mathematics, University of California Los Angeles, Los Angeles, Cal-
ifornia 90095

fComputer Science Department, Stanford University, Stanford, California 94305.



vortex dominated flows and extensions to multiphase motion. We con-
clude with a discussion of applications to computer vision and image
processing.



1 Introduction

The original idea behind the level set method was a simple one. Given
an interface I' in R"™ of codimension one, bounding a (perhaps multiply
connected) open region 2, we wish to analyze and compute its subsequent
motion under a velocity field . This velocity can depend on position, time,
the geometry of the interface (e.g. its normal or its mean curvature) and
the external physics. The idea, as devised in 1987 by S. Osher and J.A.
Sethian [64] is merely to define a smooth (at least Lipschitz continuous)
function ¢(z,t), that represents the interface as the set where ¢(x,t) = 0.
Here x = x(z1,...,2,) € R™.
The level set function ¢ has the following properties

0 forx € Q
0 forz ¢ Q
= 0 forx € 0Q=T(¢)

plr,t) >
o(x,t) <
o, t

Thus, the interface is to be captured for all later time, by merely locat-
ing the set I'(t) for which ¢ vanishes. This deceptively trivial statement is
of great significance for numerical computation, primarily because topolog-
ical changes such as breaking and merging are well defined and performed
“without emotional involvement”.

The motion is analyzed by convecting the ¢ values (levels) with the
velocity field . This elementary equation is

¢

a—kv-ch:O. (1)

Here ¥ is the desired velocity on the interface, and is arbitrary elsewhere.

Actually, only the normal component of v is needed: vy = U - %%‘, SO
(1) becomes
Ip
— V| =0. 2
5 TonlVel (2)

In section 3 we give simple and computationally fast prescriptions for
reinitializing the function ¢ to be signed distance to I', at least near the
boundary [84], smoothly extending the velocity field vy off of the front I'
[24] and solving equation (2) only locally near the interface I', thus lowering
the complexity of this calculation by an order of magnitude [66]. This makes
the cost of level set methods competitive with boundary integral methods,
in cases when the latter are applicable, e.g. see [42].



We emphasize that all this is easy to implement in the presence of bound-
ary singularities, topological changes, and in 2 or 3 dimensions. Moreover,
in the case which vy is a function of the direction of the unit normal (as in
kinetic crystal growth [62], and Uniform Density Island Dynamics [15], [36])
then equation (2) becomes the first order Hamilton-Jacobi equation

% 19y () =0 3)

where v = ’y(ﬁ ) a given function of the normal, N = %.

High order accurate, essentially non-oscillatory discretizations to general
Hamilton-Jacobi equations including (3) were obtained in [64], see also [65]
and [43].

Theoretical justification of this method for geometric based motion came
through the theory of viscosity solutions for scalar time dependent partial
differential equations [23], [30]. The notion of viscosity solution (see e.g. [8,
27]) — which applies to a very wide class of these equations, including those
derived from geometric based motions — enables users to have confidence that
their computer simulations give accurate, unique solutions. A particularly
interesting result is in [29] where motion by mean curvature, as defined by
Osher and Sethian in [64], is shown to be essentially the same motion as is
obtained from the asymptotics in the phase field reaction diffusion equation.
The motion in the level set method involves no superfluous stiffness as is
required in phase field models. As was proven in [53], this stiffness due to
a singular perturbation involving a small parameter ¢ will lead to incorrect
answers as in [48], without the use of adaptive grids [59]. This is not an
issue in the level set approach.

The outline of this paper is as follows: In section 2 we present recent vari-
ants, extensions and a rather interesting selection of related fast numerical
methods. This section might be skipped at first, especially by newcomers to
this subject. Section 3 contains the key definitions and basic level set tech-
nology, as well as a few words about the numerical implementation. Section
4 describes applications in which the moving interfaces are coupled to ex-
ternal physics. Section 5 concerns the variational level set approach with
applications to multiphase (as opposed to two phase) problems. Section 6
gives a very brief introduction to the ever-increasing use of level set method
and related methods in image analysis.



2 Recent Variants, Extensions and Related Fast
Methods

2.1 Motion of Curves in Three Spatial Dimensions

In this section we discuss several new and related techniques and fast nu-
merical methods for a class of Hamilton-Jacobi equations. These are all
relatively recent developments and less experienced readers might skip this
section at first.

As mentioned above, the level set method was originally developed for
curves in R? and surfaces in R?. Attempts have been made to modify it to
handle objects of high codimension. Ambrosio and Soner [5] were interested
in moving a curve in R3 by curvature. They used the squared distance to
the curve as the level set function, thus fixing the curve as the zero level set,
and evolved the curve by solving a PDE for the level set function. The main
problem with this approach is that one of the most significant advantages
of level set method, the ability to easily handle merging and pinching, does
not carry over. A phenomenon called “thickening” emerges, where the curve
develops an interior.

Attempts have also been made in other directions, front tracking, e.g.
see [41]. This is where the curve is parameterized and then numerically rep-
resented by discrete points. The problem with this approach lies in finding
when merging and pinching will occur and in reparameterizing the curve
when it does. The representation we derived in [13] makes use of two level
set functions to model a curve in R3, an approach Ambrosio and Soner
also suggested but did not pursue because the theoretical aspects become
very difficult. In this formulation, a curve is represented by the intersection
between the zero level sets of two level set functions ¢ and 1, i.e., where
¢ = 1 = 0. From this, many properties of the curve can be derived such

as the tangent vectors, T = %, the curvature vectors, kN = VT - T,

and even the torsion, TN =-VB-T , where N and B are the normal and
binormal respectively.

Motions of the curve can then be studied under the appropriate system
of PDE’s involving the two level set functions. The velocity can depend on
external physics, as well as on the geometry of the curve (as in the standard
level set approach). The resulting system of PDE’s for ¢ and ¢ is

¢r=—1-V¢
Yp=—0-Vi



A simple example involves moving the curve according to its curvature vec-
tors, for which ¢ = xN. We have shown that this system can also be
obtained by applying a gradient descent algorithm minimizing the length of
the curve,

L) = [ 1V x Tol6(w)6(6)dz.

This follows the general procedure derived in [88] for the variational level
set method for codimension one motion, also described in [90]. Numerical
simulations performed in [13] on this system of PDE’s, and shown in figures
1 and 2, show that merging and pinching off are handled automatically and
follow curve shortening principles.

We repeat the observation made above that makes this sort of motion
easily accessible to this vector valued level set method. Namely all geometric
properties of a curve I which is expressed as the zero level set of the vector
equation

¢(z,y,2,t) =0
Y(z,y,2,t) =0

can easily be obtained numerically by computing discrete gradients and
higher derivatives of the functions ¢ and v restricted to their common zero
level set.

This method will be used to simulate the dynamics of defect lines as they
arise in heteroepitaxy of non-lattice notched materials, see [79] and [80] for
Lagrangian calculations.

An interesting variant of the level set method for geometry based mo-
tion was introduced in [53] as diffusion generated motion, and has now been
generalized to forms known as convolution generated motion or threshold dy-
namics. This method splits the reaction diffusion approach into two highly
simplified steps. Remarkably, a vector valued generalization of this ap-
proach, as in the vector valued level set method described above gives an
alternative approach [74] to easily compute the motion (and merging) of
curves moving normal to themselves in three dimensions with velocity equal
to their curvature.

2.2 Dynamic Surface Extension (DSE)

Another fixed grid method for capturing the motion of self-intersecting in-
terfaces was obtained in [73]. This is a fixed grid, interface capturing formu-
lation based on the Dynamic Surface Extension (DSE) method of Steinhoff



et. al. [82]. The latter method was devised as an alternative to the level
set method of Osher and Sethian [64] which is needed to evolve wavefronts
according to geometric optics. The problem is that the wavefronts in this
case are supposed to pass through each other — not merge as in the viscos-
ity solution case. Ray-tracing can be used but the markers tend to diverge
which leads to loss of resolution and aliasing.

The original (ingenious) DSE method was not well suited to certain
fundamental self intersection problems such as formation of swallowtails. In
[73] we extended the basic DSE scheme to handle this fundamental problem,
as well as all other complex intersections.

The method is designed to track moving sets I' of points of arbitrary
(perhaps changing) codimension, moreover there is no concept of “inside”
or “outside”. The method is, in some sense, dual to the level set method.
In the latter, the distance representation is constant tangential to a surface.
In the DSE method, the closest point to a surface is constant in directions
orthogonal to the surface.

The version of DSE presented in [73] can be described as follows:

For each point in R", set the tracked pointed T'P(Z) equal to C' P(Z) the
closest point (to #) on the initial surface Iy. Set N equal to the surface
normal at the tracked point T'P(Z). Let ¢(TP(¥)) be the velocity of the
tracked point.

Repeat for all steps:

(1) Evolve the tracked point T'P () according to the local dynamics T'P(Z); =
O(TP(T)).

(2) Extend the surface representation by resetting each tracked point T'P(Z)
equal to the true closest point C'P(Z) on the updated surface I, where
I is defined to be the locus of all tracked points, i.e. I' = {T'P(¥)|Z ¢ R™}.

Replace each N (&) by the normal at the updated TP(Z).

This method treats self intersection by letting moving sets pass through
each other. This is one of its main virtues in the ray tracing case. However,
it has other virtues — namely the generality of the moving set — curves can
end or change dimension.

An important extension is motivated by considering first arrival times.
This enables us to easily compute swallowtails, for example, and other sin-
gular points. We actually use a combination of distance and direction of



motion. One interesting choice arises when nodal values of T'P(Z) are set
equal to the “Minimizing Point”

MP(f)=  min  §(7~§) N*@)|+ 7 -7
7 « Interface
for § > 0 (rather than C'P(%¥)), since a good agreement with the minimal
arrival time representation is found near the surface. Recall that the minimal
arrival time at a point & is the shortest time it takes a ray emanating from
the surface to reach #. Using this idea gives a very uniform approximation
and naturally treats the prototype swallowtail problem.

For the special case of curvature dependent motion we may use an elegant
observation of DeGiorgi [28]. Namely the vector mean curvature for a surface
of arbitrary codimension is given by kN = —AV (%2) where & is the local
mean curvature and d is the distance to the surface. Using the elementary,
but basic fact that

dVd =7 — CP(Z)

where C'P(Z) is the closest point to Z on the surface, we obtain a very simple
expression for vector mean curvature

kN = —A(Z — CP(%)) = ACP(%).

Thus motion by a function F', of mean curvature for surfaces of arbitrary
codimension can be achieved by using ¥(T'P(¥)) = ACP(Z). Then curvature
dependent velocities are possible by using

¥ = F(ACP()|rp@) - N)N.

where numerical experiments in [73] have validated these algorithms to some
degree.

A variety of interesting topics for future research is still open. In partic-
ular, adjustments need to be made if merging is desired. Moreover we can
move objects with more complex topology and geometry, such as surfaces
with boundaries (or curves with endpoints), objects of composite topology
(such as a filament attached to a sheet) and surfaces on curves with triple
point junctions (see [88], [53] and section 5 of this paper for successful level
set based and diffusion generated based approaches for the codimension one
case respectively).

Further work in the area of curvature dependent motions is also possible.
Computationally the construction of fast extension methods and localization



as in [66] for the level set method would be of great practical importance.
It would be particularly interesting to determine if surfaces fatten (or de-
velop interiors) when mergers occur. See [9] for a detailed discussion of this
phenomenon.

Additionally in [73] we successfully calculated a geometric optics ex-
pansion by retaining the wave front curvature. Thus this method has the
possibility of being quite useful in electromagnetic calculations. We hope
to investigate its three dimensional performance and include the effects of
diffraction.

2.3 A Class of Fast Hamilton-Jacobi Solvers

Another important set of numerical algorithms involves the fast solution of
steady (time independent) Hamilton-Jacobi equations. We also seek meth-
ods which are faster than the globally defined schemes originally used to
solve equation 2. The level set method of Osher and Sethian [64] for time
dependent problems can be localized. This means that the problem

wr+7-Vo=0

with I'(t) = {&|¢(#,t) = 0} as the evolving front, can be solved locally near
I'(t). Several algorithms exist for doing this, see [66] and [2]. These both
report an O(N) algorithm where N is the total number of grid points on or
near the front. However, the algorithm in [66] has O(N log(/N)) complexity
because a partial differential equation based reinitialization step requires
log(ﬁ) ~ log(N) steps to converge (we are grateful to Bjorn Engquist for
pointing this out). The algorithm in [2] claims O(NN) complexity, but this is
not borne out by the numerical evidence presented there.

However for some special Hamilton-Jacobi equations there is a fast method
whose formal complexity is O(N log(N)), but which, in our experience, is
around one order of magnitude faster than these general local methods.

The idea is as follows:

For an equation of the form

H(Z, V) =0,
give 1» = 0 on a non characteristic set .S:

Vi) - Hyy # 0



then we proved in [63] that the ¢ level set
{Z (&) =t} =T'(1)

is the same as the zero level set T'(t) of p(Z,t), for ¢t > 0 where ¢ satisfies

This means that the viscosity solutions of either problem have level sets
which correspond to each other. (This was also suggested in the original
level set paper of Osher and Sethian [64]). Thus, one would like to find I'(¢),
the zero level set of p(x,t), as I'(t), the ¢ level set of 1(x).

A canonical example is the eikonal equation

pr +c(D)| V| =0, ¢(F) <0

which can be replaced by:

V| = —% — a(#) > 0.
So we find first arrival times instead of zero level sets.

In [86] J.N. Tsitsiklis devised a fast algorithm for the eikonal equation.
He obtained the viscosity solution using ideas involving Dijkstra’s algorithm,
adapted to the eikonal equation, heap sort and control theory. From a nu-
merical PDE point of view, however, Tsitsiklis had an apparently nonstan-
dard approximation to |Vi| on a uniform Cartesian grid.

In (1995) Sethian [76] and Helmsen et. al. [40] independently published
what appeared to be a simpler algorithm making use of the Rouy-Tourin al-
gorithm to approximate |V¢|. This has become known as the “fast marching
method”. However, together with Helmsen [61] we have proven that Tsit-
siklis’ approximation is the usual Rouy-Tourin [69] version of Godunov’s
monotone upwind scheme. That is, the algorithm in [76] and [40] is simply
Tsitsiklis’ algorithm with a different (simpler) exposition.

Our goal here is to extend the applicability of this idea from the eikonal
equation to any geometrically based Hamiltonian. By this we mean a Hamil-
tonian satisfying the properties:

H(Z,Vy) >0, if Vo #0 (4)

and
H(Z, V1) is homogeneous of degree one in Vi) (5)
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We wish to obtain a fast algorithm to approximate the viscosity solution
of
H(&, V) = H(Z, Vi) — a(Z) = 0. (6)

The first step is to set up a monotone upwind scheme to approximate
this problem. Such a scheme is based on the idea of Godunov used in the
approximation of conservation laws. In Bardi and Osher [7], see also [65],
the following was obtained (for simplicity we exemplify using two space
dimensions and ignore the explicit & dependence in the Hamiltonian)

H(tha, y)

Q

HY(DY4p, D* t)j; DY, DY 1))

= extycr,_ . exty . I(v_’ﬁ)H(u,v)
where
I(a,b) = [min(a, b), max(a, b)]

min <u<b if a S b
tyl(a,b) = asU=v
extul(a,b) { maxp<y<q ifa>b

(Yit1,; — Viz) (Vi j+1 — Pij)
Az Ay
(Note, the order may be reversed in the ext operations above — we always
obtain a monotone upwind scheme which is often, but not always, order
invariant [65]).

This is a monotone upwind scheme which is obtained through the Go-
dunov procedure involving Riemann problems, extended to general Hamilton-
Jacobi equations [7], [65].

If we approximate

U+ = Diw” ==+ VL = Diw” ==+

H(Vy) = a(z,y)

by
H%(D%p, D" p; D% p; DYp, DY 1)) (7)

for Hamiltonians satisfying (4), (5) above, then there exists a unique solution
for 1); ; in terms of ;11 j,; j+1 and 9; ;. Furthermore ); ; is a nondecreas-
ing function of all these variables.

However, the fast algorithm needs to have property F: The solution to
(7) depends on the neighboring 1), ,, only for v, < 1;;. This gives us a
hint as to how to proceed.
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For special Hamiltonians of the form: H(u,v) = F(u?,v?), with F non-
decreasing in these variables, then we have the following result [61]

HY (up,u_sop,v-) = F(max((u})?, (uf)?)imax((v7)%, (01)%)  (8)

where 1t = max(z,0), 2~ = min(z,0). It is easy to see that this numerical
Hamiltonian has property F described above. This formula, as well as the
one obtained in equation 10 below enables us to extend the fast marching
method algorithm to a much wider class than was done before. For example,
using this observation we were able to solve an etching problem, also consid-
ered in [3] where the authors did not use a fast marching method algorithm,
but instead used a local narrow band approach and schemes devised in [64].
The Hamiltonian was

I A(pr + #2)
H(prﬂpyﬂoz) = 903 (1 + =

©2 + 2 + 2

We are able to use the same heap sort technology as for the eikonal
equation, for problems of this type. See figures 3 and 4. These figures
represent the level contours of an etching process whose normal velocity is
a function of the direction of the normal. The process moves down in figure
3 and up in figure 4.

More generally, for H(u,v) having the property

qu > O, UHQ > 0 (9)
then we also proved [61]

HY (up,u_;vy,v-) = max[H(uy,vy), H(ul,vy), H(uy,vT), Hut,vh)]
(10)
and property F is again satisfied.
Again in [61], we were able to solve a somewhat interesting and very
anisotropic etching problem with this new fast algorithm. Here we took

H(pa,0y) = loyl(1 — aley) ey /(02 + ©7))
where

a=0 if ¢, <0
a=.8 if ¢, >0
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and observed merging of two fronts. See figures 5 and 6. These figures show
a two dimensional etching process resulting in a merger.

The fast method originating in [86] is a variant of Dijkstra’s algorithm
and, as such involves the tree like heap sort algorithm in order to compute
the smallest of a set of numbers. Recently Boué and Dupuis [11] have pro-
posed an extremely simple fast algorithm for a class of convex Hamiltonians
including those which satisfy (4) and (5) above. Basically, their statement
is that the standard Gauss-Seidel algorithm, with a simple ordering, con-
verges in a finite number of iterations for equation (7). This would give
an O(N), not O(N log N) operations, with an extremely simple to program
algorithm — no heap sort is needed. Moreover, for the eikonal equation
with a(x,y) = 1, the algorithm would seem to converge in 2¢N iterations
in R%, d =1,2,3, which is quite fast. This gives a very simple and fast re-
distancing algorithm. For more complicated problems we have found more
iterations to be necessary, but still obtained promising results, together with
some theoretical justification. See [85] for details, which also include results
for a number of nonconvex Hamiltonians. We call this technique the “fast
sweeping method” in [85]. We refer to it in section 3 when we discuss the
basic distance reinitialization algorithm.
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Figure 1: Merging and pinching of curves in R? moving by mean curvature.
Reprinted from [13].
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Figure 2: Merging and pinching of curves in R? moving by mean curvature.
Reprinted from [13].
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Figure 3: Three dimensional etching using a fast algorithm. Reprinted from
[61].

16



-

Figure 4: Three dimensional etching using a fast algorithm. Reprinted from
[61].
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Figure 5: Two dimensional etching with merging using a fast algorithm.
Reprinted from [61].
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Figure 6: Two dimensional etching with merging using a fast algorithm.
Reprinted from [61].
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3 Level Set Dictionary, Technology and Numerical
Implementation

We list key terms and define them by their level set representation.

1. The interface boundary I'(¢) is defined by: {Z|¢(#,t) = 0}. The region
Q(t) is bounded by I'(t) : {Z|¢(Z,t) > 0} and its exterior is defined
by: {Z]e(Z,t) < 0}

2. The unit normal N to ['(t) is given by

Vi

N=_—_2 7
Vel

3. The mean curvature s of I'(¢) is defined by

\%
K=V (_*0> .
Vel
4. The Dirac delta function concentrated on an interface is:
5(p)|Vel,

where §(z) is a one dimensional delta function.
5. The characteristic function x of a region Q(t):
X =H(p)
where

H(zx) = 1ifxz>0
H(z) = 0ifz<0.

is a one dimensional Heaviside function.

6. The surface (or line) integral of a quantity p(Z,t) over I':
| pEDI)IVeldz.
7. The volume (or area) integral of p(Z,t) over 2

| p@nn )z
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Next we describe three key technological advances which are important
in many, if not most, level set calculations.

8. The distance reinitialization procedure replaces a general level set func-
tion ¢(Z,t) by d(Z,t) which is the value of the distance from & to
I'(t), positive outside and negative inside. This assures us that ¢ does
not become too flat or too steep near I'(t). Let d(Z,t), be signed dis-
tance of ¥ to the closest point on I'. The quantity d(Z,t) satisfies
|Vd| =1, d > 0in 2,d < 0 in (Q)¢ and is the steady state solution
(as 7 — o0) to

W @)V —1) = 0 (1)

or
Y(@,0) = »(Z1).

where sgn(z) = 2H (x)—1 is the one dimensional signum function. This
was designed in [84]. The key observation is that in order to define d
in a band of width e around T", we need solve (11) only for 7 = O(e). It
can easily be shown that this can be used globally to construct distance
(with arbitrary accuracy) in O(N log N) iterations [66]. Alternatively,
we may use Tsitsiklis’ fast algorithm [86], which is also O(N log N),
with a much smaller constant, but which is only first order accurate.
A locally second order accurate (in the high resolution sense) fast
marching method was proposed in [77]. While this method has a much
lower local truncation error than a purely first order accurate method,
it is still globally first order accurate except for special cases. Finally,
we might also use the fast sweeping method from [11] and [85] as
described in the last section, which appears to have O(N) complexity
and which is also only first order accurate, although this complexity
estimate has not been rigorously justified.

9. Smooth extension of a quantity, e.g. v, on I' to a neighborhood of T
Let the quantity be p(Z,t). Solve to steady state (17 — o00)

9q % _
5 T Sgn(so)( -Vq>—0

Vel
q(%,0) = p(&,1).

Again, we need only solve this for 7 = O(e) in order to extend p to be
constant in the direction normal to the interface in a tube of width e.
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This was first suggested and implemented in [24], analyzed carefully in
[88], and further discussed and implemented in both [32] and [66]. A
computationally efficient algorithm based on heap sort technology and
fast marching methods was devised in [1]. There are many reasons to
extend a quantity off of I', one of which is to obtain a well conditioned
normal velocity for level contours of ¢ close to ¢ = 0 [24]. Others
involve implementation of the Ghost Fluid Method of [32] discussed
in the next section.

10. The basic level set method concerns a function ¢(Z,t) which is defined
throughout space. Clearly this is wasteful if one only cares about
information near the zero level set. The local level set method defines
¢ only near the zero level set. We may solve (2) in a neighborhood of
I" of width mAx, where m is typically 5 or 6. Points outside of this
neighborhood need not be updated by this motion. This algorithm
works in “p” space — so not too much intricate computer science is
used. For details see [66]. Thus this local method works easily in the
presence of topological changes and for multiphase flow. An earlier

local level set approach called “narrow banding” was devised in [2].

Finally, we repeat that, in the important special case where vy in equa-
tion 2 is a function only of #, ¢ and V¢ (e.g. vy = 1), then equation
2 becomes a Hamilton-Jacobi equation whose solutions generally develop
kinks (jumps in derivatives). We seek the unique viscosity solution. Many
good references exist for this important subject, see e.g. [8, 27]. The appear-
ance of these singularities in the solution means that special, but not terribly
complicated, numerical methods have to be used, usually on uniform Carte-
sian grids. This was first discussed in [64] and numerical schemes developed
there were generalized in [65] and [43]. The key ideas involve monotonicity,
upwind differencing, essentially nonoscillatory (ENO) schemes and weighted
essentially nonoscillatory (WENO) schemes. See [64], [65] amd [43] for more
details.
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4 Coupling of the Level Set Method with External
Physics

Interface problems involving external physics arise in various areas of science.
The computation of such problems has a very long history. Methods of choice
include front tracking, see e.g. [87] and [41], phase-field methods, see e.g.
[48] and [59], and the volume of fluid (VOF) approach, see e.g. [60] and
[12]. The level set method has had major successes in this area. Much of
the level set technology discussed in the previous two sections was developed
with such applications in mind.

Here, we shall describe level set approaches to problems in compressible
flow, incompressible flow, flows having singular vorticity, Stefan problems,
kinetic crystal growth and a relatively new island dynamics model for epitax-
ial growth of thin films. We shall also discuss a recently developed technique,
the ghost fluid method (GFM), which can be used (1) to remove numerical
smearing and nonphysical oscillations in flow variables near the interface and
(2) to simplify the numerical linear algebra arising in some of the problems
in this section and elsewhere.

4.1 Compressible Flow

Chronologically, the first attempt to use the level set method in this area
came in two phase inviscid compressible flow, [55]. There, to the equations
of conservation of mass, momentum and energy, we appended equation (1),
which we rewrote in conservation form as

(pp)t + V- (ppv) =0 (12)

using the density of the fluid p.

The sign of ¢ is used to identify which gas occupied which region, so it
determines the local equation of state. This (naive) method suffered from
spurious pressure oscillations at the interface, as shown in [46] and [45].
These papers proposed a new method which reduced these errors by using a
nonconservative formulation near the interface. However, [46] and [45] still
smear out the density across the interface, leading to terminal oscillations
for many equations of state.

A major breakthrough in this area came in the development of the ghost
fluid method (GFM) in [32]. This enables us to couple the level set repre-
sentation of discontinuities to finite difference calculations of compressible
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flows. The approach was based on using the jump relations for discontinu-
ities which are tracked using equation (1) (for two phase compressible flow).
What the method amounts to (in any number of space dimensions) is to pop-
ulate cells next to the interface with “ghost values”, which, for two phase
compressible flow retain their usual values of pressure and normal veloc-
ity (quantities which are continuous across the interface), with extrapolated
values of entropy and tangential velocity (which jump across the interface).
These quantities are used in the numerical flux when “crossing” an interface.

An important aspect of the method is its simplicity. There is no need
to solve a Riemann problem normal to the interface, consider the Rankine-
Hugoniot jump conditions, or solve an initial-boundary value problem. An-
other important aspect is its generality. The philosophy appears to be: at
a phase boundary, use a finite difference scheme which takes only values
which are continuous across the interface, using the natural values when-
ever possible. Of course, this implies that the tangential velocity is treated
in the same fashion as the normal velocity and the pressure when viscosity is
present. The same holds true for the temperature in the presence of thermal
conductivity.

Figure 7 shows results obtained for two phase compressible flow using
the GFM together with the level set method. Air with density around
1% is to the left of the interface and water with density around 1000%
is to the right of the interface. Note that there is no numerical smearing
of the density at the interface itself which is fortunate as water cavitates
at a density above 999% leading to host of nonphysical problems near the
interface. Note too, that the pressure and velocity are continuous across
the interface, although there are kinks in both of these quantities. A more
complicated multidimensional calculation is shown in figure 8 where a shock
wave in air impinges upon a helium droplet. See [32] for more details.

While the GFM was originally designed for multiphase compressible flow,
it can be generalized to treat a large number of flow discontinuities. In [33],
we generalized this method to treat shocks, detonations and deflagrations in
a fashion that removes the numerical smearing of the discontinuity. Figure
9 shows the computed solution for a detonation wave. Note that there is no
numerical smearing of the leading wave front which is extremely important
when trying to eliminate spurious wave speeds for stiff source terms on
coarse grids as first pointed out by [26]. While shocks and detonations
have associated Riemann problems, the Riemann problem for a compressible
flow deflagration discontinuity is not well posed unless the speed of the
deflagration is given. Luckily, there is a large amount of literature on the
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G-equation for flame discontinuities which was originally proposed in [50].
The G-equation represents the flame front as a discontinuity in the same
fashion as the level set method so that one can easily consult the abundant
literature on the G-equation to obtain deflagration speeds for the Ghost
Fluid Method. Figure 10 shows two initially circular deflagration fronts
that have just recently merged together. Note that the light colored region
surrounding the deflagration fronts is a precursor shock wave that causes
the initially circular deflagration waves to deform as they attempt to merge.

The GFM was extended in [34] in order to treat the two phase compress-
ible viscous Navier Stokes equations in a manner that allows for a large jump
in viscosity across the interface. This paper spawned the technology needed
to extend the GFM to multiphase incompressible flow including the effects
of viscosity, surface tension and gravity as discussed in the next subsection.

4.2 Incompressible Flow

The earliest real success in the coupling of the level set method to prob-
lems involving external physics came in computing two-phase Navier-Stokes
incompressible flow [84], [22]. The equations can be written as:

v V- (2uD) § N
ﬁt+g.vg+7p _ g+ (pu ), (w);m

V-au = 0

where @ = (u,v,w) is the fluid velocity, p is the pressure, p = p(¢) and
u = p(p) are the piecewise constant fluid densities and viscosities, g is the
gravitational force, D is the viscous stress tensor, ¢ is the surface tension
coefficient, k is the curvature of the interface, N is the unit normal and
d(¢) is a delta function. See [87] and [12] for earlier front tracking and VOF
methods (respectively) using a similar formulation. This equation is coupled
to the front motion through the level set evolution equation (1) with ¢ = .
This involves defining the interface numerically as having a finite width of
approximately 3 to 5 grid cells. Within this smeared out band, the density,
viscosity and pressure are modeled as continuous functions. Then the &Y
term is used to approximate the surface tension forces which are lost when
using a continuous pressure [84]. Successful computations using this model
were performed in [84] and elsewhere [22]. Problems involving area loss were
observed and significant improvements were made in [83].

As mentioned above, the technology from [34] motivated the extension
of the Ghost Fluid Method to this two phase incompressible flow problem.
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First, a new boundary condition capturing approach was devised and applied
to the variable coefficient Poisson equation to solve problems of the form

() s

where the jump conditions [p] = ¢ and [%Vp N ] = h are given and p is
discontinuous across the interface. This was accomplished in [49]. A sample
calculation from [49] is shown in figure 11 where one can see that both the
solution, p, and its first derivatives are sharp across the interface without
numerical smearing. Next, this new technique was applied to multiphase
incompressible flow in [44]. Here, since one can model the jumps in pressure

directly, there is no need to add the Z5¥ source term to the right hand side
of the momentum equation in order to capture the surface tension forces.
Instead surface tension is modeled directly by imposing a pressure jump
across the interface. In addition, [44] allows for exact jumps in both p and
w so that the nonphysical finite width smeared out interface in [84] can
be replaced by a sharp interface. A three dimensional calculation of an
(invisible) solid sphere impacting water causing a splash is shown in figure
12. Here the air has density near 1% while the water has density near
100054

Recently, in [57], this boundary condition capturing technology was ex-
tended to treat two phase incompressible flames where the normal velocity is
discontinuous across the interface as well. Figure 13 shows an example cal-
culation where two flames have just merged. Note that the velocity vectors
in figure 13 clearly indicate that the velocity is kept discontinuous across
the flame front. [39] considered two phase incompressible flames as well,
proposing a method that keeps the interface sharp and removes numerical
smearing. Unfortunately, the method proposed in [39] cannot treat topo-
logical changes in the flame front. Our method improves upon [39] allowing
flame front discontinuities to merge, as in figure 13, or pinch off. Figure 14
shows two flame fronts shortly after merging in three spatial dimensions.

4.3 Topological Regularization

In [37] and [38], it is shown that the level set formulation provides a new
and novel way to regularize certain ill-posed equations of interface motion,
by blocking interface self-intersection. We computed two and three dimen-
sional unstable vortex motion without regularization other than that in the
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discrete approximation to §(p) — this is done over a few grid points. The key
observation is that viewing a curve or surface as the level set of a function,
and then evolving it with a perhaps unstable velocity field, prevents certain
types of blow up from occuring. This is denoted “topological regulariza-
tion”. For example a tracked curve can develop a figure eight pattern, but a
level set captured curve will pinch off and stabilize before this happens. For
the set up (involving two functions), see [37], where we perform calculations
involving the Cauchy-Riemann equations. The motions agree until pinch
off, when the topological stabilization develops.

As an example, we considered the two dimensional incompressible Euler
equations, which may be written as

wi+1d-Vw = 0
VXxu =
V-au = 0

We are interested in situations in which the vorticity is initially concentrated
on a set characterized by the level set function ¢ as follows

Vortex patch: w = H(y)

1
[Vl

Vortex sheet: w = §(y), (strength of sheet is

)

Vortex sheet dipole: w = dié(cp) = (p).
P

The key observation is that ¢ also satisfies a simple advection equation and
i and w can be easily recovered. For example, for the vortex sheet case we
solve

pr+u-Vo = 0
- -y -1
U = ( P )A 3(p).

Standard Laplace solvers may be used. See [38] for results involving two and
three dimensional flows. In [66] we added reinitialization and extension to
this procedure and obtained improved results in the two dimensional case.
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4.4 Stefan Problem

Another classical field concerns Stefan problems [24], see also [78] for an
earlier, but much more involved level set based approach. Here we wish
to simulate melting ice or freezing water, or more complicated crystalline
growth, as in the island dynamics model discussed below.

We begin with a simplified, nondimensionalized model (see [47] for an
extension as mentioned below),

%—f = VT, & £0Q=T(t)
vy = [VT-N], Zel(t)

where [-] denotes the jump across the boundary, and

T = —é.k(1 — Acos(kab + 00)) + Eyvn (1 — Acos(kaf + 6p))

on I'(t), and where & is the curvature, § = cos™! %, and the constants

A, ka, 0, & and &, depend on the material being modeled.

We directly discretize the boundary conditions at I': To update T at
grid nodes near the boundary, if the stencil for the heat equation would
cross I' (as indicated by nodal sign change in ¢), we merely use dimension
by dimension one sided interpolation and the given boundary 7" value at an
imaginary node placed at ¢ = 0 (found by interpolation on ¢) to compute
Tye and or Ty, (never interpolating across the interface) rather than the
usual three point central stencils. The level set function ¢ is updated and
then reinitialized to be equal to the signed distance to I'. Note that the
level set update uses vy that has been extended off the interface. See [24]
for details.

We note that one can easily extend this to

oT
57 = V- (hVT)

where k is a different positive constant inside and outside of €2 and
UN = [kVT-]\ﬂ , T e I'(t).

as was recently done in [47].

An important observation is that our finite differencing at the interface
leads to a nonsymmetric matrix inversion when applying implicit discretiza-
tion in time, although the method does have nice properties such as second
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order accuracy and a maximum principle. This lack of symmetry is a bit
problematic for a fast implementation, especially for very large values of k.
Fortunately, an extension of GFM can be used to derive a different spatial
discretization producing a symmetric matrix that can be inverted rather
easily using fast methods. This was originally proposed by Fedkiw [31] and
is described below.

It is sufficient to explain how the spatial derivatives are derived with
respect to one variable, since there are no mixed partial derivative terms.
Suppose the interface point, x ¢, falls in between two grid points x; and ;1.
From ¢, the distances between x;, ;11 and xy can be estimated by

_¢z‘ Azx
— T 9 A
Tf—x G — o) 01 Ax (13)
P ~ _Gir1 AT
Ti41 Ty =~ ((bH—l — (bl) = 92Aaz (14)

To avoid numerical errors caused by division by 0, 61 or 6y are not used if
either is less than Axz?. If §; < Az?, then x s is assumed equal to z;. If
0, < Ax?, then z 1 is assumed equal to x;;1. Either assumption is effectively
a second order perturbation of the interface location leading to second order
accurate spatial discretization. The nonsymmetric second order accurate
discretization for Ty, given in [24] is

T—T;\ _ (Ti—-Tia

(Toa)i =~ (QI%A(Zl)AxS-AA;) ) (o)
Tito—Tit1\ _ (Tix1 Ty

(T )i ( A%?sz_ efAiQ)Ar> (16)

where Ty denotes the value of T" at ¢ and is determined from the bound-
ary condition. Instead of using the nonsymmetric equations (15) and (16),
Fedkiw [31] proposed using

Tf —T; _ T,—T;—1
01 Ax Ax

(Tmc)i Az (17)
Tito—T; _ (T =Ty
(Txx)H—l ~ ( +2Am - )Ax ( O Ax ) (18)

which leads to a symmetric linear system when using implicit time discretiza-
tion. Equation (17) is derived using linear extrapolation of 7" from one side
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of the interface to the other, obtaining

T, —T;
TGZTf+(1—91)< fa ) (19)
1
as anhost cell value for T' at x;41. The standard second order discretization
of ?97:5 at x; using Tg at x;41 is
Te-T;\ _ (Ti—Ti—1
A A

and the substitution of equation (19) into equation (20) leads directly to
(17). Equation (18) is derived similarly.

Formulas (17) and (18) have O(1) errors using formal truncation error
analysis. However, they are second order accurate on a problem where the
interface has been perturbed by O(Ax?), making them second order accurate
in the interface location. Assume that the standard second order accurate
discretization is used to obtain the standard linear system of equations for
T at every grid point except for those adjacent to the interface, that is
except for x; and x;41. Since the linear system of equations for the nodes
to the left and including x; is independent of the system for the nodes
to the right including x;41, only the linear system to the left is discussed
here. Equation (20) is used to write a linear equation for 7; introducing a
new unknown T, and the system is closed with equation (19) for 7. In
practice, equations (19) and (20) are combined to obtain equation (17) and a
symmetric linear system of equations. This linear system of equations results
in well determined values (up to some prescribed tolerance near roundoff
error levels) of T' at each grid node as well as a well determined value of
Te (from equation (19)). For the sake of reference, designate T as the
solution vector containing the values of T at each grid point to the left
and including z; as well as the value of T at x;41 which are obtained by
solving this symmetric linear system. Below, T is shown to be a second
order accurate solution to our problem by showing that it is the second
order accurate solution to a modified problem where the interface location
has been perturbed by O(Ax?).

Consider the modified problem where a Dirichlet boundary condition of
T = Tg is specified at z; 11 where T is chosen to be the value of Tz from T
defined above. This modified problem can be exactly discretized to second
order accuracy everywhere using the standard discretization at every node
except z; where equation (20) is used. We note that equation (20) is the
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standard second order accurate discretization when a Dirichlet boundary
condition of T' = T is applied at x;+;. This new linear system can be dis-
cretized and solved in a standard fashion to obtain a second order accurate
solution at each grid node. Then the realization that T is an exact solu-
tion to this linear system implies that T is a second order accurate solution
to this modified problem. Next consider the interface location dictated by
the modified problem. Since T is a second order accurate solution to the
modified problem, T can be used to obtain the interface location to second
order accuracy. The linear interpolant that uses T; at x; and Tg at x;41
predicts an interface location of exactly xy which is the true interface loca-
tion. Since higher order interpolants (higher than linear) can contribute at
most an O(Ax?) perturbation of the interface location, the interface loca-
tion dictated by the modified problem is at most an O(Az?) perturbation
of the true interface location, .

In [25], we used this strategy to obtain a second order accurate symmetric
discretization of the variable coefficient Poisson equation

V (kVT) = f

on irregular domains in as many as three spatial dimensions. Then, in
a straightforward way, we obtained second order accurate symmetric dis-
cretizations of the heat equation on irregular domains using backward Euler
time stepping with At = (Az)? and Crank-Nicolson time stepping with
At = Ax.

4.5 Kinetic Crystal Growth

For an initial state consisting of any number of growing crystals in R%, d
arbitrary, moving outward with given normal growth velocity 17(]\7 ) >0
which depends on the angle of the unit surface normal N , the asymptotic
growth shape is a single (kinetic) Wulff-construct crystal. This result was
first conjectured by Gross in (1918) [35]. This shape is also known to min-
imize the surface integral of 7(N) for a given volume. We gave a proof
of this result [62], see also [81], using the level set formulation and the
Hopf-Bellman formulas [6] for the solution of a Hamilton-Jacobi equation.
Additionally, with the help of the Brunn-Minkowski inequality, we showed
that if we evolve a convex surface under the motion described in (3), then
the ratio to be minimized monotonically decreases to its minimum as time
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increases, which provides a new proof that the Wulff construction solves
the generalized isoperimetric problem as well. Thus there is a new link
between this hyperbolic surface evolution and this (generally nonconvex)
energy minimization. This also provides a convenient framework for numer-
ically computing anisotropic kinetic crystal growth [67]. The theoretical and
numerical results of this work are illustrated in the Uniform Density Island
Dynamics models of [15] and [36]. That model describes crystals growing in
two dimensions with an anisotropic velocity.

An interesting spinoff of this work came in [67] in which we proved that
any two dimensional Wulff shape can be interpreted precisely as the solution
of a Riemann problem for a scalar conservation law — contact discontinu-
ities correspond to jumps in the angle of the normal to the shape, smoothly
varying non flat faces correspond to rarefaction waves and planar facets
correspond to constant states, which develop because of kinks in the con-
servation law’s flux function. These kinks are also seen in the convexified
Wulff energy.

4.6 Epitaxial Growth of Thin Films

A new continuum model for the epitaxial growth of thin films has been de-
veloped. Molecular Beam Epitaxy (MBE) is a method for growing extremely
thin films of material. The essential aspects of this growth process are as
follows: under vacuum conditions a flux of atoms is deposited on a substrate
material, typically at a rate that grows one atomic monolayer every several
seconds. When deposition flux atoms hit the surface, they bond weakly
rather than bounce off. These surface “adatoms” are relatively free to hop
from lattice site to site on a flat (atomic) planar surface. However, when
they hop to a site at which there are neighbors at the same level, they form
additional bonds which hold them in place. This bonding could occur at the
“step edge” of a partially formed atomic monolayer, which contributes the
growth of that monolayer. Or, it could occur when two adatoms collide with
each other. If the critical cluster size is one, the colliding adatoms nucleate
a new partial monolayer “island” that will grow by trapping other adatoms
at its step edges.

By these means, the deposited atoms become incorporated into the grow-
ing thin film. Each atomic layer is formed by the nucleation of many isolated
monolayer islands, which then grow in area, merge with nearby islands, and
ultimately fill in to complete the layer. Because the deposition flux is con-
tinually raining down on the entire surface, including the tops of the islands,
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a new monolayer can start growing before the previous layer is completely
filled. Thus islands can form on top of islands in a “wedding cake” fashion,
and the surface morphology during growth can become quite complicated.

The Island Dynamics model is a continuum model designed to capture
the longer length scale features that are likely to be important for the anal-
ysis and control of monolayer thin film growth. It is also intended to model
the physics relevant to studying basic issues of surface morphology, such as
the effects of noise on growth, the long time evolution of islands, and the
scaling relationships between surface features (mean island area, step edge
length, etc) in various growth regimes (precoalescence, coalescence). Refer
to the classic work of [14] for useful background on the modeling of the
growth of material surfaces. Our present discussion of the Island Dynamics
Model is an abridged version of what was discussed in [54]. We shall present
this new model in some detail because, although it has many of the fea-
tures of the Stefan problem, it also requires some new level set technology.
This includes a “wedding cake” formulation involving several level sets of
the same function, nucleation of new islands, and nontrivial numerical treat-
ment of the interface to obtain rapid convergence of implicit time marching
schemes.

In the Island Dynamics model, we treat each of the islands present as
having a unit height, but a continuous (step edge) boundary on the surface.
This represents the idea that the films are atomic monolayers, so that height
is discrete, but they cover relatively large regions on the substrate, so z and
y are continuum dimensions. The adatoms are modeled by a continuous
adatom density function on the surface. This represents the idea that they
are very mobile, and so they effectively occupy a given site for some fraction
of the time, with statistical continuity, rather than discretely.

Thus, the domain for the model is the & — y region originally defined by
the substrate, and the fundamental dynamical variables for this model are:

e The island boundary curves T';(¢), i1 =1,2,..., N
e The adatom density on the surface p(z,y,t)
The adatom density p obeys a surface diffusive transport equation, with

a source term for the deposition flux

op
E—V%DV;))—FF,

where F' = F(z,y,t) is specified. During most phases of the growth, it is
simply a constant. This equation may also include additional small loss
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terms reflecting adatoms lost to the nucleation of new islands, or lost to
de-absorption off the surface. This equation must be supplemented with
boundary conditions at the island boundaries. In the simplest model of
Irreversible Aggregation, the binding of adatoms to step edges leaves the
adatom population totally depleted near island boundaries, and the bound-
ary condition is

plr = 0.

More generally, the effects of adatom detachment from boundaries, as well
as the energy barriers present at the boundary, lead to boundary conditions
of the form

{Ap + B@] =C
on

where C'is given and [-] denotes the local jump across the boundary. In par-
ticular, note that p itself can have a jump across the boundary, even though
it satisfies a diffusive transport equation. This simply reflects that fact that
the adatoms on top of the island are much more likely to incorporate into
the step edge than to hop across it and mix with the adatoms on the lower
terrace, and vice versa.

The island boundaries I'; move with velocities ¥ = vN]\7 , where the
normal velocity v, reflects the island growth. This is determined simply by
local conservation of atoms: the total flux of atoms to the boundary from
both sides times the effective area per atom, a?, must equal the local rate
of growth of the boundary, vy:

UN = —02[5']\7]

(this assumes there is no particle transport along the boundary; more gen-
erally, there is a contribution from this as well) where ¢ is the surface flux
of adatoms to the island boundary and N is the local outward normal. In
general, the net atom flux ¢’ can be expressed in terms of the diffusive trans-
port, as well as attachment and detachment probabilities, all of which can
be directly related to the parameters of Kinetic Monte Carlo models. In the
special case of Irreversible Aggregation, ¢ is simply the surface diffusive flux
of adatoms
qd=—DVp.

To complete the model we include a mechanism for the nucleation of new
islands. If islands nucleate by random binary collisions between adatoms
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(and if the critical cluster size is one), we expect the probability that an
island is nucleated at a time ¢, at a site (x,y), scales like

Pldx, dy, dt] = ep(x,y,t)%dt dz dy.

This model describes nucleation as a site-by-site, timestep-by-timestep ran-
dom process. A simplifying alternative is to assume the nucleation occurs at
the continuous rate obtained by averaging together the probabilistic rates
at each site. In this case, if we let n(t) denote the total number of islands
nucleated prior to time ¢, we have the deterministic equation

dn o
E_<6'0>

where () denotes the spatial average. In this formulation, at each time
when n(t) reaches a new integer value, we nucleate a new island in space.
This is carried out by placing it randomly on the surface with a probability
weighted by p?, so that the effect of random binary collisions is retained.

This basic model also has natural extensions to handle more complex thin
film models. For example, additional continuum equations can be added to
model the dynamics of the density of kink sites on the island boundaries,
which is a microstructural property that significantly influences the local
adatom attachment rates (see [15]). Also, we can couple this model to
equations for the elastic stress that results from the “lattice mismatch”
between the size of the atoms in the growing layers and the size of the
atoms in the substrate.

Conversely, the above model has a particular interesting extreme simpli-
fication. We can go to the limit where the adatoms are so mobile on the sur-
face (D — o0) that the adatom density is spatially uniform, p(z,y,t) = p(¢).
In this case, the loss of adatoms due to the absorbing boundaries is assumed
to take on a limiting form proportional to the adatom density and the total
length L of all the island boundaries, which can be written as a simple sink
term

dp

% _ p_ \Lp.
dt p

(This equation can be derived systematically from the conservation law for
the total number of adatoms, [ p, that follows from the adatom diffusion
equation. The above loss term is just a simplified model for the net loss of
adatoms to the island boundaries.) Further, it is assumed the velocity takes

—

on a given normal dependent limiting form, vy = vy (V) (which implies
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that growing islands will rapidly assume the associated “Wulff shape” for
this function vy (N) (as in [62])). We have used this “Uniform Density”
model to prototype the numerical methods, and to develop an understand-
ing of how the island dynamics models are related to the continuum “rate
equation” models that describe island size distribution evolution while using
no information at all about the spatial interactions of the islands.

Much of the above model is formally a Stefan problem and many of the
level set techniques required for this were developed in [24] and can similarly
be applied here. In addition, the internal boundary condition discretization
of the adatom diffusion equation can be implemented using the symmetric
matrix version of the discretization proposed by Fedkiw [31] and discussed
earlier in this paper.
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Figure 7: Two phase compressible flow calculated with the Ghost Fluid
Method. Air on the left and water on the right. Reprinted from [32].
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Figure 8: Mach 1.22 air shock collapse of a helium bubble. Reprinted from
[32].
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Figure 9: Nonsmeared detonation wave traveling away from a solid wall.
Reprinted from [33].
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Figure 10: Two deflagration fronts depicted shortly after merging.
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Figure 12: Water waves generated by the impact of an (invisible) solid
object. Reprinted from [44].
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Figure 13: Two phase incompressible flames depicted shortly after merging

(2 spatial dimensions). Reprinted from [57].
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Figure 14: Two phase incompressible flames depicted shortly after merging
(3 spatial dimensions). Reprinted from [57].
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5 A Variational Approach with Applications to
Multiphase Motion

In many situations, e.g., crystal growth, a material is composed of three or
more phases. The interfaces between the phases move according to some
law. If the material is a metal and its grain orientation is different in each
region, then an isotropic surface energy means that the velocity is the mean
curvature of the interface. Or the velocities of the interfaces may depend
on the pair of phases in contact; e.g. a different constant velocity on each
interface.

Several fixed grid approaches to this problem have been used. Merriman,
Bence and Osher [53] have extended the level set method to compute the
motion of multiple junctions. Also in that paper, and in [51] and [52], a
simple method based on the diffusion of characteristic functions of each set
Q;, followed by a certain reassignment step, was shown to be appropriate
for the motion of multiple junctions in which the bulk energies are zero (and
hence, the constants e; = 0, ¢ = 1,...,n) and the f;; are all equal to the
same positive constant, i.e., pure mean curvature flow. See equations (21)
below.

Another method using an “influence matrix” was designed in [75]. How-
ever, as cautioned by the author, the method is expensive and complex.

More general motion involving somewhat arbitrary functions of curva-
ture, perhaps different for each interface, was proposed in [53] as well. This
was implemented basically by decoupling the motions, and then using a re-
assignment step. Again each region has its own private level set function.
This function moves each level set with a normal velocity depending on
the proximity to the nearest interface, thus vacuum and overlapping regions
generally develop. Then a simple reassignment step is used, removing all
the spurious regions. For details see [53]. In that paper there was no restric-
tion to gradient flows. However, the general method in [53] lacks (so far) a
clean theoretical basis to guide the design of numerical algorithms. These
difficulties were rectified by the following method.

In [88] we developed the variational level set approach inspired by [68].
Given a disjoint family Q; of regions in R? with the common boundary
between 2; and €); denoted by I'; ;, we associate to this geometry an energy
function of the form

E = FEi+ E»
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El = Z fi,j length (PiJ) (21)

1<i<j<n

By, = Z e; area (£);)

1<i<n

where E; is the energy of the interface (surface tension). Fs is bulk en-
ergy, and n is the number of phases. The gradient flow induces motion
such that the normal velocity of each interface is defined in (22). At triple
points (which can be seen geometrically by the triangle inequality to be the
only stable junctions if all the f; ; > 0), the angles are determined by (23)
throughout the motion.

Normal velocity of T'; ; = (vn)i; = fijrij + (ei — €5). (22)

sinf;  sinflp  sinf3
f2,3 f31 fi2

This could be rewritten as:

(23)

E = Ei1+ Es
=1

n
E2 = Zez//H(SDZ(xayat))dxdya
i=1
where
fig=v+7, 1<i<j<n.

In the (most interesting) case when n = 3 we can solve uniquely for the ~;.
Now our problem becomes:
Minimize E subject to the constraint that

n

Y H(pi(z,y)) —1=0. (25)

i=1

This infinite set of constraints prevents the development of overlapping re-
gions and/or vacuum. It requires that the level curves {(z,y)|¢:(x,y,t) = 0}
match perfectly.
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The implementation of (24) with the infinite set of constraints (25) is
computationally demanding. Instead we try to replace the constraint (25)
by a single constraint

//(ZH(wi(xéyj))_l)dedy:E (26)

where € > 0 is as small as we can manage numerically.

The gradient projection method leads us to an interesting coupled system
which involves motion of level contours of each ¢ with normal velocity a+ bk
together with a term enforcing the no overlap/vacuum constraint. We find
that € & Az in real calculations. See [88] for details.

We have used this technique to reproduce the general behavior of com-
plicated bubble and droplet motions in two and three dimensions [90]. The
problems included soap bubble colliding and merging, drops falling or re-
maining attached to a generally irregular ceiling (see figure 15), liquid pene-
trating through an asymmetric funnel opening (see figure 16), and mercury
sitting on the floor (see figure 17).

This variational approach has also been found to have many applications
in computer vision — this will be discussed in the next section.
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Figure 15: Three dimensional drop falling from ceiling. Reprinted from [90].
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Figure 16: Liquid falling through funnel opening. Reprinted from [90].
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Figure 17: Mercury droplet responding to surface tension. Reprinted from
[90].
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6 Applications to Computer Vision and Image Pro-
cessing

The use of PDE’s and level set motion in image analysis and computer vision
has exploded in recent years. Good references include [18] and [58].

One basic idea is to view an image as ug(x,y), a function defined on a
square, and obtain a (usually second order) flow equation of the form

uy = F(u,Du, D2u,x,t) (27)
U(ﬂ%y,o) = U()(J),y)

which, for positive t, processes the image.

For example, if one solves the heat equation with F(u, Du, D?u,z,t) =
Au, then u(z,y,t) is the same as convolution of ug with a Gaussian of
variance t.

L.I. Rudin, in his Ph.D. thesis [70], made the point that images are
largely characterized by singularities, edges, boundaries, etc, and thus non-
linearity, especially ideas related to shock propagation, should play a role.
This led to the very successful total variation based image restoration al-
gorithms of [72] and [71]. Briefly, if we are presented with a noisy blurred
image

Ug=J*u+n (28)

where j is a given convolution kernel, and the mean and variance of the
noise are given, we wish to obtain the “best” restored image. This leads us
(see [72] and [71]) to the evolution equation
ut:V~‘§—?L|—)\j*(j*u—uo) (29)
to be solved for ¢t > 0, where u(x,y,0) is given, and A(¢) > 0 is obtained
as a Lagrange multiplier, or is set to be a fixed constant. If j x u = u,
this becomes a pure denoising problem. The (very interesting) geometric
interpretation of this procedure is that each level contour of u is moved
normal to itself with velocity equal to its curvature, divided by the norm
of the gradient of u, then “pulled back” in an attempt to deconvolve (28).
The results are state-of-the-art for many problems. Noisy regions can be
thought of as corresponding to contours having very high curvature, while
edges have finite curvature and infinite gradients.
Here the motion of level sets is just used to interpret the dynamics. In
[4], it was shown that reasonable axioms of image processing lead to the

o1



remarkable fact that motion of level contours by a function of curvature
is fundamental to the subject. The artificial time ¢ is actually the scale
parameter [4].

We would like to describe a few new applications of this set of ideas.
In [10], we have considered the problem of processing of images defined on
manifolds. The technique actually can be used to solve a wide class of elliptic
equations on manifolds, without triangulation, using only a local Cartesian
grid, for very general situations.

Given a manifold in R3, defined by v (z,y,z) = 0, we can define the
projection matrix

Foo =1~ 1 © o )

If u is an image defined on 1) = 0 we can use our level set calculus to
extend it constant normal to the manifold, in some neighborhood of the
manifold.

If ug is the original noisy image, the energy to be minimized is

B = [ 1PeVuld)Teidi + 5 [ w020 Vld

Using the gradient descent algorithm, i.e. following the general procedure
of [72] and [88] leads us to

1 ( ququ

Ut = 7=
LIV | PoyVul

\VW) Alu — up).

This corresponds to total variation denoising. This is done using the
local level set method [66] which allows great flexibility in geometry, while
always using a Cartesian grid. See [10] for denoising and deblurring results.

The technique is quite general — both variational problems and PDE’s
defined on manifolds can be solved in a reasonably straightforward fashion,
without restrictions on the manifold and without complicated triangulation
— just by using a fixed Cartesian grid.

Another basic image processing task is to detect objects hidden in an
image ug. A popular technique is called active contours or snakes, in which
one evolves a curve, subject to constraints until the curve surrounds the
image.

The level set method was first used in [16] as a very convenient tool to
follow the motion of active contours in order to surround hidden objects.
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This was an important step since topological changes could easily be han-
dled, a variational approach could be easily used [17] and stable, easy to
program algorithms resulted.

The curve is moved with a velocity which vanishes when the object is
surrounded. Thus edge detectors are traditionally used to stop the evolving
curve. For example, one might use

4(| Vo)) = (;)2

1+ |ng * UO‘

where j, is a Gaussian of variance o.

In [20] the authors developed a model which was not based on edges,
using a scale parameter, based on a simplification of the Mumford-Shah [56]
energy based segmentation. The implementation is done through the vari-
ational level set approach [88] and the results are remarkable. The method
has a denoising capability as well as the ability to perform a multiscale seg-
mentation. See [21] and [20] for details. Here we just present the evolution
equation for the level set function ¢:

Vo
[Vl

for parameters p, v, A > 0, where ¢; and ¢y are the averages of ug over the
region for which ¢ > 0 and ¢ < 0 respectively. v corresponds to the bulk
energy of the area for which ¢ > 0, u corresponds to the surface tension of
the interface, and ) is the penalty for the L? error between g and its mean
over each region. Figure 18 shows an active contour segmenting a MRI brain
image from its backgound.

A somewhat related problem as discussed in [89] is the following. Given
a collection of unorganized points, and/or curves, and/or surface patches,
find a surface which can be regarded as its shape. This is a fundamental
visualization problem which arises in computer graphics, visualization and
simulation. No assumptions about the ordering, connectivity or topology
of the data sets or of the true shape is given. The input is the general
distance to the data set which is given on a (usually logically rectangular)
grid. Additionally, we may also input the values of the normal to the surface
at the same or different data points.

The key idea is to find a function ¢ whose zero level set is the interpo-
lating surface, ¢ changes sign as one goes from inside to outside the surface.
The output is the discrete values of , which can be reinitialized to be signed
distance to this surface.

ot = |Vl 1V - —V—)\(uo—cl)2+)\(u0 —02)2
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We set up a variational problem, which basically minimizes the integral
over the unknown surface, of the pth power of distance to the data set. We
may include information about the normals in analogous fashion.

Gradient descent (as in the image restoration and active contour prob-
lems) gives us a weighted motion by curvature plus convection algorithm.
The results are very promising as shown figure 19. For more details, see
[89].
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Mesh size = 512x344, Image size =256x172

Figure 18: Active contour segmentation of an MRI brain image from its
backgound. Reprinted from [19].
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Interpolation of Two Linked Tori, R = 0.24, r = 0.05

3000 iterations 3500 iterations
number of data points = 25 x 10 x 2, dx = 0.02,dt = 0.0002

Figure 19: Interpolation of two linked tori. Reprinted from [89].
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7 Conclusion

The idea of using a level set to represent an interface is a very old one.
The level set method itself has antecedents, for example, in the G equation
approach of Markstein [50]. What is new is the level set method technol-
ogy, theoretical justification through viscosity solutions, and the enormous
number of wide ranging applications that are now available, with new ap-
plications developing quite frequently.
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In this paper we review the algorithm development and applications in high resolution
shock capturing methods, level set methods and PDE based methods in computer vision
and image processing. The emphasis is on Stanley Osher’s contribution in these areas and
in the impact of his work. We will first review the linear stability results for hyperbolic
systems. This will be followed by shock capturing methods and we will review the Engquist-
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schemes for Hamilton-Jacobi type equations. Among level set methods we will review im-
plicit surfaces, the setup of level set methods, numerical techniques, fluids and materials,
variational approach, high codimension motion, geometric optics, and the computation of
discontinuous solutions to Hamilton-Jacobi equations. Among computer vision and image
processing we will review the total variation model for image denoising, images on implicit

surfaces, and the level set method in image processing and computer vision.

Key Words: shock capturing method, level set method, computer vision, image pro-

cessing, linear stability.

!Department of Computer Science, Stanford University, Stanford, CA 94305, E-mail: fed-
kiw@cs.stanford.edu.

2Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455,
E-mail: guille@mail.ece.umn.edu.

3Division of Applied Mathematics, Brown University, Providence, RI 02912, E-mail: shu@cfm.brown.edu.
Research supported by ARO grant DAAD19-00-1-0405, NSF grants DMS-9804985 and ECS-9906606, NASA
Langley grant NCC1-01035 and AFOSR grant F49620-99-1-0077.



1 Introduction

This paper is written on the occasion of Stanley Osher’s 60th birthday and serves as a review
article on a few selected areas in linear stability, high resolution shock capturing schemes,
level set methods, and PDE based methods in computer vision and image processing. The
emphasis is on Stanley Osher’s contribution in these areas and in the impact of his work.

The study of linear stability for finite difference and other numerical methods for hyper-
bolic, parabolic, and other types of PDEs is very important. Many important results related
to linear stability, especially those for initial-boundary value problems, were obtained in the
60s and 70s. Even today, linear stability results are still crucial for linear and nonlinear
problems, for they provide a necessary condition for any scheme to perform nicely.

Shock capturing numerical methods have seen revolutionary developments over the past
20 years. These are methods which deal with the numerical solutions of PDEs with discon-
tinuous solutions. Such PDEs include nonlinear hyperbolic systems such as Euler equations
of compressible gas dynamics. The problems are difficult because traditional linear numer-
ical methods are either too diffusive, or give unphysical oscillations near the discontinuities
which can lead to nonlinear instabilities. The class of high resolution numerical methods
overcomes this difficulty to a large extent.

Level set methods have seen tremendously expanded applications in many areas over the
past 15 years. This has been made possible by the flexibility of the level set formulation in
dealing with dynamic evolutions and topological changes of curves and surfaces, and by the
mathematical theory and numerical tools developed in the past 15 years in studying these
methods.

PDE based methods in computer vision and image processing have been actively studied
in the past few years. Again, the rapid development of mathematical models, solution tools
such as level set methods, and high resolution numerical schemes has made PDE based
method one of the major tools in computer vision and image processing.

Stanley Osher has made influential contributions to all these fields. A distinctive feature



of his research is that he emphasizes both fundamental problems in algorithm design and
analysis, and practical considerations for the applications of the algorithms. This seems
also to be the objective of the Journal of Computational Physics. It is thus not a surprise
that a significant portion of Osher’s journal publications have appeared in the Journal of
Computational Physics. This is particularly the case for Osher’s work over the past 15
years. Osher’s work has been highly influential according to citation statistics. For example,
according to the ISI database, which lists papers in selected journals of high impact since
1975, the 82 papers of Osher listed there have been collectively cited 2,386 times (as of
November 20, 2001, the same below). Among these, 11 papers have been cited over 100
times each. The top five highly cited papers are: the paper of Osher and Sethian [147] on
level set methods, cited 472 times; the paper of Harten, Engquist, Osher and Chakravarthy
[76] on ENO schemes, cited 314 times; the two papers of Shu and Osher [171, 172] on ENO
schemes, cited 235 and 231 times respectively; and the paper of Harten and Osher [75] on
UNO schemes, cited 189 times. We remark that the top four among these five most highly
cited papers of Osher were published in the Journal of Computational Physics. The other
papers of Osher having a citation over 100 include: the paper of Osher and Solomon on
upwind schemes [149], cited 180 times; the paper of Sussman, Smereka and Osher on level
set methods for incompressible two phase flows [177], cited 137 times; the paper of Osher on
Riemann solvers and entropy conditions [135], cited 131 times; the paper of Rudin, Osher
and Fatemi on total variation based denoising in image processing [159], cited 126 times;
the paper of Osher and Chakravarthy on high resolution schemes and the entropy condition
[139], cited 108 times, and the paper of Engquist and Osher on a monotone scheme (later
referred to as the Engquist-Osher, or EO, scheme in the literature) [42], cited 107 times.
The organization of this paper is as follows. In section 2 we review the earlier work of
Osher related to linear stability results. Section 3 is devoted to high resolution shock cap-
turing methods for problems with discontinuous or otherwise nonsmooth solutions. Section

4 contains a review of the very popular level set methods, and finally in section 5 we address



PDE based methods in computer vision and image processing.

2 Linear stability results

The study of linear stability for finite difference and other numerical methods for hyperbolic,
parabolic and other types of PDEs is very important. For linear methods approximating
smooth solutions, a linear stability analysis (plus some dissipation) is usually enough to
guarantee convergence, following the Lax equivalence theorem and Strang’s result. Even for
nonlinear methods and for methods approximating nonsmooth solutions, linear stability is
often an important necessary condition for the algorithms to be useful.

For initial value problems, a von Neumann analysis (via Fourier transform) can be easily
performed on a finite difference approximation as a necessary and often also sufficient con-
dition for stability. However, stability for initial-boundary value problems is more difficult
to analyze.

Osher’s work on linear stability and linear methods was mainly done in the early dates.
In [126], following up on a seminal paper of Kreiss [99], Osher used Toeplitz matrices in
an elegant way to derive what was later called the GKS condition, i.e., the normal mode
condition guaranteeing stability of approximations to initial-boundary value problems for
linear hyperbolic equations. This line of work was initiated by Godunov and Ryabenkii
[64]. It was made uniform by Kreiss [99], followed up by Osher [126], and generalized by
Gustafsson, Kreiss and Sundstrom [70]. In [127] Osher provided more general conditions
using similar Toeplitz matrix ideas.

In [128], Osher obtained stability conditions for initial-boundary value problems for
parabolic equations, generalizing the work of Varah [190]. References [101, 129, 131] were
an attempt to analyze and obtain conditions guaranteeing well posedness of initial boundary
value problems for linear hyperbolic equations in regions with corners in the boundaries.
Reference [130] showed that the Green’s function for the biharmonic equation corresponding

to a clamped plate near a right angle corner changes sign an infinite number of times.



In [112], Majda and Osher extended Kreiss” well posedness condition for initial-boundary
value problems for hyperbolic equations to those with uniformly characteristic boundaries.
In [111], Majda and Osher analyzed the reflection of singularities at the boundary for non-
grazing reflection for hyperbolic equations. In [113], Majda and Osher showed how error
propagates globally within the domain of dependence for numerical approximations to cou-
pled hyperbolic systems. The paper [110] by Majda, McDonough and Osher was the first to
recommend the use of smooth cutoff functions on the frequency domain for spectral methods
to confine errors to local regions near propagating discontinuities and for stability. Sharp
estimates on the region of propagation were obtained. These cutoffs are now widely used in
the literature and the paper is still frequently cited, 45 times total, including many in recent
years.

Osher in [132] obtained well-posedness results for linear boundary value problems of
mixed elliptic-hyperbolic type; in [33], Deacon and Osher made the method into a finite
element approximation for such equations.

In [44], Engquist, Osher and Zhong obtained wavelet based fast algorithms for linear
hyperbolic and parabolic equations. Finally, in [41, 50, 49], Engquist, Fatemi and Osher
considered numerical methods for high frequency asymptotics for geometric optics. These

might be considered nonlinear, since the eikonal equation is.

3 High resolution shock capturing methods

Shock capturing methods refer to a class of numerical methods for solving problems con-
taining discontinuities (shocks, contact discontinuities or other discontinuities), which can
automatically “capture” these discontinuities without special effort to track them. A typical
situation would be the solution of a hyperbolic conservation law, either a scalar equation or

a system, either in one spatial dimension

g+ f(u)y =0 (3.1)



or in multiple (say, three) spatial dimensions:
ue+ f(u)o + g(u)y + h(u). = 0. (3.2)

A main ingredient of shock capturing methods is the conservation form of a scheme, namely,
a scheme approximating (3.1) is in the form

dU,j 1 ~ ~

2

where u; is an approximation to either the point value u(z;,t) or the cell average @(z;,t) =
LA .

A fxx] 2 u(zx, t)dx of the exact solution of (3.1), and fj+1 is anumerical flux which typically
172

depends on a few neighboring points

f]+% = f(u’j—ka Uj—k+41y -y u]-i—m)

and satisfies the following two conditions: it is consistent with the physical flux f(u) in
the sense f(u, u,...,u) = f(u), and it is at least Lipschitz continuous with respect to all its
arguments. Notice that (3.3) is written in a semi-discrete method of lines form, while in
practice the time variable ¢ must also be discretized. Conservative schemes in the form of
(3.3) are especially suitable for computing solutions with shocks, because of the important
Lax-Wendroff theorem, which states that solutions to such schemes, if convergent, would
converge to a weak solution of (3.1). In particular, this means that the computed shocks
will propagate with the correct speed. Almost all shock capturing schemes, including those
developed by Osher and his collaborators, are of the conservation form (3.3). However, there
are certain situations where a relaxation on the strict conservation would be beneficial and
would not hurt the convergence to weak solutions under suitable additional assumptions.
The work of Osher and Chakravarthy [138] on the “weak conservation form” for schemes on
general curvilinear coordinates, and the work of Fedkiw et al. on “ghost fluid” method [56],

which treats the fluid interface in a non-conservative fashion, are such examples.



3.1 First Order Monotone Schemes

In the late 70s and early 80s, designing good first order monotone schemes for (3.1) and
(3.2), which give monotone shock transitions and can be proven to converge to the physically
relevant weak solutions (e.g. Crandall and Majda [32]), was an active research area. The
Godunov scheme is a scheme with the least numerical dissipation among first order monotone
schemes, however it is costly to evaluate for complex flux functions f(u), and its flux is only
Lipschitz continuous but not smoother. The Lax-Friedrichs scheme is easy to evaluate and
very smooth but is excessive dissipative.

In [42] and [43], Engquist and Osher designed monotone schemes for the transonic poten-
tial equations and for general scalar conservation laws, which are relatively easy to evaluate,
are C'' smooth, and have a small dissipation almost comparable with Gudonov schemes. The
main idea is to approximate everything by rarefaction waves (multi-valued solutions suitably
integrated over for shocks). These Engquist-Osher schemes soon became very popular, espe-
cially for implicit type methods and steady state calculations, for which the extra smoothness
of the numerical fluxes helped a lot. Similar schemes for Hamilton-Jacobi equations were
given by Osher and Sethian [147].

Later, Osher [133] and Osher and Solomon [149] generalized it to systems of conservation
laws, obtaining what was later referred to as Osher scheme in the literature. The Osher
scheme for systems has a closed form formula (for Euler equations of gas dynamics and
many other systems), hence no iterations are needed, unlike the Godunov scheme. It is
smoother (C') than the Godunov scheme and also has smaller dissipation than the simpler
Lax-Friedrichs scheme. Applications of Osher schemes to the Euler equations can be found
in Chakravarthy and Osher [21].

In [145], Osher and Sanders designed a conservative procedure to handle locally varying
time and space grids for first order monotone schemes, and proved convergence to entropy
solutions for such schemes. These ideas have been used later by Berger and Colella on their

adaptive methods.



3.2 High Resolution TVD Schemes

First order monotone schemes are certainly nice in their stability and convergence to the
correct entropy solutions, however they are too diffusive for most applications. One would
need to use many grid points to get a reasonable resolution, which seriously restricts their
usefulness for multidimensional simulations.

In the 70s and early and mid 80s, the so-called “high resolution” schemes, i.e. those
schemes which are at least second order accurate and are stable when shocks appear, were
developed. These started with the earlier work of, e.g., the FCT methods of Boris and
Book [10], and the MUSCL schemes of van Leer [189], and moved to Harten’s TVD schemes
[74]. Osher and his collaborators did extensive research on TVD schemes, and contributed
significantly towards the analysis of such methods, during this period. These include the
schemes developed and analyzed in [135], [139], [136], and the very high order (measured by

truncation errors in smooth, monotone regions) TVD schemes in [140].

3.3 Entropy Conditions

The entropy condition is an important feature for conservation laws. Because weak solutions
are not unique, entropy conditions are needed to single out a unique, physically relevant
solution. Osher and his collaborators did extensive research on designing and analyzing
entropy condition satisfying numerical methods for conservation laws.

In [114], Majda and Osher proved that the traditional second order Lax-Wendroff scheme,
although linearly stable, is not L? stable when solving nonlinear conservation laws with
discontinuous solutions. They then provided a recipe of adding artificial viscosities, such
that the scheme maintained second order accuracy yet could be proven convergent to the
entropy solution. This scheme is however oscillatory, hence not very practical in applications.

In [135], Osher provided a general framework to study systematically entropy conditions
for numerical schemes. This was followed by the work of Osher and Chakravarthy [139] in

the study of high resolution schemes and entropy conditions, the work of Osher [136] on



generalized MUSCL schemes, the work of Osher and Tadmor [150] on entropy condition
and convergence of high resolution schemes, and the work of Brenier and Osher [11] on
entropy condition satisfying “maxmod” second order schemes. Entropy condition satisfying

approximations for the full potential equation of transonic flow were given in [142].

3.4 ENO Schemes

In the mid 80s it was realized that TVD schemes, despite their excellent stability and high
resolution properties, have serious deficiency in that they degenerate to first order at smooth
extrema of the solution [139]. Thus, even though TVD schemes can be designed to any
order of accuracy, see for example the schemes up to 13th order accurate in [140], practical
TVD schemes are referred to as second order schemes since the global L' errors of any TVD
scheme can only be second order, even for smooth, non-monotone solutions.

In [75], Harten and Osher relaxed the TVD restriction, and replaced it by a UNO restric-
tion, in that the total number of numerical extrema does not increase and their amplitudes
could be allowed to increase slightly. The UNO scheme in [75] is uniformly second order ac-
curate including at smooth extrema. However, it was soon realized that the UNO restriction
was still too strong and excluded schemes of higher than second order. Thus, the concept of
ENO, or essentially non-oscillatory, schemes was first given by Harten, Engquist, Osher and
Chakravarthy [76] in 1987. The clever idea is that of an adaptive stencil, which is chosen
based on the local smoothness of the solution, measured by the Newton divided differences
of the numerical solution. Thus the order of scheme is never reduced, however the local
stencil automatically avoids crossing discontinuities. Such schemes allow both the number of
numerical extrema and their amplitudes to increase, however such additional oscillations are
controlled on the level of truncation errors even if the solution is not smooth. ENO schemes
have been extremely successful in applications, because they are simple in concept, allow
arbitrary orders of accuracy, and generate sharp, monotone (to the eye) shock transitions

together with high order accuracy in smooth regions of the solution including at the extrema.



The original ENO schemes in [76] are in the cell averaged form, namely they are finite
volume schemes approximating an integrated version of (3.1). Finite volume schemes have
the advantage of easy handling of non-uniform meshes and general geometry in multi-space
dimensions, however they are extremely costly in multi-space dimensions, when the order of
accuracy is higher than two, because then one cannot confuse cell averages with point values,
as they only agree up to second order accuracy, and a complex reconstruction procedure is
needed to obtain point values from cell averages for evaluating the numerical fluxes. The
cost is also associated with the high order numerical quadratures needed for evaluating the
integration of the numerical fluxes along cell boundaries in multi-dimensions. Later, Shu
and Osher [171], [172] developed ENO schemes in finite difference using point values of the
numerical solution, but still in conservation form (3.3). An important observation made in
[171] and [172] is that the numerical flux fj% in (3.3) is not a high order approximation to
the physical flux at z; I the difference between the numerical flux fj 41 and the physical
flux f(uj+%) is O(Az?). This is a common mistake among practitioners of finite difference
schemes. If a high order interpolation on the point values u; is performed to obtain a high
order approximation to u;, 1 and a numerical flux is chosen to approximate f (uj +1 ) to
a high order accuracy, then the scheme is only second order accurate. Correct choice of
the numerical fluxes to obtain arbitrarily high order accuracy is given in [171] and [172].
The approach in [172] is especially simple. A detailed description of the construction and
comparison of finite volume and finite difference ENO schemes can be found in the lecture
notes [170].

Also in [171], a class of nonlinearly stable high order Runge-Kutta time discretization
methods is developed. Termed TVD time discretizations, these Runge-Kutta methods have
become very popular and have been used in many schemes. See, e.g. [65] for a review of
such methods.

Analysis of ENO schemes was given in Harten et al. [77]. Applications of ENO schemes

to two and three dimensional compressible flows, including turbulence and shear flow calcu-
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lations, were given in Shu et al. [173]. Triangle based second order non-oscillatory schemes
were given in Durlofsky et al. [37]. Non-oscillatory self-similar maximum principle satisfying
high order shock capturing schemes were given in Liu and Osher [106]. Efficient character-
istic projection in upwind difference schemes was given in Fedkiw et al. [59]. Convex ENO
schemes without using field-by-field projection were given in Liu and Osher [107]. Chemically
reactive flows were simulated in Ton et al. [182] and in Fedkiw et al. [58].

The popularity of ENO schemes is demonstrated by the citation statistics: among Osher’s
five mostly highly cited papers mentioned in the introduction, four of them are about ENO
schemes, i.e. [76] (cited 314 times); [171] (cited 235 times); [172] (cited 231 times); and
[75] (cited 189 times). The top cited paper of Osher, [147] (cited 472 times) is on level set
methods but also uses second order ENO schemes for the numerical solutions and is where

the construction of ENO schemes for general Hamilton-Jacobi equations began.

3.5 WENO Schemes

An improvement of ENO scheme is the WENO (weighted ENO) scheme, which was first
developed by Liu, Osher and Chan [108]. Both ENO and WENO use the idea of adaptive
stencils in the reconstruction procedure based on the local smoothness of the numerical
solution to automatically achieve high order accuracy and non-oscillatory property near
discontinuities. ENO uses just one (optimal in some sense) out of many candidate stencils
when doing the reconstruction; while WENO uses a convex combination of all the candidate
stencils, each being assigned a nonlinear weight which depends on the local smoothness of
the numerical solution based on that stencil. WENO improves upon ENO in robustness,
better smoothness of fluxes, better steady state convergence, better provable convergence
properties, and more efficiency.

WENO schemes have been further developed later by Jiang and Shu [88] for fifth order
accurate finite difference schemes in one and several space dimensions, by Hu and Shu [80]

and Shi et al. [168] for third and fourth order accurate finite volume schemes in two space
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dimensions using arbitrary triangulations, and by Balsara and Shu [5] on very high order

WENO schemes. A detailed description can again be found in the lecture notes [170].

3.6 Hamilton-Jacobi Equations

We will now move to the description of Osher’s work in designing schemes for solving
Hamilton-Jacobi equations. Further discussions on this topic will also be given in the next
section on level set methods.

In [134], Osher gave explicit formulas for solutions to the Riemann problems for non-
convex conservation laws and Hamilton-Jacobi equations. These are important for numerical
schemes such as Godunov schemes using such Riemann solvers as building blocks.

In [147], Osher and Sethian, in the context of discussing level set methods, provided
a first order monotone scheme (an adaptation of the Engquist-Osher scheme [43]) and a
second order ENO scheme based on the framework of [171] and [172]. In [148], Osher
and Shu developed high order ENO schemes for solving Hamilton-Jacobi equations, using
various building blocks including Lax-Friedrichs, local Lax-Friedrichs, and Roe with an en-
tropy fix. In [102], Lafon and Osher developed high order two dimensional triangle based
non-oscillatory schemes for solving Hamilton-Jacobi equations. Later, Jiang and Peng [87]
designed WENO schemes for solving Hamilton-Jacobi equations on rectangular meshes and
Zhang and Shu [200] designed WENO schemes for solving Hamilton-Jacobi equations on

arbitrary triangular meshes.

3.7 Additional Topics

Even though it does not exactly fit the title of this section, the work of Lagnado and Os-
her [103], [104] is worth mentioning. These papers concern solving an inverse problem to
compute the volatility in the European options Black-Scholes model, and they were the first
to use PDE techniques to solve this inverse problem, via gradient descent and Tychonoff
regularization, allowing the volatility, a coefficient in a parabolic equation to be a function

of the independent variables, stock price and time. These papers have attracted a lot of
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attention after their publication.

Also worth mentioning is the work of Fatemi, Jerome and Osher [51] on using ENO
schemes to solve the hydrodynamic models of semiconductor device simulations. This was the
first work of using high order shock capturing methods in semiconductor device simulations,

and has led to many further developments, e.g. [86] and [20].

4 Level set methods

4.1 Implicit Surfaces

In n dimensions, consider a surface that separates R"™ into separate subdomains with nonzero
volumes. For n = 3 an explicit representation can be quite difficult to discretize. One needs
to choose a number of points on the two dimensional surface and record their connectivity.
If the surface and its connectivity is known, it is simple to tile the surface with triangles
whose vertices lie on the interface and edges indicate connectivity. On the other hand if
connectivity is not known, it can be quite difficult to determine, and even some of the
most popular algorithms can produce surprisingly inaccurate surface representations, e.g.
surfaces with holes. Connectivity can change for dynamic implicit surfaces, i.e. pinching
and merging. Here, connectivity is not a one time issue dealt with when constructing an
explicit representation of the surface. Instead, it must be resolved over and over again
every time pieces of the surface merge together or pinch apart. The “interface surgery”
needed for merging and pinching is complex leading to a number of difficulties. One of the
nicest properties of implicit surfaces is that connectivity does not need to be determined
for the discretization. A uniform Cartesian grid can be used along with straightforward
generalizations of the technology from two spatial dimensions. Possibly the most powerful
aspect of implicit surfaces is that it is straightforward to go from two spatial dimensions to
three (or even more) spatial dimensions.

Implicit surfaces are defined as the zero isocontour of a function ¢(Z). Consequently

implicit interface representations include some powerful geometric tools. For example, we
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can determine which side of the interface a point is on simply by looking at the local sign of
¢. That is, &, is inside the interface when ¢(Z,) < 0, outside the interface when ¢(Z,) > 0
and on the interface when ¢(7,) = 0.

Implicit functions make simple Boolean operations easy to apply. If ¢; and ¢, are two
different implicit functions, then ¢(Z) = min(¢ (Z), ¢2(Z)) is the implicit function represent-
ing the union of their interior regions. Similarly, ¢(Z) = max(¢1(Z), ¢p2(¥)) represents the

intersection of the interior regions. The complement of ¢ (%) is ¢(Z) = —¢(Z). Etc.

The gradient of the implicit function is defined as

(96 06 00
V¢_<mﬂ@%%>' (4.1)

V¢ is perpendicular to the isocontours of ¢ pointing in the direction of increasing ¢. There-
fore, if &, is a point on the zero isocontour of ¢, i.e. a point on the interface, then V¢
evaluated at 7, is a vector that points in same direction as the local unit (outward) normal

N to the interface. Thus, the unit (outward) normal is

o VQS
N=_"" 4.
Vol (4.2)

for points on the interface. Equation (4.2) can be used to define a function N everywhere on
the domain embedding the normal in a function N that agrees with the normal for points
on the interface. The mean curvature of the interface is defined as the divergence of the
normal,

k=V-N (4.3)

so that k > 0 for convex regions, x < 0 for concave regions and £ = 0 for a plane.

The characteristic function y~ of the interior region 2~ is defined as

(1 @ <0
X(@:{Oifﬂﬂ>0 (44)

where we arbitrarily include the boundary with the interior region. The characteristic func-

tion, x* of the exterior region Q% is defined similarly as

Xﬂ@:{o?fdggo (4.5)



again including the boundary with the interior region. x* are functions of a multidimensional
variable Z. It is often more convenient to work with functions of the scalar variable ¢. Thus

we define the one dimensional Heaviside function

o= {01 451 w0

where ¢ depends on #, although it is not necessary to specify this dependence when working
with H. Note that x™(Z) = H(¢(Z)) and x~ (%) = 1 — H(¢(2)).
The volume integral (area integral in R?) of a function f over the interior region Q~ is

defined as
[ r@nc @z (4.7
Q
where the region of integration is all of Q since x~ prunes out the exterior region Q% au-

tomatically. The one dimensional Heaviside function can be used to rewrite this volume

integral as
/Q F(E) (1 - H(6())) d (4.8)

representing the integral of f over the interior region 2. Similarly,

/Q £ (2 H (6(2)d (19)

is the integral of f over the exterior region Q7.
By definition, the directional derivative of the Heaviside function H in the normal direc-

tion N is the Dirac delta function
0(%) = VH($(Z)) - N (4.10)

which is a function of the multidimensional variable Z. Note that this distribution is only

nonzero on the interface 02 where ¢ = 0. We can rewrite equation (4.10) as

5(2) = H'(6(2) Vo () - % — H(6(#))| V(@) (4.11)

using the chain rule to take the gradient of H and the definition of the normal from equation

(4.2). In one spatial dimension, the delta function is defined as the derivative of the Heaviside
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function
5(6) = H'(9) (1.12)

with H(¢) defined in equation (4.6) above. d(¢) is identically zero everywhere except where

¢ = 0. This allows us to rewrite equation (4.11) as

6(7) = 6(o() V()] (4.13)

using the one dimensional delta function 6(¢).
The surface integral (line integral in R?) of a function f over the boundary 9% is defined

as
/ F@)6()di (4.14)
Q
where the region of integration is all of €2 since ) prunes out everything except 0f) auto-

matically. The one dimensional delta function can be used to rewrite this surface integral
as
| s@ste@)vowaz (115)
Typically, volume integrals are computed by dividing up the interior region, and surface
integrals are computed by dividing up the boundary 0€2. This requires treating a complex
two dimensional surface in three spatial dimensions. By embedding the volume and surface
integrals in higher dimensions, equations (4.8), (4.9) and (4.15) avoid the need for identifying
inside, outside or boundary regions. Instead the integrals are taken over the entire region 2.
Consider the surface integral in equation (4.15) where the one dimensional delta func-
tion needs to be evaluated. Since 6(¢) = 0 almost everywhere, i.e. except on the lower
dimensional interface which has measure zero, it seems unlikely that any standard numerical
approximation based on sampling will give a good approximation to this integral. Thus, we
use a first order accurate smeared out approximation of d(¢). First, we define the smeared

out Heaviside function

0 o< —¢
H(p)=9 t+2+Lsin(Zl) —e<¢p<e (4.16)
1 €< ¢
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where € is a tunable parameter that determines the size of the bandwidth of numerical
smearing. A typically good value is ¢ = 1.5Az making the interface width equal to three
grid cells when ¢ is normalized to a signed distance function with |V¢| = 1. Then the delta

function is defined according to equation (4.12) as the derivative of the Heaviside function

0 O < —€
0(¢) = £+ Lcos (L) —e<¢p<e (4.17)
0 e< ¢

where € is determined as above. This delta function allows us to evaluate the surface integral
in equation (4.15) using a standard sampling technique such as the midpoint rule. Similarly,
the smeared out Heaviside function in equation (4.16) aids in the evaluation of the integrals
in equations (4.8) and (4.9).

A distance function d(Z) is defined as

—

d(Z) = min |Z — Z;| over all Z; € 09 (4.18)

implying that d(Z) = 0 on the boundary where & € 0. For a given point &, suppose that
Z¢ is the point on the interface closest to Z. The line segment from 7 to Z'c is the shortest
path from & to the interface. In other words, the path from 7 to Z¢ is the path of steepest
descent for the function d. Evaluating —Vd at any point on the line segment from ¥ to Z¢

gives a vector that points from ' to Z'c. Furthermore, since d is Euclidean distance,
|Vd| = 1. (4.19)

A signed distance function is an implicit function ¢ with ¢(Z) = d(Z) = 0 for all ¥ € 09,
¢(Z%) = —d(Z) for all ¥ € Q~, and ¢(Z) = d(Z) for all ¥ € Q. Given a point Z, and using

the fact that ¢(Z) is the signed distance to the closest point on the interface, we can write

—

Fo =7 — p(B)N (4.20)

to calculate the closest point on the interface where N is the local unit normal at 7.
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4.2 Level Set Methods

Level set methods add dynamics to implicit surfaces. The key idea that started the level
set fanfare was the Hamilton-Jacobi approach to numerical solutions of a time dependent
equation for a moving implicit surface. This was first done in the seminal work of Osher and
Sethian [147].

Suppose that the velocity of each point on the implicit surface is given as V(f) Given
this velocity field, V= (u,v,w), we wish to move all the points on the surface with this

velocity. The simplest way to do this is to solve the ordinary differential equation

dr -
— =V( 4.21
=) (4.21)

for every point & on the front, i.e. for all ¥ with ¢(#) = 0. This is the Lagrangian formulation
of the interface evolution equation. Since there is generally an infinite number of points on
the front, this means discretizing the front into a finite number of pieces. For example, one
could use segments in two spatial dimensions or triangles in three spatial dimensions. This
is not so hard to accomplish if the connectivity does not change and the surface elements
do not distort too much. Unfortunately, even the most trivial velocity fields can cause large
distortion of boundary elements and the accuracy of the method can deteriorate quickly if
one does not periodically modify the discretization in order to account for these deformations
by smoothing and regularizing inaccurate surface elements.

In order to avoid problems with instabilities, deformation of surface elements and com-
plicated surgical procedures for topological repair of interfaces, Osher and Sethian [147]
proposed using the implicit function ¢ both to represent the interface and to evolve the
interface. The evolution of the implicit function ¢ is governed by the simple convection
equation

¢ +V-Vé=0. (4.22)

This is an Eulerian formulation of the interface evolution since the interface is captured by

the implicit function ¢ as opposed to being tracked by interface elements as is done in a
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Lagrangian formulation. Equation (4.22) is sometimes referred to as the level set equation.
The velocity field given in equation (4.22) can come from a number of external sources. For
example, when the ¢(Z) = 0 isocontour represents the interface between two different fluids,
the interface velocity is calculated using the two-phase Navier-Stokes equations.

In general, one does not need to specify tangential components when devising a velocity
field. Since N and V¢ point in the same direction, T V¢ = 0 for any tangent vector
T implying that the tangential velocity components vanish when plugged into the level set

equation. For example, in two spatial dimensions with V= Vn]\7 +V,;f, the level set equation

¢t+(VN+Vt ) Vo =0 (4.23)
is equivalent to
b+ V,N -V = 0. (4.24)
Furthermore, since
N.ve= ;Z Vo - 'mf W (4.25)

we can rewrite equation (4.24) as
¢+ Vo|Vo| =0 (4.26)

where V,, is the component of velocity in the normal direction (the normal velocity). Equation
(4.26) is also known as the level set equation. Equation (4.22) tends to be used for externally
generated velocity fields while equation (4.26) tends to be used for (internally) self-generated

velocity fields.

4.3 Numerical Techniques

This subsection is a natural continuation of the discussion of numerical methods in section
3.
Counsider the one dimensional scalar conservation law
ug + f(u)y =0 (4.27)
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where u is the conserved quantity and f(u) is the flux function. A well known system
of conservation laws are the Euler equations for inviscid fluid flow dynamics. The Euler
equations are rather interesting because the presence of discontinuities forces one to consider
weak solutions where the derivatives of solution variables can fail to exist. While a contact
discontinuity is essentially linear, the nonlinear nature of a shock wave discontinuity allows
it to develop as the solution progresses forward in time even if the data is initially smooth.
Another interesting aspect of the Euler equations concerns the uniqueness of the solution.
When more than one solution exists, an entropy condition is needed to pick out the physically
correct solution. It turns out that the vanishing viscosity solution is the desired physically
correct solution. For example, this vanishing viscosity solution admits a physically consistent,
rarefaction wave as opposed to a physically inadmissible expansion shock.

Now consider the one dimensional Hamilton-Jacobi equation

¢r + H(p:) =0 (4.28)

which becomes
(¢2)e + H(hz)e =0 (4.29)

after taking a spatial derivative of the entire equation. Setting u = ¢, in equation (4.28)
results in

e+ H(u)y =0 (4.30)

which is a scalar conservation law. Thus in one spatial dimension, we can draw a direct
correspondence between Hamilton-Jacobi equations and conservation laws. The solution u to
conservation law is the derivative of a solution ¢ to a Hamilton-Jacobi equation. Conversely,
the solution ¢ to a Hamilton-Jacobi equation is the integral of a solution u to a conservation
law. This allows us to point out a number of useful facts. For example, since the integral
of a discontinuity is a kink (discontinuity in first derivative), solutions to Hamilton-Jacobi
equations can develop kinks in the solution even if the data is initially smooth. In addition,

solutions to Hamilton-Jacobi equations cannot generally develop a discontinuity (unless the

20



corresponding conservation law solution develops a delta function). Thus, solutions ¢ to
equation (4.28) are typically continuous. Furthermore, since conservation laws can have
nonunique solutions, one needs to apply an entropy condition to pick out the “physically”
relevant solution to equation (4.28).

Viscosity solutions for Hamilton-Jacobi equations were first proposed by Crandall and
Lions [30] in order to pick out the physically relevant solution. In addition, monotone first
order accurate numerical methods were first proven to converge by Crandall and Lions in
[31]. Later, in [147], Osher and Sethian used the connection between conservation laws
and Hamilton-Jacobi equations to construct higher order accurate artifact free numerical
methods based in part on new upwind difference schemes. Even though the analogy between
conservation laws and Hamilton-Jacobi equations fails in multidimensions, many Hamilton-
Jacobi equations can be discretized in a dimension by dimension fashion. This cumulated
in [148] where Osher and Shu proposed a general framework for the numerical solution
of Hamilton-Jacobi equations using modern methods from the theory of conservation laws
and the multidimensional Riemann solver of Bardi and Osher [6]. The framework in [148]
allowed one to use Lax-Friedrichs, Roe-Fix or Godunov building blocks to create higher
order accurate spatial discretizations using an essentially non-oscillatory (ENO) polynomial
reconstruction introduced in [76] by Harten et al. for the numerical solution of conservation
laws. The basic idea is to compute numerical flux functions using the smoothest possible
polynomial interpolants. The actual numerical implementation of this idea was improved
considerably by Shu and Osher in [171] and [172] where the numerical flux functions were
constructed directly from a divided difference table of the pointwise data. [171] and [172]
addressed higher order accurate Runge-Kutta discretization in time as well.

In [108], Liu et al. pointed out that the ENO philosophy of picking out exactly one of
three candidate stencils is overkill in smooth regions where the data is well behaved. They
proposed a Weighted ENO (WENO) method that takes a convex combination of the three

ENO approximations. Of course, if any of the three approximations interpolate across a
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discontinuity, it is given minimal weight in the convex combination in order to minimize its
contribution and the resulting errors. Otherwise, in smooth regions of the flow, all three
approximations are allowed to make a significant contribution in a way that improves the
local accuracy from third order to fourth order accuracy. Later, Jiang and Shu [88] improved
the WENO method by choosing the convex combination weights in order to obtain the
optimal fifth order accuracy in smooth regions of the flow. In [87], following the work on HJ
ENO in [148], Jiang and Peng extended WENO to the Hamilton-Jacobi framework. This
Hamilton-Jacobi WENO or HJ WENO scheme turns out to be very useful as it reduces the
numerical errors by more than an order of magnitude over the third order accurate HJ ENO
scheme for typical applications.

Even with these high order accurate approaches to solving the Hamilton-Jacobi equations,
one can obtain surprisingly inaccurate results when the level set function solution becomes
too steep or too flat, i.e. discontinuous or poorly conditioned. In [29], Chopp considered an
application where certain regions of the flow had level sets piling up on each other increasing
the local gradient, and other regions of the flow had level sets that separated from each other
flattening out ¢. In order to reduce the numerical errors caused by both the steeping and
flattening effects, [29] introduced the notion that one should reinitialize the level set function
periodically throughout the calculation. In [158], Rouy and Tourin proposed a numerical
method for the shape from shading problem that was later generalized into the modern day
reinitialization equation of Sussman, Smereka and Osher [177], using the fact that |Vd| =1,
for d the signed or unsigned distance to a given set.

Unfortunately, this straightforward reinitialization routine can be slow, especially if it
needs to be done every time step although [177] noted that just a few time iterations are
usually needed. In order to obtain reasonable run times, [29] restricted the calculations of the
interface motion and the reinitialization to a small band of points near the ¢ = 0 isocontour.
This idea of computing solutions to Hamilton-Jacobi equations local to the interface has

been studied further in the more recent work of Adalsteinsson and Sethian [1] and Peng et
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al. [153].

Local methods are important for both solving the Hamilton-Jacobi equation and for
reinitializing the level sets so that they do not become discontinuous or poorly conditioned.
However, at least in the reinitialization case, it is possible to construct an even faster method
that only treats each grid point once while sweeping out from the zero isocontour creating a
signed distance function. This algorithm was invented by Tsitsiklis in a pair of papers, [185]
and [186]. The most novel part of this algorithm is the extension of Dijkstra’s algorithm for
computing the taxicab metric to an algorithm for computing Euclidean distance. Although
this method was originally proposed by Tsitsiklis, it was later rediscovered by the level set
community, see for example Sethian [166] and Helmsen et al. [78].

The great success of level set methods can in part be attributed to the role of curvature
in regularizing the level set function such that the proper vanishing viscosity solution is
obtained. It is much more difficult to obtain vanishing viscosity solutions with Lagrangian
methods that faithfully follow the characteristics. For these methods, one usually has to
delete (or add) characteristic information by hand when a shock (or rarefaction) is detected.
This ability of level set methods to identify and delete merging characteristics is clearly seen
in a purely geometrically driven flow where a square is advected inward normal to itself at
constant speed. In the corners of the square, the flow field has merging characteristics that
are appropriately deleted by the level set method. On the other hand, repeating the same
calculation with a Lagrangian numerical method is difficult since characteristics will merge
in the corners of the square but not be automatically deleted. One does not easily obtain
the correct viscosity solution. Level set methods are not perfect however, since they tend to
incorrectly delete characteristics in under resolved regions of the flow — a behavior frequently
called “loss of mass” (or volume) in reference to the error it represents when level sets are
used to model incompressible fluid flow. In contrast, despite a lack of explicit enforcement of
mass (or volume) conservation, Lagrangian schemes are quite successful in conserving mass

since they preserve material characteristics for all time, i.e. characteristics are never deleted.
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The difficulty stems from the fact that the level set method cannot accurately tell if
characteristics merge, separate, or run parallel in under-resolved regions of the flow. This
indeterminacy leads to vanishing viscosity solutions that can incorrectly delete characteristics
when they appear to be merging. In [46], Enright et al. designed a hybrid particle level set
method to alleviate the mass loss issues associated with level set methods. In the case of
fluid flows, knowing a priori that there are no shocks present in the fluid velocity field, one
can assert that characteristic information associated with that characteristic field should
never be deleted. Particles are randomly seeded near the interface and passively advected
with the flow. When marker particles cross over the interface, it indicates that characteristic
information has been incorrectly deleted, and these errors are fixed by locally rebuilding
the level set function using the characteristic information present in these escaped marker

particles.

4.4 Fluids and Materials

Chronologically, the first attempt to use the level set method for flows involving external
physics was in the area of two phase inviscid compressible flow. Mulder et al. [122] appended
the level set equation to the standard equations for one phase compressible flow. The level
set, was advected using the velocity of the compressible flow field so that the zero level set
of ¢ corresponds to particle velocities and can be used to track an interface separating two
different compressible fluids. Later, Karni [90] pointed out that such method suffered from
spurious oscillations at the interface. This was later fixed by Fedkiw et al. [56] by creating a
set of fictitious ghost cells on each side of the interface, and populating these ghost cells with
a specially chosen ghost fluid that implicitly captures the Rankine-Hugoniot jump conditions
across the interface. This method was referred to as the ghost fluid method. Later, Fedkiw
et al. [57] extended the level set method and ghost fluid method to treat shock, detonation
and deflagration waves as sharp discontinuities. Caiden et al. [15] extended these methods

to couple incompressible flows to compressible flows in order to study liquid/gas interac-
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tions. Fedkiw [55] extended these methods to couple Lagrangian calculations to Eulerian
calculations in order to study solid/fluid interactions.

The earliest real success in the coupling of the level set method to problems involving
external physics came in computing two-phase incompressible flow, in particular see Sussman
et al. [177] and Chang et al. [24]. The Navier-Stokes equations were used to model the fluids
on both sides of the interface. Generally, the fluids will have different densities and viscosities
and the presence of surface tension forces cause the pressure to be discontinuous across the
interface as well. Although these early papers smeared out these discontinuous quantities
across the interface, this was later remedied by Kang et al. [89] using the methods developed
by Liu et al. [109]. More recently, Nguyen et al. [124] extended these techniques to treat
low speed flames.

A level set regularization procedure was proposed in Harabetian and Osher [72] for ill-
posed problems such as vortex motion in incompressible flows. This regularization, coupled
with non-oscillatory numerical methods for the resulting level set equations, provides a reg-
ularization which is topological and is automatically accomplished through the use of nu-
merical schemes whose viscosity shrinks to zero with grid size. There is no need for explicit
filtering, even when singularities appear in the solution. The method also has the advantage
of automatically allowing topological changes such as merging of surfaces.

An application of this procedure for incompressible vortex motion was given in Hara-
betian, Osher and Shu [73]. An Eulerian, fixed grid, approach to solve the motion of an
incompressible fluid, in two and three dimensions, in which the vorticity is concentrated on
a lower dimensional set, is provided. The numerical variables for the level sets are actually
smooth, thus allowing for accurate numerical simulations. Numerical examples including
two and three dimensional vortex sheets, two dimensional vortex dipole sheets and point
vortices, are given. This was the first three dimensional vortex sheet calculation in which
the sheet evolution feeds back to the calculation of the fluid velocity, although vortex in cell

calculations for three dimensional vortex sheets were done earlier by Trygvasson et al. in
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Figure 4.1: A splash is generated as a sphere is thrown into the water.

[183].

Level set methods have been applied to a variety of other problems as well. They have
been used to compute solutions to Stefan problems to study crystal growth [26, 94], to
simulate water for computer graphics applications [60] as shown in Figures 4.1 and 4.2, and
to reconstruct three dimensional models from arbitrary unorganized data points [202] as
shown in Figures 4.3 (before) and 4.4 (after).

Level set type analysis was also used to obtain rigorous results identifying the Wulff
minimizing shape and the evolution of growing crystals moving with normal velocity defined
as a given positive function of the normal direction, thus verifying a conjecture of Gross.
Moreover it was also shown that the Wulff energy decreases monotonically under such an
evolution to its minimum [143]. A spinoff came in [152] where it was proven that any two
dimensional Wulff shape can be interpreted as the solution a corresponding Riemann problem
for a scalar conservation law — jumps in the direction of the normal correspond to contact
discontinuities, smoothly varying thin flat faces correspond to rarefaction curves and planar

facets correspond to constant states. The work in [143] also motivated the derivation of a
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Figure 4.2: An interesting spray effect is generated as a slightly submerged ellipse slips
through the water.
new class of isoperimetric inequalities for convex plane curves [67].

Molecular beam epitaxy (MBE) is a method for growing extremely thin films of material.
A new continuum model for the epitaxial growth of thin films has been developed. This new
island dynamics model has been designed to capture the larger length scale features. The key
idea involves the level set based motion of islands of various integer levels — see for example

[121, 25, 71].
4.5 A Variational Approach

In [201] a variational level set approach was developed. Key ideas were the use of a single
level set function for each phase, the gradient projection method of [159] to prevent overlap
and / or vacuum, and the liberal use of the level set calculus as described earlier. This
general variational approach has many applications. The first was to study the behavior
of bubbles and droplets in two and three dimensions [203], for example drops falling or
remaining attached to a generally irregular ceiling, and mercury sitting on the floor.

Many problems in engineering design involve optimizing the geometry to maximize a
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Figure 4.3: Arbitrary data points measured from a rat brain.
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Figure 4.4: A three dimensional geometric reconstruction of the rat brain using the level set
method.
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certain design objective. In [146] the variational level set method was used to analyze a
vibrating system whose resonant frequency or whose spectral gap is to be optimized subject
to constraints on the geometry.

This variational approach has applications in computer vision as well, e.g. snakes and

active contours [22]. This will be discussed further in section 5.

4.6 High Codimension Motion

Typically level set methods are used to model codimension one objects, e.g. curves in R?
or surfaces in R*. In [13], this technology was extended to treat codimension two objects,
e.g. curves in R3, using the intersection of the zero level sets of two functions. This means

a curve is determined by

F(t) = {f|¢1(57 t) = ¢2(57 t) = 0}

The geometry of the curve can be derived from ¢, and ¢5. For example, the tangent to the

curve is defined by
Vo1 X Vi

T=_"12 772
(V1 x V|

The curvature times the normal is the derivative of the tangent vector along the curve,
kN =VT.T. (4.31)

The normal vectors can be defined by normalizing this quantity,

. N
N="1 (4.32)
KN |
The binormal is
. TxN
.
|T x NI
The torsion times the normal vector is 7N = —VB - T.

These geometric quantities are all defined numerically just as in the standard codimension

one level set method. Geometric motion of a curve in R? is thus obtained by solving coupled
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systems of two evolution equations. This is done locally near I'(¢), saving on storage and
complexity. See [13] for results involving merging and breaking which appear to agree with
the reaction-diffusion limit when appropriate.

Another application of this idea comes from the following observation. If we freeze one of
the functions, say ¢, we can generate the motion of curves on a surface. Here the surface is
defined by {Z|¢1(Z) = 0} and the evolving curve is defined by the intersection of that fixed

surface with {Z|@o(Z,t) = 0}. This is useful for path planning on terrain data, see [28].

4.7 Geometric Optics

In [141] a level set based approach for ray tracing and for the construction of wavefronts in
geometric optics was introduced. The approach automatically handles the multivalued solu-
tions that appear and automatically resolves the wavefronts. The key idea, first introduced
in [45] in a “segment projection” (rather than a level set) approach, is to use the linear Li-
ouville equation in twice as many independent variables and solve in this higher dimensional
space via the idea introduced in [13].

In two dimensional ray tracing, this involves solving for an evolving curve in z, y, 6 space,
where 0 is the angle of the normal to the curve. This uses two level set functions and gives
codimension 2 motion in 3 space dimension plus time. A local level set method can be used
to make the complexity tractable — O(n?log(n)) — for n the number of points on the curve
for every time iteration. The memory requirement is O(n?).

In three dimensional ray tracing, this involves solving for an evolving two dimensional
surface in x,y, 2,60, space, where 6 and 1 give the angle of the normal, and results in
codimension 3 motion in 5 space dimension plus time. The complexity goes up by a power
of n over the two dimensional case, as does the memory requirement. Again, this involves
a local level set method, this time using three level set functions. The interested reader is

referred to [175] and [162] for a different Eulerian approach.
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4.8 Computing Discontinuous Solutions to Hamilton-Jacobi Equa-
tions

Hamilton-Jacobi equations of the form

have uniformly continuous solutions if H is non-decreasing in ¢. However, there are interest-
ing cases in which this hypothesis fails. Moreover, discontinuous initial data is appropriate
for some problems in control theory and differential games. The solution devised in [63] uses
the evolution of the level set of an auxiliary level set equation. The idea has antecedents
in [137] where it was proven that, under reasonable circumstances, the zero level set of the
viscosity solution of
¢+ H(Z,Ve) =0
for H homogeneous of degree one in V¢ is the same as the t level set of the viscosity solution

of
H(Z, Vi) =1

{7]o(7,1) = 0} = {Z[P(7) = 1} (4.34)

This idea was used in [63] to go one dimension higher in equation (4.33). This leads to new
and successful numerical methods for a wide class of initial value problems for Hamilton-

Jacobi equations with discontinuous solutions, see [184].

5 Image processing and computer vision

The use of partial differential equations (PDE’s) and curvature driven flows in image process-
ing and computer vision has become an active research topic in the past few years. The basic
idea is to deform a given curve, surface, or image with a PDE, and obtain the desired result

as the solution of this PDE. Sometimes, as in the case of color images, a system of coupled
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PDE’s is used. The art behind this technique is in the design, analysis, and implementation
of these PDE’s.
Partial differential equations can be obtained from variational problems. Assume a vari-

ational approach to an image processing problem formulated as
arg {Min, U (u)},

where U is a given energy computed over the image (or surface) u. Let F(-) denote the Euler
derivative (first variation) of ¢. Since under general assumptions, a necessary condition for
u to be a minimizer of U is that F(u) = 0, the (local) minima may be computed via the

steady state solution of the equation

ou
E - _f(u)a

where t is an ‘artificial’ time marching parameter. PDE’s obtained in this way have been
used already for quite some time in computer vision and image processing, and the literature

is large. The most classical example is the Dirichlet integral,

U(u) = / Va2 (x)d,

which is associated with the linear heat equation

%(x,t) = Au(x).
Extensive research is also being done on the direct derivation of evolution equations which
are not necessarily obtained from the energy approaches. The attributes of PDE’s in image
processing are discussed for example in [19, 163]. In the pioneering paper [2] the authors
prove that a few basic image processing principles naturally lead to PDE’s.

Note that when considering PDE’s for image processing and numerical implementations,
we are dealing with derivatives of non-smooth signals, and the right framework must be

defined. As introduced by the image processing group formerly at CEREMADE [2, 3],

the theory of wiscosity solutions provides a framework for rigorously employing a partial
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differential formalism, in spite of the fact that the image may not be smooth enough to give
a classical sense to derivatives involved in the PDE. These works also showed with a very
elegant axiomatic approach the importance of PDE’s in image processing.

Ideas on the use of PDE’s in image processing go back at least to Gabor [62] and to Jain
[85]. The field took off thanks to the independent works of Koenderink [98] and Witkin [195].
These researchers rigorously introduced the notion of scale-space, that is, the representation
of images simultaneously at multiple scales. In their work, the multi-scale image representa-
tion is obtained by Gaussian filtering, see below. This is equivalent to deforming the original
image via the classical heat equation, obtaining in this way an isotropic diffusion flow. In the
late 80’s, R. Hummel [82] noted that the heat flow is not the only parabolic PDE that can
be used to create a scale-space, and indeed argued that an evolution equation which satisfies
the maximum principle will define a scale-space as well. The maximum principle appears to
be a natural mathematical translation of causality. Koenderink once again made a major
contribution into the PDE’s arena (this time probably involuntarily, since the consequences
were not clear at all in his original formulation), when he suggested to add a thresholding
operation to the process of Gaussian filtering. As later suggested in [119, 120, 161], and
proved by a number of groups [4, 47, 83, 84], this leads to a geometric PDE, actually, one of
the most famous ones, curvature motion. In [160] this was extended to diffusion generated
motion of curves in IR?. Solving a vector heat equation and thresholding leads to moving
the curve in the direction of the normal with velocity equal to its curvature.

Perona and Malik’s work [154] on anisotropic diffusion, together with the work by Rudin-
Osher-Fatemi on Total Variation [159] (and Osher-Rudin on shock filters [144]), have been
among the most influential papers in the area, explicitly showing the importance of under-
standing non-linear PDE’s theory to deal with images. They proposed to replace the linear
Gaussian smoothing, equivalent to isotropic diffusion via the heat flow, by a selective non-
linear diffusion that preserves edges, see below. Their work opened a number of theoretical

and practical questions that continue to occupy the PDE image processing community, e.g.,
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[3, 157]. We should also point out that about at the same time, Price et al. published a very
interesting paper on the use of Turing’s reaction-diffusion theory for a number of image pro-
cessing problems [156]. Reaction diffusion equations were also suggested to create artificial
texture [188, 197].

Many of the PDE’s used in image processing and computer vision are based on moving
curves and surfaces with curvature based velocities. In this area, the level-set numerical
method developed by Osher and Sethian [147] is very influential and examples will be pro-
vided later in this section. The representation of static objects as level-sets (zero-sets) is of
course not completely new to the computer vision and image processing communities, since
it is one of the fundamental techniques in mathematical morphology [164]. Considering the
image itself as a collection of its level-sets, and not just as the level-set of a higher dimen-
sional function, is a key concept in the PDE’s community [2]. Implicit surfaces and level-set
representations appear in computer graphics as well [9, 196].

Other works, like the segmentation approach of Mumford and Shah [123] and the snakes
of Kass, Witkin, and Terzopoulos [91] have been very influential in the PDE’s community
as well. More on this will be mentioned below.

It should be noted that a number of the above approaches rely quite heavily on a large
number of mathematical advances in differential geometry for curve evolution [66] and in
viscosity solutions theory for curvature motion (see e.g., [27, 48].)

The frameworks of PDE’s and geometry driven diffusion have been applied to many prob-
lems in image processing and computer vision, since the seminal works mentioned above.
Examples include continuous mathematical morphology, invariant shape analysis, shape from
shading, segmentation, tracking, object detection, optical flow, stereo, image denoising, im-
age sharpening, contrast enhancement, and image quantization. In this section we provide a
few examples of these. Since this is a paper in honor of Stan Osher, the presentation of the
examples is of course biased by his involvement and contributions in the area. Important

sources of literature in the area are the excellent collection of papers in the book edited
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by Bart Romeny [157], the book by Guichard and Morel [69] that contains an outstand-
ing description of the topic from the point of view of iterated infinitesimal filters, Sethian’s
book on level-sets [165], Osher-Fedkiw’s long expected book, Lindeberg’s book, a classic in
Scale-Space theory [105], Weickert’s book on anisotropic diffusion in image processing [192],
Kimmel’s lecture notes [97], Sapiro’s recent book [163], Toga’s book on Brain Warping that
includes a number of PDE’s based algorithms for this [181], the special issue on the March
1998 issue of the IEEE Transactions on Image Processing, the special issues in the Jour-
nal of Visual Communication and Image Representation, a series of Special Sessions at a
number of IEEE International Conference on Image Processing (ICIP), the Proceedings of
the Scale Space Workshops, and the 2001 Workshop on Level-Set and Variational Methods.
The interested reader will find in these publications some fascinating contributions in the
area of PDE’s in image processing and computer vision, much beyond the few introductory

examples provided below.

5.1 The Total Variation Model for Image Denoising

As mentioned above, the use of PDE’s for image enhancement has become one of the most
active research areas in image processing [19]. In particular, diffusion equations are com-
monly used for image regularization, denoising, and multiscale representations (representing
the image simultaneously at several scales or levels of resolution). This started with the
pioneering works in [98, 195], where the authors suggested the use of the linear heat flow for
this task, given by

% = Au, (5.1)
where u : Q C IR? — IR represents the image gray values (the original noisy image is used

as initial condition). As it is well known, this equation is the gradient-descent of

/Q | Vu | do, (5.2)

An example of the effect of the linear heat flow or Laplace equation (5.1) is presented in

Figure 5.1. It is clear that although this technique can be used to denoise images, it is also
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blurring them. That is, not only the noise is being removed, but the edges and the relevant
information is getting destroyed as well. Moreover, it can be shown that edges are destroyed

faster than the actual noise is removed [8].

Figure 5.1: Example of the heat flow (isotropic diffusion). On the left we have the original
image and on the right two different time steps of the diffusion flow, showing how the image
is getting blurred.

Two directions were taken to address this problem. On one hand, Perona and Malik [154]
suggested to replace the linear heat flow by a PDE that preserves edges. Simultaneously,
Rudin, Osher, and Fatemi [159] started to look at the modification of the variational problem
(5.2). In certain cases, the two directions can be shown to be equivalent, the PDE being
the gradient descent of the proposed variational formulation. Rudin, Osher and Fatemi
suggested to replace the linear Ly norm in (5.2) by the edge oriented Total Variation (TV)

norm in the energy, thereby obtaining

/Q | V| d, (5.3)

whose gradient descent flow is given by

ou Vu
=i — . 4
ot d”(nwn) (5-4)

We notice that in comparison with the linear heat flow, the TV one has a stopping term

of the form This helps to preserve edges, as can be seen in Figure 5.2. Rudin et al

_1
[Vull*
also suggested to add constraints to this minimization, in order to avoid reaching the trivial

(flat) steady state, thereby improving the results in Figure 5.2. In this case the corresponding
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Lagrange multiplier is evaluated via a projection method that was found to be useful in other

applications as well, e.g., [146].

Figure 5.2: Example of the TV flow for anisotropic diffusion. On the left we have the
original image and on the right the result of the flow, showing how the edges are much
better preserved than with the isotropic flow.

From the point of view of edge preservation, the TV flow is optimal if we limit ourselves
to convex functionals [8]. Motivated by the seminal work of Perona and Malik and Rudin-
Osher-Fatemi, significant theoretical and practical studies have been conducted in this kind
of anisotropic diffusion flows in general and the TV flow in particular. People have studied
their numerics (e.g., Mulet-Chan-Golub, Weickert, Marquina-Osher) as well as their formal
mathematical properties (e.g., Alvarez-Morel-Lions, Weickert, to name just a few, and more
recently Caselles et al. with a full study of the TV flow in general dimensions). This work
has also in part motivated Cohen, DeVore, and others to connect wavelets with the TV

space.

5.2 Images on Implicit Surfaces

In the last section we dealt with images on the plane. There is of course more than that, and
data can be defined on surfaces. In [7] the authors dealt with this issue. A framework for
solving variational problems and partial differential equations for scalar and vector-valued
data defined on surfaces was introduced. The key idea is to implicitly represent the static

surface as the level set of a higher dimensional static function, and solve the surface equations
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in a fixed Cartesian coordinate system using this new embedding function. Implicit surfaces
can be obtained for example from the algorithms in [39, 61, 100, 117, 179, 186, 199, 202].
Applications of PDE’s on surfaces include computer graphics [187, 188, 197], visualization
[35], weathering simulation [36], vector field computation or interpolation process [155, 194],
inverse problems [53], and surface parameterization [38].

We assume then that the three dimensional surface S of interest is given in implicit form,
as the zero level set of a given function ¢ : IR* — IR. This function is negative inside
the closed bounded region defined by S, positive outside, Lipschitz continuous a.e., with
S ={z € IR?: ¢(x) = 0}. To ensure that the data, which needs not to be defined outside of
the surface originally, is now defined in the whole band, one simple possibility is to extend
this data u defined on S (i.e the zero level set of ¢) in such a form that it is constant normal
to each level set of ¢. This, which is easily realizable [26], is only done if the data is not
already defined in the whole embedding space.

We will exemplify the framework with the simplest case, the heat flow or Laplace equation
for scalar data defined on a surface. For scalar data u defined on the plane, that is, u(z,y) :
Q C R? - IR, as we saw before, the heat flow is given by (5.1), and its corresponding
energy by (5.2). If we now want to smooth scalar data u defined on a surface S, that is,

u(z,y) : S — IR, we must find the minimizer of the energy given by

1
5/5 | Vsu |2 dS. (5.5)

The equation that minimizes this energy is its gradient descent flow (e.g., [176]):

Here Vs is the intrinsic gradient and Ag the intrinsic Laplacian or Laplace-Beltrami operator.
Classically, eq. (5.6) would be implemented in a triangulated surface, giving place to
sophisticated and elaborated algorithms even for such simple flows. We now show how to

simplify this when considering implicit representations.
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Let ¢ be a generic three dimensional vector, and Py the operator that projects a given
three dimensional vector onto the plane orthogonal to #. It is then easy to show that the

harmonic energy (5.5) ([40]) is equivalent to (see for example [174])

1
5 | 1wl as. (5.7)

where N is the normal to the surface S. In other words, Vsu = PyVu. That is, the gradient
intrinsic to the surface (Vs) is just the projection onto the surface of the 3D Cartesian

(classical) gradient V. We now embed this in the function ¢:

1

1
5 [N vsulPas =5 [ Povul? 5(6) | V6 | do.
2 /s 2 Joems

where 0(-) stands for the delta of Dirac, and all the expressions above are considered in the
sense of distributions. Note that first we got rid of intrinsic derivatives by replacing Vs by
PgVu (or Pyy,Vu) and then replaced the intrinsic integration ([ dS) by the explicit one
( fQ CR3 dx) using the delta function. Intuitively, although the energy lives in the full space,
the delta function forces the penalty to be effective only on the level set of interest. The

gradient descent of this energy is given by

ou 1
S v
ot || Ve

(PopVu [ Vo |)). (5.8)
In other words, this equation corresponds to the intrinsic heat flow for data on an implicit
surface. But all the gradients in this PDE are defined in the three dimensional Cartesian
space, not in the surface S (this is why we need the data to be defined at least on a band
around the surface). The numerical implementation is then straightforward. Once again, due
to the implicit representation, classic numerics are used, avoiding elaborate projections onto
discrete surfaces and discretization on general meshes, e.g., [34, 81]. The same framework
can be applied to other variational formulations as well as to PDE’s defined on surfaces, e.g.,
the ones exemplified below [7].

A particularly interesting example is obtained when we have unit vectors defined on

the surface. That is, we have data of the form u : & — S®!. When n = 3 our unit
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vectors lie on the sphere. Following the work [178] for color images defined on the plane,
we show in Figure 5.3 how to denoise a color image painted on an implicit surface. The
basic idea is to normalize the RGB vector (a three dimensional vector) to a unit vector
representing the chroma, and diffuse this unit vector with the harmonic maps flow embedded
on the implicit surface extending the intrinsic heat flow example presented above. The
corresponding magnitude, representing the brightness, is smoothed separately via scalar
diffusion flows as those presented before for images on the plane (e.g., an intrinsic TV
anisotropic heat flow). That is, we have to regularize a map from the zero level-set onto S?
(the chroma) and another one onto IR (the brightness).

Following the same framework and the work in [187, 188, 197], we show in Figure 5.4
the result of reaction diffusion flows solved on implicit surfaces in order to generate intrinsic
patterns.

Finally, inspired by the work on line integral convolution [14] and that on anisotropic
diffusion [154], the authors of [35] suggested to use anisotropic diffusion to visualize flows
in 2D and 3D. The basic idea is, starting from a random image, anisotropically diffuse it
in the directions dictated by the flow field. The authors presented very nice results both
in 2D (flows on the plane) and 3D (flows on a surface), but once again using triangulated
surfaces which introduce many computational difficulties. In a straightforward fashion we
can compute these anisotropic diffusion equations on the implicit surfaces with the framework

here introduced, and some results are presented in Figure 5.5.

Figure 5.3: Intrinsic vector field regularization. Left: original color image. Middle: heavy
noise has been added to the 3 color channels. Right: color image reconstructed after 20 steps
of anisotropic diffusion of the chroma vectors.
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Figure 5.4: Texture synthesis via intrinsic reaction-diffusion flows on implicit surfaces. Left:
isotropic. Right: anisotropic.

Figure 5.5: Flow visualization on implicit 3D surfaces via intrinsic anisotropic diffusion flows.
Left: flow aligned with the major principal direction of the surface. Right: flow aligned with
the minor principal direction of the surface. Pseudo-color representation of scalar data is
used.

5.3 The Level-Set Method in Image Processing and Computer
Vision

We now present a number of examples on the use of the level-set method described above

for problems in image processing and computer vision.
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5.3.1 Image Segmentation

One of the most popular applications of level-set methods in image processing and computer
vision is for image segmentation. The contributions in this area started shortly after the work
in [95] (which is one of the first papers in computer vision using the level-set method) by
the works in [16, 115, 116]. These authors showed how to embed in the level-set framework
the pioneering work on snakes and active contours by Terzopoulos and colleagues [91].

Consider the image on the left of Figure 5.6. Terzopoulos and colleagues suggested to
detect the objects in this image (segment the image) starting with a curve that surrounds
the object/s, and letting the curve deform (active-contour/snake) toward the boundary of
the objects. The deformation is driven by the minimization of a given energy that penalizes
non-smooth curves that do not sit at the objects boundaries. The authors of [91] proposed
a Lagrangian implementation of the curve deformation process, while Caselles et al. and
Malladi et al. pioneered the use of the level-set method for this approach. This added
the classical topological freedom, thereby allowing the detection of multiple objects without
prior knowledge of their number (later on Terzopoulos and colleagues showed a technique
based on Lagrangian implementation to achieve this [118]). Following this work, in [17] (see
also [18, 92, 93, 167, 180, 193] and [151] for pioneering extensions of this to object tracking),
the authors showed that both approaches can be formally unified if one considers an energy
given by

B(C) = /C 4(C)ds, (5.9)

where ds is the Euclidean arc-length over the deforming curve C : [a,b] — IR* and g(-) is a
function that penalizes curves that do not sit on the objects boundaries (a function of the
image gradient for example). That is, image segmentation has been translated into finding
a curve minimizing (5.9), thereby a geodesic in a space with metric g(-). The geodesic was
computed using the level-set method. Examples are provided in Figure 5.6.

When describing image segmentation, variational problems, and PDE’s, we can not avoid

but think about the famous Mumford-Shah work [123], and ask ourself the relationship
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Figure 5.6: Level-set based object segmentation. The first figure on the left shows the original
image and original contour, surrounding an un-known number of objects. The results of the
geodesic active contours is given in the middle image. The image in the right is a result of
the geodesic active contours framework implemented following Cohen and Kimmel.

between these techniques. Some of this relationship is described in [163], while additional
one comes to light from recent works connecting the Mumford-Shah model and level-set
techniques (see for example works by Paragios-Deriche, Yezzi et al., and Chan-Vese). One
of the works in this direction is presented in [23, 191]. This work is inspired in part by
Zhao et al. [201]. In their work, multiple phases and their boundaries, represented via the
level set method, evolve and interact in time, to minimize a bulk-surface energy. Combining
several level set functions together, triple junctions were also represented and evolved in
time. Inspired by this, Chan and Vese presented a multi-phase level set model for image
segmentation. Triple junctions and complex topologies are segmented using more than one
level set function. An example is provided in Figure 5.7. In this example, a multi-phase
model with four phases is used, obtained by combining two level set functions. Here, the
phases and their boundaries evolve in time, by minimizing an energy related to the Mumford
and Shah piecewise-constant model for segmentation. We show the evolution of the curves

and of the four phases, in a level set framework.
5.3.2 Stereo and 3D Reconstruction from Multiple Views

The problem of stereo is as follows: Recover the geometry of the scene when two or more
images from the world are taken simultaneously. Since the internal parameters of the camera

are unknown, the problem is essentially one of establishing correspondence between the
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Figure 5.7: Evolution of the four-phase segmentation model from [23], using two level set
functions: evolving curves (top) and phases (bottom).
views. The correspondence problem is usually addressed setting up a functional and looking
for its extrema. Once the correspondence has been achieved, the 3D point is reconstructed by
intersecting the corresponding optical rays. See for example [52, 68, 79] for further geometric
details on the old problem of stereo.

Faugeras and Keriven pioneered the use of level-sets and the geodesic framework for this
problem. They proposed to start from some initial 3D surface Sy and deform it toward the
minimization of a given geometric functional. One of the functionals proposed in [54] reads

as follows:

E(S,N) = //\IJ(S,/\?)da: —];ﬁ% (5.10)

where i, j run over all the n available images I;, and (-,-) is the cross correlation between
the images, which includes the geometry of the perspective projection and the assumption
of Lambertian surfaces [54]. Note that this approach consists basically on replacing the edge
dependent ‘metric’ g we used for the segmentation approach by a new ‘metric’ ¥ that favors
correlation between the collection of images. The authors work out the Euler-Lagrange
equations for this formulation and embed it in the level-set framework. The example in
Figure 5.8 was provided by Ronny Kimmel, and it corresponds to a simplification of the

model by Faugeras-Keriven that he has recently proposed (additional examples can be found
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in the home pages of Faugeras and Keriven). This work was also extended by [198], where
the authors explicitly combine multi-view reconstruction with segmentation ideas as those
described before. The authors suggest to find a surface whose projection properly segments

the multiple given images, and an example from their work is given in Figure 5.9.

Figure 5.8: 3D reconstruction from a stereo pair using the geodesic stereo approach. First,
the stereo pair is shown, followed by the reconstructed 3D shape.

i1

Figure 5.9: Surface reconstruction from multiple-views. The first row shows four different
views. The second row shows four steps of the evolution, while the last row shows four
different 3D views of the reconstructed surface.
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5.4 Shape from Shading

According to the so called Lambertian shading rule, the 2D array of pixel gray levels, corre-
sponding to the shading of a 3D object, is proportional to the cosine of the angle between
the light source direction and the surface normal. The shape from shading problem is the
inverse problem of reconstructing the 3D surface from this shading data. The history of
this problem is extensive. We here described a basic technique, developed by Kimmel and
Bruckstein [96] to address this problem. An outstanding contribution to the problem was
done in [158], based on the theory of viscosity solutions (this is currently being extended at
INRIA by Faugeras and his collaborators; see also [125].) See these references for details and
an extensive literature.

Consider a smooth surface, actually a graph, given by z(z,y). According to the Lamber-
tian shading rule, the shading image I(z,y) is equal (or proportional) to the inner product
between the light direction [ = (0,0, 1) and the normal ./\7(3:, y) to the parameterized surface.

This gives the so called irradiance equation:

1
V1+p2+¢?

where p := 0z/0x and ¢ := 0z/0y. Starting from a small circle around a singular point,

I(z,y)=1-N=

Bruckstein [12] observed that equal height contours C(p,t) : S — IR? of the surface z (¢

stands for the height) hold
oC I

o I

where now 7 is the 2D unit normal to the equal height contour (or level-set of z). This

—

means that the classical shape from shading problem is simply a curve evolution problem,
and as so, we can use all the curve evolution machinery to solve it. In particular, we can use
both the level-set and the fast marching numerical techniques (the weight for the distance
is always positive and given by y/1/I> — 1). An example, courtesy of the authors of [96], is

presented in Figure 5.10.
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We conclude by mentioning that this work by Kimmel and Bruckstein on shape from
shading using curve evolution and level-sets inspired in part the work in [137]. This presents
the general connection between the unsteady and steady approaches to curve and surface

evolution.

Figure 5.10: Example of shape from shading via curve evolution. The figure shows the
original surface, the simulated shading, the reconstructed surface, and the reconstruction
error.
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The Problem
Visibility, its Dynamics, Surfaces (occluders) in space.
and
related Variational Problems
in an Implicit Framework

The vantage point

Yen-Hsi Richard Tsai Stanley Osher Find portions of space and surfaces that are visible/invisible from a
Institute for Advanced Study and Department of Mathematics, given view point.
Department of Mathematics and PACM  UCLA

Princeton University * Find ¢, such that {v,, < 0} describes the invisible regions

Applications: ray tracing, navigation problems, shape reconstruction,

Our solution
and etching.

Again: Find v, such that {1, < 0} describes the invisible regions
I will discuss:
o Basic algorithms for stationary vantage points
e Visibility interpolation

e Variational problems

Basic algorithm: +/, (y) := minec (.y) ¢(§) What we do:
Visit the grid points in the grid either by sweeping or by a “star-shaped”

KEY: “propagate” the visibility incrementally in radial direction, starting updating sequence (independent of the occluders): e.g.
from the vantage point, using

¥(x) = min(o(z), ¥(2)),

where z a point “before” x, depending on the grid geometry.

0

For each grid point z:

1. Solve V¢ - r =0 at z;

v 2. Update: (z) = min(o(x), 1(z)).



Multi-level algorithm

Visibility in bending ray fields

Solved by the fast sweeping algorithm as described in [Tsai-Cheng-
Osher-Zhao 2002, to appear in SINUM].

Dynamic visibility

What determines the visibility when the observer is moving?
How does the shadow move?

horizon

vantage point

line with slope = C

1000 ~00x)] <C Ix,—x
0(x;) —C [x;=x] >0

Skipping through large regions on which 1 does not change signs!

Benefits
v/ Algorithm independent of the topology and geometry of the occluders
v Algorithm extendable to more compicated scenarios
v Solution is Lipschitz continuous
Shaper description of the shadow boundary using grids
Suitable for PDE methods on the grid
v Build-in stability of the algorithm

v Reciprocity of Solution. 4, (y) := minge (., (&), where L(zg, y) is
the line segment connecting z, and y:

Ue(y) = wy(x)

Characterizing the horizons and terminators

We characterize the horizon and its terminator by the intersections of
level set functions.

y=0



Motion laws

Cast horizon motion: (Let y be the cast of the horizon point x)

{7 @
Ty xal = ol
§ = e (00 e ), ©

where r =y — x,, and r* = x — x,, v = r/|r|.

v These motion laws can be used also by the Lagrangian tracking for-
mulations

v/ Prediction of objects appearance and disappearance
v/ Can easily be extended to morphing surfaces

v/ Important for illumination type problems; i.e. etching, melting ice,
shape-from-shading

Motion laws

Horizon motion:

{ o(x(1) =0 0
(x=%o) - Vo(x) =0
() 1%-n(x)
X = ( ; ) = Emv(x) 2)
B II(x — x0) . Vo
= e e (0 1) @
where I1 is the second fundamental form, /1 = ﬁPW,VZqﬁPW.

Hidden objects may emerge:

Result — Terrain fly-through
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Accumulative result: invisible regions
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Surface Interpolation of Point Clouds

Given {z;} sampled from the occluders. What is visible?

A piecewise constant approximation to:

_f min pef]x — %o : ¥(%0,%) = p,p(x) < 0} if exists
olp) = { 00 otherwise ©)

24
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Steoreoscopic shape reconstruction

[Jinetal.]

28

Reconstruction

o Filter the “occluded” points:

Px,(2) = min (px,(2), [xo = i), forevery z € mx, B(yi, €).

e Use higher order reconstruction (e.g. ENO)

e Obtain other geometrical quantities; such as &

25

Variational problems

1. Variational energy depends on a fixed visibility function

o Certain scattering problems: e.g. etching, melting-ice problems
e Shape reconstruction from gray scale images

2. Finding the location of vantage point(s) maximizing visibility

e The “l want to see everything” problem (complete visibility)

3. Path planning under visibility constraints: H(Vu) = r(z, ¢, ). (with
time dependence.)

e The “l don’t want to be seen” problem.

Working with: ¥,.(y) = ¢(x,y), where z is the vantage point location.

27

| want to see every thing!
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Surveillance: a fly-through over DC area

(see movies)

30

Gradient descent:

dzr

= Vo) = [ HOTE I i)V (o)

[Vy(z,y)|
Can be used to grow a path maximizing visibility.

Generalization:

min Ae) = min | (6,0, 9,)H(~v(z.)dy,

Q

w(p, v, ¥,y) is a weight function; e.g. near sighted — w(d), where
d =distance to the occluder.

32

Example: extra weight on the region [50,100]x[50,100]

100 100
80 TN 80 7
60 ( ) 60
40f” N 401 .
20f_ 20f_ 9
JSION [SION L0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

QLI (@48 JC
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

34

Lets try to see as much as possible.
Seeing everything translates into:

({¥(@a:") <0} = {¢ <0} <= TacaH(¢) = H(¢)
aEA

Find 2 minimizing the area of invisible region outside of the occluders:

min A(z) = min/ H(—vY(z,y))H(¢)dy
* r Ja

31
Coupled system of vantage points
Vantage points {z,,}:
n}in} A(x) = min / w(x, ¢, ) I, H(—¢(xn, y)) H(¢)dy.
X=1Tn x Jao

Can be used to generate a visibility maximizing path.

33
Same configuration with equal weights
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Collective visibility of several vantage points

25
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Collective visibility of several vantage points (2)
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Dynamic Visibility in an Implicit Framework

Richard Tsai*, Li-Tien Cheng!, Paul Burchard?,
Stanley Osher*Y and Guillermo Sapiro||

February 2002

Abstract

We investigate the problem of determining visible regions in two or three
dimensional space given a set of obstacles and a moving vantage point. This
is of importance in several fields of study including rendering in computer
graphics, etching in materials construction, and navigation. Our approach
to this problem is through an implicit framework, where the obstacles are
represented by a level set function. An efficient generic multiscale level set
method is developed to generate the visible and invisible regions in space.
Furthermore, we study the dynamics of shadow boundaries on the surfaces
of the obstacles using special level set techniques when the vantage point
moves with a given trajectory. In all of these situations, topological changes
such as merging and breaking occur in the regions of interest. These are
automatically handled by the level set framework here proposed. Finally, we
obtain additional useful information through simple operations in the level
set framework.
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1 Introduction

In this paper, we consider the visibility problem described as follows: given a col-
lection of hypersurfaces representing the surfaces of objects, called the occluders,
in two or three dimensional space, determine the regions of space or on the sur-
faces visible to a given observer. In real world applications, this problem must be
solved quickly and efficiently, preferably in real time. Generalizations of the vis-
ibility problem are just as, if not more, important, such as the case of a moving
rather than static observer and the determination of regions visible for all time or
invisible for all time in this situation. However, we begin with the basic visibility
problem for simplicity, and address parts of the dynamic problem later on. Inci-
dentally, the visibility problem can be reformulated into a problem of determining
light and dark regions given a point light source. We occasionally consider this
point of view for clarification.

Under this point of view, a more precise set of assumptions we make in the
visibility problem includes a space composed of a homogeneous medium and ob-
jects with nonreflecting and nondiffracting surfaces. Furthermore, we disregard
interference, assuming that the distances between objects are large compared to
the wavelength of light. Under these conditions, light rays travel in straight lines
and are obliterated upon contact with the surface of an object. Thus a point is called
visible with respect to a vantage point, the observer, if the line segment between
the point and the vantage point does not intersect any of the obstructing objects or
their surfaces in space.

The need for visibility information

Even under these simplifying assumptions, the visibility problem arises as a cru-
cial part of numerous applications in different scientific fields, including rendering,
visualization [16], etching [1], the modeling of melting ice [7], surveillance, nav-
igation, and inverse problems, to name a few. In the case of computer graphics
and rendering, for example, determination of the visible portions of object sur-
faces allows for those portions alone to be rendered, thus saving a lot of costly
computation. Additionally, there are recent variational formulations for surface
reconstructions that require the solution of the visibility problem [17].

While explicit surfaces, for example triangulated surfaces, are used in a major-
ity of computer graphics and vision applications, implicitly represented surfaces
are gaining more attention. The advantages can be seen in the automatic resolution
of surfaces as well as the incorporation of geometric information and the handling
of various surface topologies afforded, for example, by a level set framework (see,
e.g., [6,9, 15, 16, 17, 26]). Currently there are numerous algorithms for solving
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the visibility problem using explicit surface representations. For example, the work
of [12] and [14] uses linearity to process triangulated surfaces. A detailed review
of related work on the visibility problem, especially concerning explicit surfaces,
can be found in [13]. Furthermore, there are a variety of visibility algorithms
from computational geometry (see, e.g., [2, 3]). Visibility algorithms for implicit
surfaces mostly consist of sending rays out from the point source and testing for
intersections with the surfaces of the objects using information arising from the
implicit formulation. Our proposed method for ray tracing is different. In essence,
we send out rays in an implicit manner so as to propagate the causality relation of
visibility. We describe this approach in more detail below.

Level set approach

We propose to solve the static and dynamic visibility problems in an implicit man-
ner using a level set formulation. The level set method was first proposed by Osher
and Sethian [20] as a PDE (Partial Differential Equation) based numerical device to
capture moving interfaces. Over the years, a level set calculus has been developed
that allows for the application of the level set method to a multitude of problems
and situations. See, for example, the review paper [19] for an overview on the
basics as well as recent advances in level set methods. We only recapitulate here
that implicit PDE approaches such as the level set approach retain the important
self interpolating property when propagating interfaces, thus obtaining good reso-
lution of the interfaces. Furthermore, Boolean operations on sets, including finding
curves of intersections and the trimming commonly required in CAD (Computer
Aided Design) are easy to implement in a level set framework.

In our case of visibility, a real valued two or three dimensional function ¢,
called the level set function, is introduced. The zero level set of this function
represents the surfaces of the occluding objects. Furthermore, we require that the
points where ¢ is negative represent the interior of the objects. Several algorithms
have been developed in the literature to efficiently obtain this representation. A
level set method for visibility will use this function ¢ whenever the objects are
considered.

One idea in determining whether a point is visible to a given observer is to
compare the geodesic and Euclidean distances between the observer and that point.
See [24] for an example of this approach. The geodesic distance between two
points is the distance in the space in the presence of obstacles, namely the objects.
Let x represent the point of interest and x, represent the observer point. The
geodesic distance can thus be calculated by solving the Eikonal equation

H($)[Vu| =1,
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where H is the one dimensional Heaviside function, with condition u(x,) = 0.
Thus the point x is occluded if and only if

u(x) > |x — Xo|-

However, this algorithm is at best O(N log N), where N is the number of grid
points (see, e.g., [25]). This may not be optimal, making it too slow for applications
requiring real time computations. Furthermore, numerical implementation of the
Heaviside function may cause problems for accuracy.

Our level set approach

We present here a few level set based algorithms for determining various types
of visibility information in any dimension, though three dimensions is probably
the one of interest. We first introduce a multiresolution algorithm for solving the
visibility problem for a given fixed vantage point. This algorithm constructs the
occlusion boundary, the interface separating visible from invisible. At each reso-
lution level, we solve a radially defined causality relation on a given grid in one
pass, obtaining not only a conservative estimate of the visible and invisible regions
but a locally second order approximation of the occlusion boundary. In addition,
our algorithm is independent of both the convexity of the occluders and the grid
geometry, and its parallelization is straightforward.

The level set framework is especially important as it handles occluder fusion,
where the occlusion boundary merges during the construction process. Further-
more, the implicit representation, though not as effective on occluders which are
open surfaces, can still handle this case by considering them as very thin hypersur-
faces.

Dynamic visibility

In the second part of the paper, we extend our study to the dynamic visibility prob-
lem. In this case, we consider a moving vantage point. Obviously the static visi-
bility problem can be applied at each time to solve this problem, and our algorithm
can be used to solve it efficiently enough. However, this static approach does not
give us other useful information about the dynamics; for instace, how fast a point
in space will become visible or invisible. In many cases, the problem can be solved
even faster if the visibility at a previous time is used effectively to produce visibility
at future time.

Thus we study the dynamics of curves on the occluders that separate light and
dark regions on the occluders. The curves in fact can be represented using a level
set approach, following the work of [5, 8, 10]. We also study other types of curves,
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called horizons, and their motions which form a superset of the curves separating
light from dark but can be constructed quickly. We rigorously derive motion laws
for all these types of curves and evolve them under the level set framework. This
framework allows for topological changes which may occur in the curves and its
self interpolating property automatically produces well resolved results. Finally,
we derive an emergence-time estimate to predict an occluded object’s emergence
into view. Thus our work complements the book of Cipolla and Giblin [11] which
discusses the reconstruction of shape from the perspective (orthogonal) projection
of the horizons. This is exactly what we are trying to evolve.

Notations

Through out this paper, we use the following notation:

e The space in which we work will be R?, where d = 2 or 3.

® X, denotes the position of the vantage point, or observer. We further assume
that x,, never lies in the interior of the objects.

e (2 1is a set of connected domains whose closure denotes the objects in ques-
tion. Furthermore, let I' = 0€).

e ¢ denotes the level set function representing the objects of interest. We may
further assume that ¢ is the signed distance function to I". This particular
level set function can be efficiently computed using fast algorithms such as
the fast marching method of [25] or fast sweeping methods.

e We define the view direction vector pointing from x, to x by v(xe,x) =
(x — Xo)/|x — Xo|. When the context is clear, we will drop the arguments
and write simply v(x) or v.

e Let x; and x2 denote two points in space. We say x3 < X2 (X3 is “before”
x2) if the conditions v(x,,X1) = V(Xe,X2) and |x3 — Xo| < |X2 — Xo| are
satisfied. We also define the strict relation < if the condition |x — Xo| <
|x2 — Xo| above is replaced by |x; — Xo| < |X2 — Xo|-

e A pointy € T is called a horizon point if and only if v(x,,y) - n(y) = 0,
where n(y) is the outer normal of I" at y. The horizon thus refers to the set
of horizon points.

e Apointy € I is a cast horizon point if and only if there is a point y* such
that: 1) y* < y and 2) y* is a horizon point. The cast horizon thus refers to
the set of cast horizon points.
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e The visible contour refers to the set of visible points of the horizons and cast
horizons.

2 Implicit ray tracing

We now set up the foundation of our approach and derive properties of ray tracing

of a single point source in an implicit framework. The motivation is as follows: we

observe that the visibility status of points sharing the same radial direction centered

at the vantage point satisfy a causality condition. This means if a point is occluded,

then all other points farther away from the vantage point in the same radial direction

are also occluded, i.e., if x7 is occluded and x; =< x2, then x5 is also occluded.
This fact can be described more rigorously as follows. Define

~ mingcga{|x — Xo| : ¥(%X0,%x) = P, Pp(x) <0} if exists
p(p) = { 00 otherwise, M
giving the distance between x, and the closest point on I in the direction of p from
Xo. Thus a given point x is invisible if p(v(x,%)) < |x — X,|. Refer to Figure 1
for an example and clarification. Therefore, we can define the visibility indicator

E(X,Xo) = p(l/(X,Xo)) - |X - X0|7

so that {Z > 0} is the set of visible regions in R and {£ < 0} is the set of
occluded regions.
From another view point, the problem becomes: compute
X):= min ,

vl = min 40
where L(x,, x) is the line segment connecting x, and x. Thus if 1/(x) is negative,
then x is occluded. In fact, our implicit ray tracing algorithm is is an approximation
of this formula.

Implicit formulation

Our implicit framework encodes visibility information in a Lipschitz continuous
function 4 so that a point y is visible if 1)(y) > 0 and invisible if ¢/(y) < 0. Thus
we can compute the value of 1(x) by

P(x) = min(y(x'), #(x)) 2)

where x’ is some point “right before” x in the ray direction. We can therefore start
from the vantage point x, and update the grid points following the ray directions
outwards. A simple algorithm for this reads:
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p(v2)=infinity

p(v1)=Ix=Ol
v1=Vv(x,0)=V(y,0)=V(z,0)

Figure 1: Illustration of p

L. Set"[)(xo) = QS(XO)'
2. Do a star-shaped! updating sequence on the grid.
3. For each grid point x, choose x¥' depending on the grid geometry.

4. Compute the value of (x) via (2).

Each grid node is visited in a specified order that maintains the causality. As long
as the updated grid nodes form a star-shaped region centered at the vantage point,
causality is maintained. See the Appendix for an example of such an updating
method. Due to the minimization and the linear interpolation (see Section 5.1)
used to find x/, the algorithm is /.-stable. More precisely, we have

Gint (x') < max{|p(z;)| : z; are the points used in the interpolation },

where ¢iy is the interpolant we constructed. Please see Section 5.1. Figure 2
shows what ¢ should look like in a one space dimension setting.

'See 5.2
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phi(x)

The occluder

@

The Vantage point

The occluded region

The occluder

o

The Vantage point

Figure 2: A demonstration of the motivation of our implicit ray tracing algorithm
in one dimension.
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Volumetric visibility processing

If we want to determine volumetric visibility information, i.e., we want to find
regions that are occluded from a given rectangular region (view cell), the above
algorithm can be modified for this purpose. For simplicity, assume that the view
cell degenerates to a line with end points x; and x2. At each point x, we compute
x) and x}, as in step 2 with respect to x; and x2. The update formula then becomes:

3(x) = min(¢(x), max (¢h(x7), ¥ (x3))).

2.1 Multi-resolution calculation
Finding inside/outside

Any multi-resolution approach of the visibility problem requires the skipping of
large regions which we know a priori are either visible or invisible. This hinges
upon the ability to determine whether any given voxel is completely “inside” or
“outside” of the objects. This can be done conservatively with the help of the
Lipschitz constant of the embedding level set function.

Let C be the Lipschitz constant of ¢. Let x, be the center point and x; the
vertices of the given voxel V. If

(%) + Clxe — %3] <0 Vi, (3)
then we know ¢y, < 0 (V' C {¢ < 0}). Conversely, if
¢(xi) + Clxc —x;| > 0 Vi, “4)

then we know ¢y, > 0. Since our embedding function is the signed distance func-
tion, the Lipschitz constant C' = 1.
Correspondingly, we also have:

dlv <0 if ¢(x.) + Clx; — x| <0 Vi,

and
élv >0 if ¢p(x.) +Clx; — x| >0 Vi.

A voxel V is occluded if it lies completely inside the an object or if it is “be-
hind” an occluded voxel V. This idea can be implemented by a careful reinterpreta-
tion of formula (2). A similar condition for determining completely visible voxels
can also be easily derived.
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0 150 200 250

Figure 3: This is a schematic diagram for the multi-resolution algorithm. Occluded
voxels are depicted in blue and visible ones in red. The regions are target for
next level refinement.to be refine. The red curves represent the boundaries of the
occluders, and the vantage point is positioned at (1, 1). The sizes of the voxels are:
64 x 64,16 x 16,4 x 4,and 1 x 1.
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2.2 A Multi-resolution algorithm

Let h give the resolution of our grid such that smaller 4 means high resolution (i.e.
finer grid). In practice, we can simply set h to be the mesh size. Under resolution
h, we use (ih, 3, kh) to denote the grid indices and V" for a voxel in the grid. We
will drop the superscripts of these indices when the context is clear.

Algorithm: (Multi-resolution visibility sweeping)

Let {h; : hy > h;41,0 = 0,--- ,m} be the set of resolutions of interest. For
each resolution level h, decending from Ay to Ay,

1. Compute 1) on the (ih, g, kh) which do not lie on a voxel marked either
visible or occluded.

2. For each voxel V" which does not lie on a voxel marked either visible or
occluded, mark V" to be visible or occluded according to formulas (3) and

.

We remark that the Lipschitz constant of the linearly interpolated 1) is can be taken
from that of ¢. Therefore, Step 2 above is well defined. Please see Figure 3 for a
demonstration of this algorithm.

As for complexity, the multiresolution algorithm for constructing visiblity in-
formation should be an O(N%!log N) algorithm in terms of speed. Here N =
1/h where h is the smallest spatial stepsize used in the multiresolution framework
and d is the dimension of the space. The N%~! part of the complexity comes from
the fact that a codimension one hypersurface in d dimensional space is being gen-
erated under fast sweeping and the log N part comes from multiresolution. The
memory allocation of our algorithm is also O(N?~!log N), with the log N part
once again due to multiresolution. In practice, our algorithms have proven to be
very fast, obtaining detailed visiblity information in almost real-time. For example,
it takes less than a second to perform this algorithm running on only one resolution
(meaning no multi-resolution), on a grid with 100° cells, on a moderate PC.

2.3 Multi-scale consider ations

If we consider the visibility problem in applications related to human vision, such
as 3D virtual environment rendering, it is natural to put a scale parameter into the
size of the objects related to the distance of the object from the vantage point.
We want to ignore certain isolated and small objects that are far away from the
vantage point using this information. It is important to notice that a collection of
closely positioned small objects can form a visible ensemble, seen for example in
clouds and trees.
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Using the level set representation of the virtual environment in conjunction
with PDEs, we are able to deal with this issue easily without explicitly considering
each object separately. The idea is to dilate the interface first so that small objects
can merge to form ensembles of larger size. We then shrink the interfaces (one
possibility is to perform curvature driven motion) such that remaining small objects
will disappear. This approach follows the regularization effect of viscosity solution
theory for Hamilton-Jacobi Equations. It is basic mathematical morphology, and
can be done easily, see e.g. [4][23].

3 Dynamic visibility

We now consider the case in which the vantage point is moving. Naturally vis-
ibility information changes according to the position of the vantage point. We
are interested in how visibility changes and when hidden objects become visible.
This amounts to studying how the boundaries between visible and invisible regions
move with respect to the vantage point motion. We first remark that these bound-
aries are hypersurfaces in regions outside of the occluders, and that the Gaussian
curvature on such surfaces is 0.

For a single convex object, the horizon determines the visibility information
on the surface. Therefore, tracking the motion of the horizon for all time gives us
incremental information on the change of the visible portion of the object.

We formulate the visibility problem so that the points which are on the bound-
aries of the visible regions on the surfaces can easily be identified. The dynamics
of these points are derived so that one can track the visible regions according to the
motion of the vantage point Xo.

The points forming the boundaries of visible regions on given surfaces can be
placed into two categories:

e points that are part of the horizon;

e points that border shadows cast by some surface (cast horizon).

Thus, two types of motions need to be investigated, namely, that of the horizon and
of the cast horizon. The motion of the horizon is characterized by the orthogonality
constraint and it, in turn, becomes a part of the constraints of the cast horizon
motion.

In a level set formulation, we want to create a level set function whose zero
level set captures the points described above. We need a description relating each
point on the cast horizon to a point on the horizon of the surface casting the shadow.
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Furthermore, our description should be global, that is, quantities should vary “con-
tinuously” with respect to points not on the surface. This requirement is essential
for the success of our level set formulation.

Assuming that there is no singularity in the velocity field of the horizon or cast
horizon motion, and there are no other considerations, the level set approach of
tracking the visible contours is optimal. With the fast sweeping algorithms and lo-
cal storage strategies, the complexity of the level set approach to track the horizon
and cast horizon curves is formally O(N) in operation counts and in storage. Here,
the number NV is the number of points used to resolve the curves. In actual appli-
cations, there are other aspects that affects the overall complexity of this approach.
We will address this point in a later subsection.

3.1 Findingthehorizon and the cast horizon implicitly

Horizons and cast horizons are objects of codimension 2. We may therefore cat-
egorize these objects by the intersection of the zeros of two level set functions.
Furthermore, for numerical reasons, we want the two zero level sets to be more or
less orthogonal to each other near their intersection.

Finding the horizon

We extend the orthogonality condition that defines the horizon and arrive at
h(x,t) = (x —xo) - V§(x). (5)
h determines the visibility of any convex object embedded in ¢ :
{h(x) <0} ({¢ =0} <= visible.

In general cases, where there are multiple objects (convex and nonconvex), i does
not give exact visibility information anymore. It just provides local visibility infor-
mation just as local extrema may not be absolute extrema. Thus clearly, for objects
hiding completely behind other objects, & will still be non-negative on the parts
of the surface facing the source. Instead, /i gives a conservative “estimate” of the
shadow:

{h(x) > 0} ﬂ{QS =0} = invisible.

Thus the visible horizon is a subset of {¢ = 0}(\{h = 0} ({¢ > 0}, where ¢ is
the visibility function coming from our static algorithm. Figure 4 gives an example
of horizons found this way.
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Finding the cast horizon

How do we find the cast horizon? The idea is to overshoot the shadow boundaries
generated by the visible horizon when it hits another part of I, creating a level set
piece 1p in that neighborhood, and then propagate 1 as usual. {w = 0} will cut
through I on the cast horizon, therefore providing an implicit representation of it.
We can even make {1& = 0} perpendicular to I" locally around the intersection by
iterating on the following PDE used in [18]:

V¢
[Vl

A more direct approach is to define 1; on a grid point to be the "upwind" value of
¢. This will introduce an overshoot of the size of a mesh size. Alternatively, we
notice that the occlusion generated by the set {h > 0}({¢ < 0} is the same? as
{¢ < 0}. Therefore, we can define ¢ from the result of our algorithm under the
configuration {% > 0} ({¢ < 0}. Figure 4 shows the operations described above
in a simple two circle setting.

With these characterizations and the visibility result, we can easily identify
the visible contours. See Figures 5, 6, and Figures 7, 8 for examples. In these
figures, the visible portions of the horizons and the cast horizons are depicted as
cyan and yellow curves respectively. A green circle is drawn to reveal the location
of the vantage point in each setting. The boundaries between visible and invisible
regions are represented by blue surfaces. We observe that the blue surfaces cut
through the objects exactly at the visible contours.

- +sgn ($) V) - = 0.

3.2 Thedynamicsof the horizon

Let x,(t) be the position of the vantage point and x(¢) be a corresponding point
on the horizon at time ¢. We first consider a single convex occluder €2 embedded
by the signed distance function ¢. Let n(x) denote the outer normal of OS2 at x.
This translates into the following constraints on x(¢):

p(x(£) =0
{ (x - o) - V(x) = 0 (©

In two dimensions, we can invert the above constraints and derive that
. T 1%, n(x
X = ( . > :—07()1/()(). (7)
Y K |x — X,

“modulo a small subset of {¢ < 0}, which we know is invisible by definition.
3The terrain data is obtained from ftp: //ftp.research.microsoft .com/users/hhoppe/data/gcanyon/ .
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Figure 4: Finding the visible horizons and their casts. The occluders are the two
circles depicted by the blue curves, and the vantage point is located at (—1, —1).
The green curves are the zero level set of /. Visible horizons and their casts are
characterized by the intersections of different level set functions as described in the
text.
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Figure 5: Visible contour (portions of horizon and cast horizon that are visible)

Figure 6: Visible contour (portions of horizon and cast horizon that are visible)



3 DYNAMIC VISIBILITY 18

08,

06.

4.

0z.

Figure 7: Horizons and cast horizons obtained from the elevation data of Grand
Canyon.
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Figure 8: Horizons and cast horizons obtained from the elevation data of Grand
Canyon.
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Figure 9: By taking the intersection of the occlusion during a trajectory of the
observer, we can find the cumulative occlusion easily and efficiently. The following
pictures show a progression of the cumulative occlusion subject to an observer
(“spy plane”) moving across a region of Grand Canyon.
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Figure 10:

Here,  is the curvature of the occluding surface at x. In three space dimensions,
the horizon becomes a closed curve I'(s) = x(s,t), where s is the arc length of
['(s). Let P be the plane tangent to %,, passing through I'(s) and x,. Let 3(o) be
the curve on the intersection of P and 0€2. Then, locally at ¢ and z, we have a two
dimensional visibility problem on the plane P, in which (o) defines the boundary
of the objects. Following this reasoning, s should naturally be taken from (o).
See Figure 10.

Alternatively and more naturally under our level set formulation, we rederive
the above motion law as

. II(x — xo) . Vo
F = (e — )P ( | W) ’ ®)

where [T is the second fundamental form, which can conveniently be extended to
the other level sets and takes the form:

1

Il = ——
Vol

PysV?¢Pgy.
Here, Py, is the orthogonal projection matrix projecting vectors to the plane with
normal vector parallel to V.

For a detailed derivation and implementation, please see sections 5.4, 5.3 and
5.7. Figure 11 shows a result of horizon motion on a nonconvex body*

“For more exmaples on the horizon motion, please see
http://www.math.ucla.edu/ ytsai/math page
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Figure 11: A example of moving horizon around a nonconvex occluder. Observe
that the horizon curves break and change topology.
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3.3 Thedynamicsof the cast horizon

Assume that x is a cast horizon point and x*(x) is its generator. In two dimensions,
the motion of x is determined by the following constraints:

=0,
{ ﬁ(fizo _ XX (9)

[x—%o| ~ |x*—%o|"

Inverting, we find that the motion of the cast horizon can be written as follows:

L.

V)t + %o - vH)nt(x), (10)

where

1 . ¢$2 (X)
w0 = (%) vt
and similarly for . See Section 5.5 for a detailed derivation. See Figure 12 for a
computational result using this formula. We notice that these constraints also tell
us how the shadow boundaries should move.
In three dimensions, we can reduce the instantaneous motion to a two dimen-
sional problem on the “right” section of the surface following the reasoning given
in the previous subsection.

M otions of the shadow boundaries

How does the shadow move in space? We can constrain a point on the shadow
boundary to move only normal to the viewing direction (ergo, the shadow bound-

ary):
x'-v=0,
X—Xo . X' %o (11)

lx—xo| T [x*—x0|"

M otions of horizons and cast horizons of dynamic surfaces

We remark that we we are able to derive the motion laws of the visible contours
even when the occluders are changing shapes. In this case, the embedding level set
function ¢ is a function of space and time, ¢(x,t) and differentiating formulas (6)
and (9) with respect to ¢ will bring ¢(x, t) into the equations.
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Figure 12: A result of tracking the horizon and cast horizon motion using the
formulas derived in this paper. The blue curve represents the trajectory of the
vantage point and the green curves represent the paths of the horizon and cast
horizon. The black line links the current position of the vantage point and the cast
horizon; it shows that the colinearity of the vantage point, the horizon and its cast
is preserved.
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3.4 Analysisof the motions
PDEsfor moving the level set functions

Once we have the motion laws, we can extend the velocity to the domain near the
surfaces and obtain the corresponding velocity field v(x). We then evolve the level
set function(s) u in question by

uy +v-Vu =0.

Furthermore, the velocity fields for horizon and cast horion motions do not de-
pend on the function w. In horizon motion, the velocity is a function of pos-
tion, time, X,, and the derivatives of ¢, i.e. v = v(t,X,Xo, V¢, D?¢). Fur-
thermore, the level set function to be evolved is A. In cast horizon motion, we
have v = V(t,x, X0, V$, D?$, 1), and the level set function to be evolved is .
Therefore, we are evolving the following two level set equations:

fis + v(t, X, X0, Vo, D?¢) - Vi = 0,

f&t + {/(t,X,XO, V¢7 D2¢7 h) ) VT:Z = 0.

These are simple convection equations whose viscoity solutions are well studied,
provided that the velocity fields are bounded. We only have to be careful near
singularities.

Singularitiesin the velocity fields

Formula (7) reveals a few interesting facts. First, we notice that the speed of the
horizon motion is inversely proportional to the normal curvature in the viewing
direction and to the distance between the horizon and the vantage point. If the
vantage point is moving in the tangent direction v/, the horizon will not move (since
X, -1 = 0). The speed of the horizon motion becomes singular if the curvature
of the surface at the horizon location becomes zero. On strictly convex objects,
this will never happen. If we restrict our analysis to a single connected smooth
non-convex object, we will see easily that at the instance in which a horizon point
moves into the location where x = 0, a neightborhood of this location becomes
completely visible. This signifies the disappearance of the horizon point. If the
course of the vantage point is reversed, we get the genesis of a new horizon point.

Formula (10) tells us that the motion of a cast horizon point becomes singular
when it is a horizon point (v - n = 0). On a single non-convex smooth surface, this
happens precisely when a horizon point and its cast across the concavity collide
into each other at the location where £ = 0. In the setting where there are multiple
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strictly convex objects, this also describes the changing of the cast horizon into a
visible horizon point which is previously invisible. Therefore, the singularities of
the horizons and cast horizons describe a part of their genesis. A complete genesis
of the visible contours includes another part, in which a hidden object suddenly
becomes visible. We shall discuss this point in a later subsection.

3.5 Relating horizon and its shadow

To move the cast horizon, following the notation used in the previous section, we
need to find x*(x) for each point x on the cast horizon.

3.5.1 Explicit formula

x and x*(x) are related by
x"(x) 1= x — r(x)r(x);
r(x) can be computed by

r(x) = |x = %o| = p(v(x)),

where v and p are defined as previously.

3.5.2 Implicit formulation

We follow the spirit of formula (2) introduced in Section 2 and propagate the link
between the horizon and its cast shadow implicitly. Define ¢ : R — R to be

9(x) = { x ify(x) = ¢(x)
x' if p(x) = p(x').
4 is the function defined in Section 3.1. When we move the points x near the
cast horizon, we also move the points ¥(x), which are points near the horizon.
By continuity around the cast horizon, we will have the right motion of the cast
horizon.

3.6 Raeinitialization and emergence-time estimate

It can be easily seen from figure 13 that a completely hidden object may suddenly
become visible at a later time during the journey of the vantage point. At the time of
emergence, we need to reinitialize our algorithm, i.e., we need to find the apparent
contours on the newly emerged surfaces to get the correct visibility information.
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Figure 13: Model scenario I

An explicit reinitialization criterion

Assuming that we are merely tracking the visibility boundaries on the objects. How
do we know when to initialize? We can formalize the reasoning as follows. We

define the map G~ : S%1 s {x;}X?) such that
G H(0) == {x; € R*: V(x;)/|V(x;)| = 0 and p(x;) = 0}.

This map is the inverse of the Gauss map in the case that {¢ = 0} is a strictly con-
vex hypersurface. Let S be the set containing x and z*. We reinitialize whenever
there exists an z € S such that 3y € G(v(y)) with x*(x) < y < x.

This provides an explicit criterion for reinitialization. However, we can do
better with our implicit formulation. This amounts to knowing 1) how the shadow
moves 2) how far a hidden surface is from the shadow boundaries.

Emergence-time estimate

Given current vantage point position and its motion, we want to estimate the emer-
gence time for an object that is occluded. We begin by assuming the the curvatures
of the surfaces locally around the regions of interest are constant. The diagram in
Figure 14 shows a model configuration: The small circle is initially occluded by
the larger circle on the left. We want to estimate the time interval §¢ between this
instance ty and the time t; = ¢y + §¢ when the small circle first emerges into the
scene.

Following the discussion above, consider a point y on the shadow boundaries
away from the horizon such that V¢(y) L v(y) and Vé(y) - Vo(y(x)) > 0. This
is the point closest to some hidden part of the objects.



3 DYNAMIC VISIBILITY 28

Figure 14: A diagram for emergence time estimate.

For consistency of notation, we will use D in place of y. Let d be the distance
between D and the circle centered at (. Let p and p be the radius of the circle
centered at O and O’ respectively. Let r denote the distance between D and C'.
By elementary Euclidean geometry, we have the following identities:

CcC' = ptangg, CD=r—-CC' =r —ptan(%a, = DFE = CDsind#,

1
cos 06

Therefore, we can find §6 from the last two equalities. Since we know how fast the
horizon is moving, we can then determine Jt.
Let X = |%X|0,

O'A' =

/
p.

DE il Ot DE
— = |X = —.
5t o %00

Further consider ations

We have mentioned in the beginning of this paper that the approach of moving
the visible contour may not be more efficient than simply performing implicit ray
tracing in general “large world” configurations. Here we construct such a case to
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Figure 15: bad case for moving curves

validate our arguments. Consider a nonconvex part of an object as shown by the
dashed red curve in Figure 15. Suppose the red curve is broken down into dense
small disconnected components. In the case where the red curve is the nonconvex
part of a connected component and with the viewing direction being depicted in
Figure 15, the cast horizon will move continuously on the nonconvex part of the
object without need for reinitialization. However, in the second case, we have to
reinitialize very often because the cast horizon will “jump” from component to
component.

4 Conclusion and futuredirections

In this article, we introduced a fast implicit ray tracing algorithm independent of
grid geometry and easily parallelizable. This is then extended to a multi-resolution
algorithm for near optimal efficiency. Furthermore, we showed that the implicit
framework captures accurately the shadow boundaries, which include the horizon
and cast horizon curves. We studied how these objects move when the source point
is moving. Explicit formulas which reveal the relations between the motions and
the local/global geometry of the given configuration are derived and are tightly
coupled with our level set framework for implementation. Also, questions such
as “how soon will this hidden object appear” can be answered as a result of our
algorithm.

There is a rich pool of applications related to the visibility problem described
in this paper. Currently we are working on problems related to navigation, visibil-
ity with occluders changing shapes in time, in non-uniform media. Our solutions
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Figure 16: A demonstration of 2D and 3D interpolation

will combine approaches both from the PDE formulation and the algorithms in
computational geometry.
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5 Appendix

5.1 Interpolation schemes

Since the majority of visibility applications benefit from the simplicity of Carte-
sian grids, we need to adapt the algorithm in order to take advantage of this. As
described in the algorithm, at each grid point z = (4, j, k), we need to determine
an upwind neighbor 2’ and find the value of % (z'). In most cases, 2’ does not lie
on the grid. Therefore, we need to interpolate the values of 1 from the grid points
closest to z’. For simplicity and speed considerations, we choose to perform linear
interpolation in 2D and bilinear interpolation in 3D. In Figure 16, we use 9 (R)
and 1) (P;) for linear interpolation in the 2D case and use ¢(F), i = 1,2, 3,4, for
bilinear interpolation of .

We note that a fast marching or fast sweeping strategy for determining distance
from the source point and passing values can be used in place of this interpolation.

Let 1y be the interpolant near 2/, we know that iy (z') = 9(z') + O(h?).
Thus, the discrete visibility equation (2) is in effect

P(z) = min(yin(z'), ¢(2)).
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*****************************************

*****************************************

Figure 17: The red points denote the cell vertices.

5.2 Examples of star-shaped updating sequence (sweeping)

There are many different ways of implementing a star-shaped updating sequence.
One approach is to use the algorithm based on the heap sort strategy [25] to find
grid nodes for update based on their distance to the vantage point. However, due
the complexity involved with heap sort, this algorithm is not optimal.

Alternatively, we use a sweeping approach in our simulation. For example,
let us consider a Cartesian grid in 2D and assume that the vantage point lies on
a grid node; we can then consider separately the visibility problem in each of the
four quadrants centered at the vantage point. For simplicity, let us assume that the
vantage point is at the origin and the grid is represented by the lattice [—ny, ny] X
[—ny,ny] C 7. A compact way of writing this sweeping sequence in C/C++ is:

for(sl=-1;s8l1l<=1;s81+=2)

for(s2=-1;82<=1;82+=2)

for(i=0; (s81l<0?i>=-nx:i<=nx) ;i+=s1)

for(j=0; (s2<0?j>=-ny:j<=ny) ; j+=s2)

update ;.
In the case where x, does not lie on a grid node, we describe an easy modifi-
cation to the updating sequence above. Let X, € I, := [Ziy, Tig+1) X [Yjo> Yjo+1)-

Update the values of v on the vertices of [,. Then update the grid nodes in the strips
{(wi,y;) : 1 = 19,10 +1landj = —nyton,} and {(z;,y;) : it = —ng,ngyand j =
Jo, jo+1}- Finally, update the remaining four quadrants independently. See Figure
17 for a depiction of this approach.
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5.3 Findingthecurvature of a specified direction

As we argued in Section 3.2, the three dimensional problem of determining the
motion of the horizon can be reduced to an instantaneous two dimensional problem.
In order to move the horizon in this manner, we need to evaluate the curvature of
the surface in the specified direction. Here we present a way to do that.

Let 7 be the tangent vector being specified. We want to find the curvature on
0%} in this direction. First let p(x;7) be the plane passing through x, spanned by
n(z) and 7, and let P be the level set function that embeds this plane. Then

V¢ x VP
V¢ x VP’

F=
where 7(x) = 7, and the curvature is

k.n=V7-7.

5.4 Derivation of the dynamics of horizon

We follow the constraints (6):

{ $(x) =0
(x —x¢) - Vo(x) =0

and differentiate with respect to ¢, we have

Vo(x)-x=0 (12)

(x = x0) - D*$(x)% =%, - Vp(x) (13)

In 2 space dimensions, these two relations uniquely determine the motion of

« with given initial conditions. Writing (x — x,) = |x — x,|nt(x) = |x —

Xo| (= by, ¢z)/|V$|, we have
|X—Xo|<_¢y>‘(¢mc ¢xy>($>
Vol Pa bye Py Y

— |X_X0| ( _¢y¢$m+¢$¢yx ) . ( T >
V@l \ —Pybuy + Pudbyy g )’

and

Ix—xol( Pa Py )(96)
|V<,25| _¢y¢zz + ¢m¢yw _Qbyqsxy + ¢z¢yy y
0
- < 5(0 : V¢(X) >
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( T > _ Vol 1 ( _QSyQSwy +¢z¢yy _st > ( 0 )
Y |x—xo| D QSyQSmm - stm(,byw bz Xo - VQS(X)
_ Vol V() ( —y >

[x—Xo| D (,Zsm

where
_ $a By )
b det ( _QSyQSw:p + sz(]sym _QSyQSwy + Qsmqsyy
_¢x¢y¢xy + ¢§;¢yy + ¢§¢m: - ¢x¢y¢xy
= Qsiqsyy + QS;QZSII - 2¢z¢y¢zy-

Since the curvature of 9f2 at x is

i
V|
1
= g b+ Bbas — 2.
the motion of z is . .
o < # ) _LEonx) 1 (14)
0] KX — X,

We define nt(x) = (x — x,)/|x — X,|.
Alternatively, we can write & in a slightly different form:

_ PoyVP(a — o)
|PogV2¢(x — o)

(:‘EO ’ VQS),

where P, is the orthogonal projection matrix projecting vectors to the plane with
normal vector v. Let us check this expression for the velocity of the curve. Note
V-3 = 0since v- P,w = 0 for all vectors v and w. Also, V2¢(z—x0)-& = V-ig
is satisfied since Pyw - w = | P,w|? for all vectors v and w. Thus this velocity is
valid and is the first form in our alternate derivation.

Geometric interpretation

If = indeed represents the position of the curve, then x — xy is tangent to the object
surface at z and so  — xy = Pyg(z — 20). Making this replacement above gives
our second form for the velocity,

Pv¢v2¢Pv¢($ — xo)

= Poe V29 Pog(e — a2 0 VO
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Figure 18: Model cast horizon scenario

This form is particularly nice because we know the second fundamental form in a
level set framework is transformed to
1

II=——
V|

PysV?$Pgy.

Thus we can rewrite the velocity in its final form,

~ 1I(z — x0) B V¢
‘|H(x—xo)|2(° |v¢|>'

T
I1v evaluated at a point represents the change in the normals of the object surface
in the direction of v at that point.

5.5 Derivation of the dynamics of the cast horizon

We assume that the level sets of ¢ near x are smooth curves and are not tangent to
v. In two space dimension, we have two equations that determine the dynamics of
X

v="r

{ ¢(x) = constant (15)

Let r and T denote (x — X,) and (X — X,) respectively. Differentiating these
equations, we arrive at:



5 APPENDIX 35

Notice that the term

/r /
v-r'—=(v-r
x|

is r’ projected onto the unit vector v. Therefore, the left hand side denotes the

projection of r’ onto the unit vector v
1 vt 1
_(rl — V- I'll/) = — = —P I'I.
x| x| e

Similarly, with the right hand side, we have the equation:

1 1

—P,r' = —P;¥.

r] 7|
Keeping in mind that we want to solve for X/, we move every other term to the
right hand side and arrive at

r ~
Px = ﬁPﬁr' + P,,xi),
Vé(x)-x' =0.

J_) 1

In two dimensions, P,w = (w-v vt and Pow-vt = w- I/J‘, therefore, we have

(2 (@) ()
QS:El QS:Ez $2 0

and consequently,

(4) = sei

where
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5.6 An algorithmtoproject {¢) =0} toS"!

We discretize S"~! over a Cartesian grid: p : [0,27) X [-7,7) > z, + S/,
with r large enough so that z, + S™ ! /r lies completely outside of 1. Afy, Afy
are set to be the smallest angle possible on the grid that discretizes 1. Therefore,
we can set Af; = tan~!(min(Az, Ay)/L), where L is the diagonal length of the
grid.

For each p; ,,,, we then shoot a ray, starting from py = p;.,,, outward according
to the angle determined by (/,m), and use the bisection method to find p, the
intersection of the ray and {¢) = 0}.

Note that the complexity is N2 log N for a grid of size N3.

5.7 Numerics

We computed the quantities describe in this paper using standard level set tech-
nologies. Please refer to [19, 20, 21, 22, 10] for details.

5.8 Alist of level set functionsused in this paper

We provide a comprehensive list of the level set functions we construct in this
paper:

¢ embeds the objects

h(x) := (x — Xo) - V(x) characterizes the horizon

b = max(¢, —h) { <0} ={p <0} \ {h < 0}, defines the same visibility as ¢
1) the visibility map resulting from the implicit ray tracing on ¢

1& the visibility map resulting from the implicit ray tracing 0n<;~5, characterizes the
cast horizon

9: R — R links horizon to its cast implicitly
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Fast Surface Reconstruction Using the Level Set Method

Hong-Kai Zhao*

Abstract

In this paper we describe new formulations and develop fast algo-
rithms for implicit surface reconstruction based on variational and
partial differential equation (PDE) methods. In particular we use
the level set method and fast sweeping and tagging methods to re-
construct surfaces from scattered data set. The data set might con-
sist of points, curves and/or surface patches. A weighted minimal
surface-like model is constructed and its variational level set formu-
lation is implemented with optimal efficiency. The reconstructed
surface is smoother than piecewise linear and has a natural scaling
in the regularization that allows varying flexibility according to the
local sampling density. As is usual with the level set method we can
handle complicated topologies and deformations, as well as noisy
or highly non-unifrom data sets easily. The method is based on a
simple rectangular grid, although adaptive and triangular grids are
also possible. Some consequences, such as hole filling capability,
are demonstrated, as well as a rigorous proof of the viability and
convergence of our new fast tagging algorithm.

Keywords: implicit surface, partial differential equations, vari-
ational formulation, convection, minimal surface, hole filling

1 Introduction

Surface reconstruction from unorganized data set is very challeng-
ing in three and higher dimensions. The problem is ill-posed, i.e,
there is no unique solution. Furthermore the ordering or connec-
tivity of data set and the topology of the real surface can be very
complicated in three and higher dimensions. A desirable recon-
struction procedure should be able to deal with complicated topol-
ogy and geometry as well as noise and non-uniformity of the data
to construct a surface that is a good approximation of the data set
and has some smoothness (regularity). Moreover, the reconstructed
surface should have a representation and data structure that not only
good for static rendering but also good for deformation, animation
and other dynamic operation on surfaces. None of the present ap-
proaches possess all of these properties. In general there are two
kinds of surface representations, explicit or implicit. Explicit sur-
faces prescribe the precise location of a surface while implicit sur-
faces represent a surface as a particular isocontour of a scalar func-
tion. Popular explicit representations include parametric surfaces
and triangulated surfaces. For examples, for parametric surfaces
such as NURBS [22, 23], the reconstructed surface is smooth and
the data set can be non-uniform. However this requires one to
parametrize the data set in a nice way such that the reconstructed
surface is a graph in the parameter space. The parametrization and
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patching can be very difficult for surface reconstruction from an ar-
bitrary data set in three and higher dimensions. Also noise in the
data set is difficult to deal with. Another popular approach in com-
puter graphics is to reconstruct a triangulated surfaces using Delau-
nay triangulations and Voronoi diagrams. The reconstructed surface
is typically a subset of the faces of the Delaunay triangulations. A
lot of work has been done along these lines [3, 4, 5, 8, 12, 13]
and efficient algorithms are available to compute Delaunay trian-
gulations and Voronoi diagrams. Although this approach is more
versatile in that it can deal with more general data sets, the con-
structed surface is only piecewise linear and it is difficult to handle
non-uniform and noisy data. Furthermore the tracking of large de-
formations and topological changes is usually quite difficult using
explicit surfaces.

Recently, implicit surfaces or volumetric representations have
attracted a lot of attention. There are two main approaches for
creating and analyzing implicit surfaces. The traditional approach
[7, 18, 27, 29] uses a combination of smooth basis functions, such
as blobs, to find a scalar function such that all data points are close
to an isocontour of that scalar function. This isocontour represents
the constructed implicit surface. Although the implicit surface is
usually smooth, the construction is global, i.e. all the basis func-
tions are coupled together and a single data point change can result
in globally different coefficients. This makes human interaction, in-
cremental updates and deformation difficult. The second approach
uses the data set to define a signed distance function on rectangular
grids and denotes the zero isocontour of the signed distance func-
tion as the reconstructed implicit surface [6, 9, 16]. The construc-
tion of the signed distance function uses a discrete approach and
needs an estimation of local tangent planes or normals for the ori-
entation, i.e. a distinction needs to be made between inside and out-
side. Similar ideas have been applied to shape reconstruction from
range data and image fusion [11, 15] where partial connections are
available on each piece of data and some “zippering” is needed to
patch things together. The advantages of implicit surfaces include
topological flexibility, a simple data structure, depth/volumetric in-
formation and memory storage efficiency. Using the signed dis-
tance representation, many surface operations such as Boolean op-
erations, ray tracing and offset become quite simple. Moreover an
extremely efficient marching cubes algorithm [17] is available to
turn an implicit surface into a triangulated surface.

We approach this fundamental problem on the continuous level
by constructing continuous models using differential geometry and
partial differential equations. We also develop efficient and robust
numerical algorithms for our continuous formulations. Moreover
we combine the level set method and implicit surfaces to provide
a general framework for surface modeling, analysis, deformation
and many other applications. In our previous work [31] we pro-
posed a new “weighted” minimal surface model based on varia-
tional formulations and PDE methods. Only the unsigned distance
function to the data set was used in our formulation. Our recon-
structed surface is smoother than piecewise linear. In addition, in
our formulation there is a regularization that is adaptive to the local
sampling density which can keep sharp features if the a local sam-
pling condition is satisfied. The formulation handles noisy as well
as non-unform data and works in any number of dimensions. \We
use the level set method as the numerical technique to deform the
implicit surface continuously following the gradient descent of the



energy functional for the final reconstruction. Instead of tracking
a parametrized explicit surface we solve an PDE on a simple rect-
angular grid and handle topological changes easily. In this paper
we develop a simple physically motivated convection model and a
fast tagging algorithm to construct a good initial approximation for
our minimal surface reconstruction. This will speed up our previ-
ous reconstruction by an order of magnitude. We also introduce
a smoothing algorithm similar to [28] as a post process to smooth
implicit surfaces or reconstructed implicit surfaces from noisy data.

In the next section we briefly review the variational formulation
for the weighted minimal surface model in introduced in [31]. A
physically motivated simple convection model is developed in sec-
tion 3. In section 4 we introduce the level set method for our prob-
lems and a simple denoising/smoothing formulation for implicit
surfaces . We explain the details of the numerical implementation
and fast algorithms in section 5 and show results in section 6.

2 A Weighted Minimal Surface Model

Let S denote a general data set which can include data points,
curves or pieces of surfaces. Define d(x) = dist(x, S) to be the
distance function to S. (We shall use bold faced characters to de-
note vectors.) In [31] the following surface energy is defined for
the variational formulation:

E(T) = [/1_‘ dp(a:)ds] ’

where T is an arbitrary surface and ds is the surface area. The
energy functional is independent of parametrization and is invariant
under rotation and translation. When p = oo, E(T") is the value of
the distance of the point & on T' furthest from S. For p < oo,
The surface energy E(T") is equivalent to fI‘ dP(z)ds, the surface
area weighted by some power of the distance function. We take the
local minimizer of our energy functional, which mimics a weighted
minimal surface or an elastic membrane attached to the data set, to
be the reconstructed surface.

As derived in [31] the gradient flow of the energy functional (1)
is

1<p<L oo, @

13

dr P ot 1
i [/1:‘d (w)ds] d" (z) [Vd(m)-n+1—)d(m)n] n,

and the minimizer or steady state solution of the gradient flow sat-
isfies the Euler-Lagrange equation

& (z) [Vd(a:) ‘n+ %d(w)n] =0, @3)

where m is the unit outward normal and & is the mean curvature.
We see a balance between the attraction Vd(x) - m and the sur-
face tension d(x)« in the equations above. Moreover the nonlinear
regularization due to surface tension has a desirable scaling d(z).
Thus the reconstructed surface is more flexible in the region where
sampling density is high and is more rigid in the region where the
sampling density is low. In the steady state equation(3) above, since
Vd - n <1, alocal sampling density condition similar to the one
proposed in [4], which says sampling densities should be propor-
tional to the local curvature of the feature. To construct the min-
imal surface we used a continuous deformation in [31]. We start
with an initial surface that encloses all data and follow the gradient
flow (2). The parameter p affects the flexibility of the membrane to
some extent. When p = 1, the gradient flow (2) is scale invariant
i.e., dimensionless. In practice we find that p = 1 or 2 (similar to a
least squares formulation) are good choices. Some more details can
be found in [31].

In two dimensions, it was shown in [31] that a polygon which
connects adjacent points by straight lines is a local minimum. This
result shows a connection between the variational formulation and
previous approaches. On the other hand this result is not surprising
since a minimal surface passing through two points is a straight line
in two dimensions. However in three dimensions the situation be-
comes much more interesting. The reconstructed minimal surface
has no edges and is smoother than a polyhedron.

3 The Convection Model

The evolution equation (2) involves the mean curvature of the sur-
face and is a nonlinear parabolic equation. A time implicit scheme
is not currently available. A stable time explicit scheme requires a
restrictive time step size, At = O(h?), where h is the spatial grid
cell size. Thus it is very desirable to have an efficient algorithm to
find a good approximation before we start the gradient flow for the
minimal surface. We propose the following physically motivated
convection model for this purpose.

The convection of a flexible surface I in a velocity field () is
described by the differential equation

dr(t)
— = p(T'(t)).

o = v(T@(®)
If the velocity field is created by a potential field F, then v =
—V . In our convection model the potential field is the distance
function d(z) to the data set S. This leads to the convection equa-
tion

dr(t)
— = - . 4
o =~ V@) O

For example, if the data set contains a single point xo, the potential
field is d(a)=|x—ao| and the velocity field is v(x) = —Vd(x) =
—%, a unit vector pointing towards xo. Any particle in this
potential field will be attracted toward x( along a straight line with
unit speed. For a general data set S, a particle will be attracted to
its closest point in S unless the particle is located an equal distance
from two or more data points. The set of equal distance points has
measure zero. Similarly, points on a curve or a surface, except those
equal distance points, are attracted by their closest points in the data
set (see Fig. 1(a)). The ambiguity at those equal distance points is
resolved by adding a small surface tension force which automati-
cally exists as numerical viscosity in our finite difference schemes.
Those equal distance points on the curve or surface are dragged by
their neighbors and the whole curve or surface is attracted to the
data set until it reaches a local equilibrium (see Fig.1(b)), which is
a polygon or polyhedron whose vertices belong to the data set as
the viscosity tends to zero (see Fig.1(b)).

Here are some properties of this simple convection model: (1)
the normal velocity of the curve or the surface is less than or equal
to 1, (2) each point of the curve or surface is attracted by its closest
point in the data set.

Figure 1(b) is an illustration of the convection of a curve.
The initial curve (the dotted rectangle) feels the attraction of
x1, X2, T3, x4 and closes in. Then it begins to feel 5. The fi-
nal shape is a pentagon that goes through x1, 2, €3, x4 and x5
while x¢ is screened out.

Since the convection equation is a first order linear differen-
tial equation, we can solve it using a time step At = O(h)
leading to significant computational savings over typical parabolic
At = O(h?*) time step restrictions. The convection model by it-
self very often results in a good surface reconstruction. In section
5 we will construct a very fast tagging algorithm that finds a crude
approximation of the local equilibrium solution for our convection
model.



(@) (b)
(a) the attraction of a piece of curve by two points, (b) dotted line
is the initial curve, solid line is the final curve, dashed line is the
\oronoi diagram.

Figure 1:

4 The Level Set Formulation

In general we do not have any & priori knowledge about the topol-
ogy of the shape to be reconstructed. Topological changes may
occur during the continuous deformation process. This makes ex-
plicit tracking, which requires consistent parametrization, almost
impossible to implement. Here we introduce the level set method
as a powerful numerical technique for the deformation of implicit
surfaces. Although implicit surfaces have been used in computer
graphics for quite a while, they were mostly used for static model-
ing and rendering and were based on discrete formulations [7]. The
level set method is based on a continuous formulation using PDEs
and allows one to deform an implicit surface, which is usually the
zero isocontour of a scalar (level set) function, according to various
laws of motion depending on geometry, external forces, or a desired
energy minimization. In numerical computations, instead of explic-
itly tracking a moving surface we implicitly capture it by solving a
PDE for the level set function on rectangular grids. The data struc-
ture is extremely simple and topological changes are handled easily.
The level set formulation works in any number of dimensions and
the computation can easily be restricted to a narrow band near the
zero level set, see e.g. [1, 21]. We can locate or render the moving
surface easily by interpolating the zero isosurface of the level set
function. The level set method was originally introduced by Osher
and Sethian in [20] to capture moving interfaces and has been used
quite successfully in moving interface and free boundary problems
as well as in image processing, image segmentation and elsewhere.
See [19] for a comprehensive review.
Two key steps for the level set method are:

e Embed the surface: we initially represent a co-dimension one
surface T as the zero isocontour of a scalar (level set) function
o(x), i.e. T = {z : ¢(x) = 0}. ¢(x) is negative inside T’
and positive outside I'. Geometric properties of the surface T,
such as the normal, surface area, volume, mean and Gaussian
curvature can be easily computed using ¢. For example, the
outward unit normal n is simply % and the mean curvature

- A V¢
KISV vl
e Embed the motion: we derive the time evolution PDE for the
level set function such that the zero level set has the same
motion law as the moving surface, i.e. the moving surface
coincides with the zero level set for all time. Since I'(t) =

{il) : ¢(w’ t) = 0}’

d(r(t),1) _
dt

dr'(t)

. Ve=0 ®)

o +

where we replace “L() with a velocity field v () defined for

T
all  and equal to & dgt) forzonT = {z : #(x,t) = 0}.

To develop the time evolution PDE for the level set function, one
needs to extend the velocity at the zero level set, which is given by
the motion law of the original surface, to other level sets in a natural
way. For geometric motions, i.e. where the motion law (velocity)
depends only on the geometry of the moving surface, the most nat-
ural way to define v is to apply the same motion law for all level
sets of the level set function, which will result in a morphological
PDE [2]. For example, the gradient flow (2) is a geometric motion.
Using the fact (see, e.g., [25, 31])

/ & (2)ds = / & (@)3(6(@))|V(@)|de,

where ¢(z, t) is the level set function whose zero level set is I'()
and d(z) is the one dimensional delta function, and extending the
motion (normal velocity) to all level sets we have the level set for-
mulation for the gradient flow (2)

9 1 . [y V6
§_1—7|V¢| [/d (w)5(¢)|V¢|dw] V- [d (w)W] » (6)

For the convection model (4), since the velocity field —Vd(x) is
defined everywhere, we can naturally extend the convection to all
level sets of ¢(x, t) to obtain

o¢ = Vd(x) - V. @)
ot

Although all level set functions are equally good theoretically,
in practice the signed distance function is preferred for numerical
computations. However even if we start with a signed distance
function the level set function will generally not remain a signed
distance function. As an example, in the convection model all level
sets are attracted to the data set simultaneously and they become
more and more packed together. We need a procedure to force them
apart while keeping the zero level set intact. We use a numerical
procedure called reinitialization, see e.g. [21, 25], to redistance the
level set function locally without interfering with the motion of the
zero level set. The reinitialization process will also provide us with
a signed distance function for rendering the implicit surface after
the deformation procedure stops.

If the data set contains noise, we derive a post-smoothing pro-
cess similar to that of [28] for our reconstructed implicit surfaces
using the variational level set formulation. Let ¢ denote the ini-
tial level set function whose zero level set is the surface we would
like to denoise or smooth. We define the denoised or smoothed im-
plicit surface as the zero level set of ¢ that minimizes the following
functional

Y GCRE IRy RO O

where H(z) is the one dimensional Heaviside function. The first
term in the above energy functional is a fidelity term that measures
the symmetric volume difference between two closed surfaces. The
second integral in the above functional is the surface area of the
zero level set of ¢, which is a regularization term that minimizes
the surface area of the denoised or smoothed surface. The constant
€ is a parameter that controls the balance between the fidelity and
the regularization. We again find the minimizer by following the
gradient flow of (8), whose level set formulation is:

¢: = |Vo|[er — (H(d) — H(o))]



To some extent this variational formulation is also related to To-
tal Variation (TV) denoising for images proposed in [24]. In fact it
is exactly TV denoising applied to H(¢), since the total variation
of a function can be represented as the integration of the parameter
length of all level sets of the function by co-area formula [14].

5 Numerical Implementation

There are three key numerical ingredients in our implicit surface
reconstruction. First, we need a fast algorithm to compute the dis-
tance function to an arbitrary data set on rectangular grids. Second,
we need to find a good initial surface for our gradient flow. Third,
we have to solve time dependent PDEs for the level set function.

5.1 Computing the distance function

The distance function d(z) to an arbitrary data set S solves the
following Eikonal equation:

[Vd(z)| =1, d(z)=0,z€S. 9)

From the PDE point of view, the characteristics of this Eikonal
equation are straight lines which radiate from the data set. This
reveals the causality property for the solution of the PDE, i.e., the
information propagates along straight lines from the data set, and
the solution at a grid point should be determined only by its neigh-
boring grid points that have smaller distance values. We use an
algorithm [10, 31] that combines upwind differencing with Gauss-
Seidel iterations of different sweeping order to solve (9) on rect-
angular grids. From numerical experiments it seems that the total
number of iterations is independent of mesh size, i.e. the complex-
ity is O(M + N) for N grid points and M data points.

Suppose we have a set of data points and a rectangular grid. We
use an initialization procedure, of complexity O(M + N) to as-
sign initial values for N grid points and M data points. Those
gird points that belong to the data set are assigned zero. Those grid
points that are neighbors (i.e., vertices of grid cells that contain data
points,) are assigned the exact distance values. These grid points
are our boundary points and their distance values will not change in
later computations. We assign a large positive number to all other
grid points. These values will be updated in later computations. \We
can deal with more general data set as long as the distance values on
grids neighboring to the set are provided initially. In one dimension,
the following upwind differencing is used to discretize the Eikonal
equation (9) at ¢th grid point that are not boundary points,

[(di —dic)T)? +[(di —diz)T)> =A%, i=1,2,...,I (10)
where h is the grid size, T is the total number of grids and (z)* =
r >0

0 z<0
erations successively, i.e., fori = 1 : I'andi = I : 1, to solve
this system of equations. At the ith grid, using the current val-
ues of d;_1 and d;, there exists at least one solution for equation
(10) [min(di—1, di+1) + 5, maz(di—1, di+1) + Z], which only
depends on neighbors with smaller values. We take d; to be the
smaller one if there are two solutions. It can be shown that these
two sweeps will get the exact solution of the discrete system (10),

which is of first order O(h) accuracy to the real distance function.
In two dimensions, a slightly more complicated system,

[(dij —diz13)™7 +[(dij —dirr1))™]

+[(dij — di 1)1 + [(ds; — dij11) 1] = B,
i =1,...,I, j = 1,...,J, has to be solved using sweeps of
Gauss-Seidel iterations of four different orders,

Vi=1:1,j=1:J (2)i
B)i=I:1,j=1:J (4)i

. We use two different sweeps of Gauss-Seidel it-

In most numerical computations, a total of five or six sweeps is
enough in two dimensions. Similarly a three dimensional extension
is straight forward. This distance algorithm is versatile, efficient
and will be used in later stages of the surface reconstruction.

5.2 Finding a good initial guess

We can use an arbitrary initial surface that contains the data set such
as a rectangular bounding box, since we do not have to assume any
a priori knowledge for the topology of the reconstructed surface.
However, a good initial surface is important for the efficiency of
our PDE based method. On a rectangular grid, we view an im-
plicit surface as an interface that separates the exterior grid points
from the interior grid points. In other words, volumetric render-
ing requires identifying all exterior (interior) grid points correctly.
Based on this idea, we propose a novel, extremely efficient tagging
algorithm that can identify as many correct exterior grid points as
possible and hence provide a good initial implicit surface. As al-
ways, we start from any initial exterior region that is a subset of
the true exterior region. Here is the description of our fast tagging
algorithm and the proof of its viability. For simplicity of exposition
only, we shall consider a uniform grid

(l‘i,yj) =Tij = (/LA,]A)a 17.] = 07:|:1,:|:27_

in 2 dimensions, where A is the grid size. The results work in any
number of dimensions and for more general grid structure.

Let d;; = d(x;;) be the unsigned distance of x;; to the data set
S (i.e. to the closest point on S). We say x;; < @k, Or ;; iS
closer than xx; or «;; is smaller than xx; if dij < dg:.

We define S to be the set of grid nodes x;; for which d;; < A.
(Note: if every data point lies on a grid node, then S = S).

We wish to obtain a set €2 for which S ¢ € and for which the
boundary 99 serves as a very good initial guess for our final recon-
structed surface. From our convection model, we need to rapidly
find a crude approximate solution to the steady state equation

Vd(z)-n =0,

where n is the unit outward normal of the boundary 0€2. This equa-
tion can be written (in 2D) as

degpz + dydy =0, (11

where ¢ is the level set function whose zero level set is 992 that
surrounds S2. We wish to march quickly in a manner reminiscent
of the fast algorithm of [26], but for a very different problem — this
is not the eikonal equation, and steady states generally depend on
the initial guess. There are some similarities in that a heap sort
algorithm is used as is the Cartesian structure of the grid.

For a point x;; we define its neighbors as the four points
Ti+1,5, i j+1. A boundary point of a set © is defined to be the
set of a;; in Q for which at least one of its four neighbors are in the
exterior of Q2. The boundary of  is denoted by 692.

Given Qo for which S we shall march quickly towards Q C Qg
whose boundary 92 will act as our initial level surface for the con-
vection and convection-diffusion algorithms defined below. This is
our fast tagging algorithm.

We begin by considering 82 which we order in a nondecreasing
sequence via a heap sort algorithm. We denote 8¢ as a temporary
boundary set at stage 0. We shall inclusively create £2,, and a tem-
porary boundary set 892,.,; C 99, so that, after a finite number of
steps the largest point in 89, ; is also in S2, at which point the
algorithm terminates and €2, is the final ©2. At each marching step,
we either tag the largest (furthest) temporary boundary point into
the final boundary or turn the largest (furthest) temporary boundary



point into an exterior point. This fast tagging algorithm is of com-
plexity O(NV log IV); the log IV term appears because of the sorting
step.

The tagging algorithm is as follows: Consider the largest

a:(n) S BQn,t.

ij
(&) If there is at least one interior neighbor of wﬁf) which is not

closer to S, put a:,fj") into the tagged boundary set and define

aﬂn-‘,—l,t = aQn,t - {wg—b)}ygn+l = Qn-

(b) If all interior neighbors of a:f;” are closer to S, put wgrf) into
the exterior and include its interior neighbors into the new
temporary boundary, i.e., define 2,41 = Q. — {&}} and
Omt1,t = O0my1 — {000 — O i}

Repeat this process until either (a) the temporary boundry set be-
comes empty, or (b) maximum distance of the untagged temporary
boundary points, (the set 8,,:) to S is less than A.

We now prove the algorithm is viable and converges. If condition
(a) is satisfied at stage 7, then since Q11 C 9, 27T <

EJ") If condition (b) is satisfied then 9€2,,+1,. will include new
points that are neighbors of wﬁf) and are closer to S than wE;)

Thus w§?+1) < wE;) This ends the proof that the algorithm is

T

viable and converges.

Remark1: Our tagging algorithm produces a very crude ap-
proximation to the steady state solution of the convection equation,
which we rewrite: Vd- V¢ = 0. We solve this crudely on a grid for
a function ¢;j which has value either +1 or -1. We initialize so that
¢ij = 1 in the exterior of Qo, ¢;j = —1 inside o. At every grid
point ;5 to be updated we march in an "upwind” direction, which
means the new ¢;j depends only on values at the four neighbors
which are further from S than «;j. Thus we order the temporary
boundary points and update the largest untagged point via a crude

process
¢ij = P[¢?—1,ja¢?+1,j:¢?,j—l7¢?,j]

where P denotes a procedure that picks one of the values from its
arguments that corresponds to a more remote point as follows: if
there are any more remote interior points, it picks the one which
is furthest from S. Else it picks the furthest exterior point. This
is equivalent to using a convex combination of either interior or
exterior points to approximate Vd and enforce ¢ to be constant
along Vd It is easy to see that this approximates the level set
equation (11) and is exactly our tagging algorithm.

Remark?2: At every stage of our tagging algorithm, all points x7,,
which are interior points of Q,, and which are more remote than
the point being tagged, =7;, will remain in Qn for all N > n,
and hence in the final set €2, since the maximum distance on the
untagged temporary boundary is decreasing. Thus we generally
obtain a nontrivial limit set €.

Figure 2 illustrates how our fast tagging algorithm works. Start-
ing from an arbitrary exterior region that is a subset of the final exte-
rior region, the furthest point on the temporary boundary is tangent
to a distance contour and does not have an interior point that is far-
ther away. The furthest point will be tagged as an exterior point and
the boundary will move inward at that point. Now another point on
the temporary boundary becomes the furthest point and hence the
whole temporary boundary moves inward. After a while the tempo-
rary boundary is close to a distance contour and moves closer and
closer to the data set following the distance contours until the dis-
tance contours begin to break into spheres (circles in the 2D figure)
around data points. We now see that the temporary boundary point
at the breaking point of the distance contour, which is equally dis-
tant from distinct data points, will have neighboring interior points

that have a larger distance. So this temporary boundary point will
be tagged as a final boundary point by our procedure and the tempo-
rary boundary will stop moving inward at this breaking point. The
temporary boundary starts deviating from the distance contours and
continues moving closer to the data set until all temporary bound-
ary points either have been tagged as final boundary points or are
close to the data points. The final boundary is approximately a a
polyhedron (polygon in 2D) with vertices belonging to the data set.

This general tagging algorithm can incorporate human interac-
tion easily by putting any new exterior point(s) or region(s) into our
tagged exterior region at any stage in our tagging algorithm. After
the tagging algorithm is finished we again use the fast distance al-
gorithm to compute a signed distance to the tagged final boundary.

The tagging method above requires an initial guess for the ex-
terior region. This can either be the bounding box of our com-
putational rectangular domain or an outer contour of the distance
function, d(x) = e. An outer contour of the distance function can
be found by starting with any exterior point, such as the corners
of of our rectangular domain, and expanding the exterior region
by repeatedly tagging those grid points which are connected to the
starting exterior point and have a distance larger than e as exterior
points. When the tagging algorithm is finished the boundary of the
exterior region is approximately the outer contour of d(x) = € or
roughly an e offset of the real shape. When using this d(z) = e con-
tour, first proposed in [31], one needs to exercise caution in choos-
ing e. For example, if € is too small, we will have isolated spheres
surrounding data points. If the sampling density of the data set is
fine enough to resolve the real surface, then we can find an appropri-
ate e and get a very good initial surface with O(INV + M) operations.
When combined with the above fast tagging algorithm, we can find
a good initial approximation very efficiently. For non-uniform data
points the intersection of a bounding box and a distance contour
with moderate €, which is a simple Boolean operation for implicit
surfaces, often gives a good initial surface.

—— marching boundary
---- distance contour
e datapoint

Figure 2:

5.3 Solving the partial differential equation.

After we find the distance function d(x) and a good initial implicit
surface using the above algorithms, we can start the continuous de-
formation following either the gradient flow (2) or the convection
(4) using the corresponding level set formulation (6) or (7). Our nu-
merical implementations are based on standard algorithms for the
level set method. The one dimensional Delta function é(x) and
Heaviside function H (x) are approximated numerically if needed.



Details can be found in, for example, [21, 30, 31]. The convection
model is simple and fast but the reconstructed surface is close to a
piecewise linear approximation. In contrast, the energy minimizing
gradient flow, which contains a weighted curvature regularization
effect, is more complicated and computationally expensive but re-
constructs a smooth weighted minimal surface. These two contin-
uous deformations can be combined, and in particular, the gradient
flow can be used as a smoothing process for implicit surfaces. In
most of our applications, about one hundred time steps in total are
enough for our continuous deformation. Since we use a reinitial-
ization procedure regularly during the deformation, we finish with
a signed distance function for the reconstructed implicit surface.

5.4 Multiresolution

There are two scales in our surface reconstruction. One is the res-
olution of the data set. The other is the resolution of the grid. The
computational cost generally depends mainly on the grid size. To
achieve the best results those two resolutions should be compara-
ble. However our grid resolution can be independent of the sam-
pling density. For example, we can use a low resolution grid when
there is noise and redundancy in the data set or when memory and
speed are important. From our numerical results figure 9(c) our
reconstruction is quite smooth even on a very low resolution grid.
We can also use a multiresolution algorithm, i.e., reconstruct the
surface first on coarser grids and interpolate the result to a finer
resolution grid for further refinement in an hierarchical way.

5.5 Efficient storage

To store or render an implicit surface, we only need to record the
values and locations (indices) of those grid points that are next to
the surface, i.e., those grid points that have a different sign from
at least one of their neighbors. These grid points form a thin grid
shell surrounding the implicit surface. No connectivity or other
information needs to be stored. We reduce the filesize by at least
an order of magnitude by using this method. Moreover we can
easily reconstruct the signed distance function in O(V') operations
for the implicit surface using the following procedure. (1) Use the
fast distance finding algorithm to find the distance function using
the absolute value of the stored grid shell as an initial condition.
(2) Use a tagging algorithm, similar to the one used above to find
exterior points outside a distance contour, to identify all exterior
points and interior points separated by the stored grid shell and turn
the computed distance into the signed distance. For example, if
we store the signed distance funtion for our reconstructed Happy
Buddha from almost half a million points on a 146 x 350 x 146
grid in binary form, the file size is about 30MB. If we use the above
efficient way of storage the file size is reduced to 2.5MB without
using any compression procedure and we can reconstruct the signed
distance function in 1 minute using the above algorithm .

6 Results

In this section we present a few numerical examples that illus-
trate the efficiency and quality of our surface construction. In
particular we show (1) how the level set method handles sur-
face deformation and topological change easily, (2) how quickly
our tagging algorithm constructs a good initial guess, (3) how
smooth the reconstructed surfaces are by using either the con-
vection model or the minimal surface model, (4) how our al-
gorithm works with non-uniform, noisy or damaged data, and
(5) how multiresolution works in our formulation. All calcula-
tions were done with a Pentium Ill, 600Mhz processor. Data
points for the drill, the dragon and the Buddha were obtained

from www-graphics.stanford.edu/data/3Dscanrep and data points
for the hand skeleton and turbine blade were obtained from
www.cc.gatech.edu/projects/large_models. Only locations of the
data points are used in our reconstructions.

The first group of examples show surface reconstruction from
synthesized data. Figure 4 show surface reconstruction, a torus,
from damaged data, which is like hole filling. Figure 5 shows the re-
construction of a sphere from a box using eight longitudinal circles
and eight latitudinal circles. For this example we do not have any
discrete data points. We only provide the unsigned distance func-
tion. This can also be viewed as an extreme case of non-uniform
data. Figure 5(a) shows those circles and figure 5(b) shows recon-
struction using the convection model. Figure 5(c) shows the final
minimal surface reconstruction following the gradient flow on top
of figure 5(b).

The second group of examples are from real data. Timings, num-
ber of data points and grid size are shown in table 3. CPU time is
measured in minutes. CPU (initial) is the time for the initial recon-
struction using the distance contour and the fast tagging algorithm.
CPU (total) is the total time used for the reconstruction. Since our
PDE based algorithms are iterative procedures, different conver-
gence criterion will give different convergence times. For data sets
that are fairly uniform, such as the drill, the dragon, the Buddha
and the hand skeleton, we start with an outer distance contour and
use the fast tagging algorithm to get an initial reconstruction. The
initial reconstruction is extremely fast, as we can see from table 3.
After the initial reconstruction, we first use the convection model
and then use the gradient flow to finish the final reconstruction. In
our reconstruction, the grid resolution is much lower than the data
samples and yet we get final results that are comparable to the re-
constructions shown at those websites above.

Figure 6 shows the reconstruction for a rat brain from MRI slices.
The data set is very non-uniform and noisy. We start with the in-
tersection of a bounding box and an outer distance contour with
relatively large e = 12h, which is shown in figure 6(b). The next
example, figure 7 is our reconstruction of a 1.6mm drill bit from
1961 scanned data points. It is a quite challenging example for
most methods for surface reconstruction from unorganized data as
is shown in [11]. Figure 8 shows the reconstruction of a hand skele-
ton. Figure 9 shows the reconstruction of the Happy Buddha. Fig-
ure 9(a) shows the initial reconstruction using the fast tagging al-
gorithm only. We start with an outer distance contour, d = 3h,
initially and it takes only 3 minutes for half a million points on a
146 x 350 x 146 grid. Figure 10 is the reconstruction of the dragon.
Figure 9(b) is the final reconstruction. Figure 9(c) is the reconstruc-
tion on a much under resolved coarse grid 63 x 150 x 64 using the
same amount of data points. It only takes 7 minutes and the result
is quite good. For the example of the dragon, we show the initial
reconstruction in figure 10(a), reconstruction using the convection
model only in figure 10(b) and the final weighted minimal surface
reconstruction in figure 10(c). Figure 10(d) shows the reconstruc-
tion using a much lower resolution data set on the same grid and the
result is quite comparable to figure 10(c). The final example shows
the reconstruction of a turbine blade on a 178 x 299 x 139 grid for
almost a million data points.

7 Conclusions

We present a variational and PDE based formulation for surface re-
construction from unorganized data. Our formulation only depends
on the (unsigned) distance function to the data and the final recon-
struction is smoother than piecewise linear. We use the level set
method as a numerical tool to deform and construct implicit sur-
faces on fixed rectangular grids. We use fast sweeping algorithms
for computing the distance function and fast tagging algorithms for



Model Data Grid CPU CPU

points size (initial) | (total)
Rat brain 1506 80X77x79 12 3
Drill 1961 24x250x32 0.1 2
Buddha 543652 | 146x350x146 3 68
Buddha 543652 | 63x150x64 3 7
Dragon 437645 | 300x212x136 4 77
Dragon 100250 | 300x212x136 3 66
Hand 327323 | 200x141x71 5 10
Turbine blade | 882954 | 178x299x139 25 60

initi
and

Figure 3: timing table

al construction. Our method works for complicated topology
non uniform or noisy data.
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(b) front view of the final reconstruction (c) side view of the final reconstruction

(a) data points

Figure 4: hole filling of a torus

(b) reconstruction using convection (c) final reconstruction

Figure 5: reconstruction of a sphere from circles

(a) data points

(b) starting surface (c) final reconstruction

Figure 6: reconstruction of a rat brain
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Figure 7: reconstruction of a drill



(a) initial reconstruction (b) final reconstruction

Figure 8: reconstruction of a hand skeleton

(a) initial reconstruction (b) final reconstruction (c) reconstruction on a coarse grid

Figure 9: reconstruction of the Happy Buddha
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(c) final reconstruction (d) low resolution reconstruction

Figure 10: reconstruction of the dragon

Figure 11: reconstruction of a turbine blade
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Abstract

This paperis a setof notesthat presentthe basicgeometryof isosufacesandthe basic
methoddor usinglevel setsto modeldeformablesurfaces.It beginswith a shortintroduc-
tion to isosufacegeometryincluding curvature. It continueswith a shortexplanationof

the level-setpartial differentialequations.It alsopresentsomepracticaldetailsfor how

to solve theseequationsisingup-windschemendsparsecalculationmethods.This paper
presentsa seriesof examplesof how level-setsurlacemodelsare usedto solve problems
in graphicsandvision. Finally, it presentsomeexampksof implementabnsusing VIS-

Pack an objectoriented,C++ library for doing volume processingand level-setsurface
modeling



1 Intr oduction

1.1 Motivation

Thesenotesaddressnechanismafor analyzingandprocessingolumesin away thatdeals
specificallywith isosufaces The underlyingphilosoply is to useisosuraicesasa mod-
eling technologythat cansene asan alternatve to parameterizednodelsfor a variety of
importantapplicatiors in visualizationand computergraphics. This paperpresentghe
mathematicandnumericaltechniquegor describingthe geometryof isosufacesandma-
nipulating their shapesn prescribedways. We startwith a basicintroducton into the
notationandfundamentatonceptsandthenpresentshe geometryof isosurbices.We de-
scribethe methodof level sets,i.e., moving isosurfices andpresenthe mathematicahnd
numericalmethodghey entail. This paperconcludeswith someapplicationexamplesand
describesVISFACK, a C++ object-orientedibrary the performsvolume processingand
level-setmodeling.

1.2 Isowurfaces
1.2.1 Modeling SurfacesWith Volumes

Whenconsideringsurfacemodelsfor graphicsandvisualization,oneis facedwith a stag-
gering variety of optionsincluding meshesspline-basegatchesconstructve solid ge-
ometry implicit blobs,and particlesystens. Theseoptionscanbe dividedinto two basic
classes— explicit (parameterizedinodelsandimplicit models. With animplicit model,
onespecifieshemodelasa level setof a scalarfunction,
¢-x,g,z}_)ﬂk{’ (1)

whereU c IR? is the domainof the volume (andthe range of the surfacemodel). Thus,a
surfaceS is

S = {z|p(x) = k}. )
Thechoiceof £ is arbitrary and¢ is sometinescalledtheembeddingNoticethatsurfaces
definedin this way divide U into a clear inside and outsde—suchsurfacesare always
closedwherererthey do notintersecthe boundaryof thedomain

Choosingthis implicit stratey begsthe questionof how to represents. Historically, im-
plicit modelsarerepresentedsinglinearcombinatiams of basisfunctions. Thesebasisor



potentialfunctionsusually have several degreesof freedomincluding 3D position, size,
andorientation By combinirg thesefunctions one cancreatecomplex objects. Typical
modelsmight containseveralhundredto severalthousand®f suchprimitives. Thisis the
stratgy behindthe“blobby” modelsproposeddy Blinn [1].

While suchan implicit modelng stratey offers a variety of new modelingtools, it has
somelimitations.In particular the globalnatureof the potentialfunctionslimits onesabil-

ity to modellocal surfacedeformations. Considera pointxz € S whereS is the level
surfaceassociateavith amodel¢ = Y, o;, ande; is oneof theindividual potentialfunc-
tionsthatcomprisethat model. Supposenewishesto move the surfaceat the point z in

away thatmaintans continuty with the surroundng neighborhod. With multiple, global
basisfunctionsonemustdecidewhich basisfunctionor combinaton of basisfunctionsto

alterandat the sametime controlthe effectson otherpartsof the surface. The problemis
generallyill posed— therearemary waysto adjustthe basisfunctionssothatz will move
in thedesireddirectionandyetit maybeimpossibleto eliminatethe effectsof thosemove-
mentson otherdisjoint partsof the surface. Theseproblemscan be overcome however
they usuallyentail heuristcsthattie the behaior of the surfacedeformationto the choice
of representatiof?].

An alternatve to usinga smallnumberof global basisfunctionsis to usearelatively large
numberof local basisfunctions.Thisis the principle behindusinga volume asanimplicit
model. A volume is a discretesamplng of the embeddingp. It is alsoanimplicit model
with averylargenumberof basisfunctions asshavnin Figurel. Thetotalnumberof basis
functionsis fixed,asaretheir posiions (grid points)andextent. Onecanchangeonly the
magnitue of eachbasisfunction,i.e., eachbasisfunctionhasonly onedegreeof freedom.
A typicalvolumeof size128 x 128 x 128 containsoveramillion suchbasisfunctions.The
shapeof eachbasisfunctionis opento interpretation— it depend®nhow oneinterpolates
the valuesbetweenthe grid points A trilinear interpolaton, for instancejmpliesa basis
functionthatis a piece-wisecubic polynomal with a value of oneat the grid point and
zeroat neighborimg grid points Anotheradwantageof usingvolumesasimplicit models,
is thatfor the purpose®f analysiswe cantreatthevolumeasa continuausfunctionwhose
valuescanbe setat eachpoint accordingto the application.Oncethe continuousanalysis
is completewe can mapthe algorithminto the discretedomainusing standardmethods
of numericalanalysis. The sectionsthat follow discusshow to computethe geometryof
surfaceghatarerepresentedsvolumesandhow to manipubtetheshape®f thosesurfaces
by changinghegray-scalevaluesin the volume.



4 T Basis function

Figurel: A volumecanbe consideredasanimplicit modelwith a large numberof local
basisfunctions.



1.2.2 IsosurfaceExtraction and Visualization

This paperaddressethe questionof how to usevolumesas surfacemodels Depending
ontheapplication, however, a 3D grid of data(i.e. avolume)maynot be a suitablemodel
representationfor instance,f the goalis make measurementsf an objector visualize
its shape an explicit modelmight be necessaryIn suchcasest is beneficialto corvert
betweenvolumesandothermodelirg technologies.

For instancetheliteratureproposeseveralmethodgor scancorvertingpolygonalmeshes
or solidmodelq3, 4]. Likewise avarietyof methodsexist for extractingparametrianodels
of isosuraicesfrom volumes. The mostprevalentmethodis to locateisosurficecrossings
alonggrid linesin a volume (betweernvoxels alongthe 3 cardinaldirections)andthento
link thesepoints togetherto form trianglesandmeshes.This is the stratgy of “marching
cubes’[5] andotherrelatedapproachesHowever, extractinga parametricsurfaceis not
essentiafor visualzation,anda variety of directmethodg6, 7] arenow computationdy
feasibleandarguablysuperiorin quality. Thesenotesdo notaddressheissueof extracting
or renderingisosurfices put ratherstudesthe geometryof isosurbicesandhow to manip-
ulatethemdirectly by changingthe grey-scalevaluesin the underlyingvolume. Thus,we
proposevolumesas a mechanisnfor studying and deformingsurfaces,regardlesof the
ultimateform of theoutput Theiraremary waysof renderingor visualzing themandand
thesetechniquesrebeyondthe scopeof this discussia.

2 SurfaceNormals

The surfacenormalof anisosurficeis givenby the normalizedgradientvector Typically,
we identify a surfacenormalwith a pointin thevolume domainD. Thatis

R £:(C)
V()|
The corvention regardingthe directionof this vectoris arbitrary;the negaive of the nor
malizedgradientmagnitudeis alsonormalto the isosurfice. The gradientvector points
towardthatsideof theisosufacewhich hasgreatewalues(i.e. brighter). Whenrendering,
thecorventionis to useoutwaid poining normals andthesignof thegradientmustbe ad-
justedaccordingly However, for mostapplicatimms ary consiséntchoiceof normalvector
will suffice. Onadiscretegrid, onemustalsodecidehow to approximatehegradientvec-
tor (i.e., first partial derivatives). In mary casesentraldifferenceswill sufice. However,
in thepresencef noise especiallywhenvolumerenderingjt is sometmeshelpfulto com-
putefirst derivatvesusingsomesmoothngfilter (e.g.,corvolution with aGaussian)When

where x € D. 3)



usingthe normalvectorto solve certainkinds of partial differentialequationsit is some-
timesnecessaryo approximatethe gradientvectorwith discrete pne-sidedlifferencesas
discussedh successie sections.

Notethata singlevolumecontainsfamiliesnestedsosurtices arrangedik e the layersof
anonion. We specificthe normalto anisosurbiceasa function of the positionwithin the
volume.Thatis, n(x) is thenormalof the(single)isosurhcethatpasseshroughthe point
x. Thek valueassociateavith thatisosurfceis ¢(x).

3 SecondOrder Structure

In differentialgeometricterms,the second-ordestructureof a surfaceis characterizedy
a quadraticpatchthat sharedfirst- and second-ordecontactwith the surfaceat a point
(i.e.,tangenplaneandosculatingcircles). Theprincipal directionsof the surfacearethose
associateavith the quadraticapproxination, andthe principal curvatues k1, ks, arethe
cunaturesn thosedirections.

The second-structuref the isosurficecan be compued from the first- and second-order
structureof theembeddingg. All of theisosurficeshapanformationis containedield of
normalsgiven by n(x). The3 x 3 matrix of derivativesof this vector

N=—[n,; n, n,| (4)

The projectionof this derivatve onto the tangentplaneof the isosurficegivesthe shape
matrix, 5. Let P denotenormalprojectionoperatoywhichis definedas

L B buby bub
P=n®n= W PyPa </5§ oy | - (5)

Thetangentiabrojectionoperatotis I — P, andthusthe shapematrixis
B = NT =TH,T, (6)
whereHy is the Hessiarof ¢. Theshapematrix 5 has3, real, eigervalueswhich are
e1 = ki,e9 = ko,e3 = 0. (7)

The corresondingeigervectorsare the principle directions(in the tangentplane)andthe
normal,respectiely.



The meancurvatue is the meanof the two principal curvatures which is one half of the
traceof /3, whichis equalto thetraceof /V:

H = kl;“’” = %Tr(N)
Qsi(qsyy + (bzz) + ¢32,(¢:cw + ¢zz) + ¢g(¢ww + ¢yy) - 2¢w¢y¢wy - 2¢w¢z¢zz - 2¢y¢z¢{%

= (S)
2(¢2 + @2 + ¢2)3/2

The Gaussia curvatue is the productof the principal curvatures:

1
K = kiky = eiey +eres + eges = 2Tr(N)? — §HN|\ (9)

+ 2(¢x¢y(¢$z¢yz - ¢my¢zz) + ¢m¢z(¢my¢yz - Cbngbyy) + ¢y¢z(¢zy¢xz - ¢yz¢mm))

(93 + &5 + ¢2)? '
Thetotal curvature,alsocalledthedeviationfrom flatness D, is theroot sumof square®f
thetwo principalcurvatureswhichis the Euclideanmormof the matrix 5.

Notice,thesemeasuresxist atevery pointin U, andateachpointthey describehegeome-
try of the particularisosurbicethatpasseshroughthatpoint. All of thesequantitiescanbe
computednadiscretevolumeusingfinite differencesasdescribedn successie sections.

4 Deformable Surfaces

This sectionbegins with mathematicgor describingsurface deformationson parametric
models. Theresultis an evolution equationfor a surface. Eachof the termsin this evo-
lution equationcanbe re-expressedn a way thatis independenof the parameterization.
Finally, the evolution equationfor a parametricsurfacegives rise to anevolution equation
(differentialequation)on a volume,which encodeshe shapeof thatsurfaceasalevel set.

4.1 SurfaceDeformation

A regularsurfaceS C IR? is acollectionof pointsin 3D thatcanbeberepresentetbcally
asa continuousfunction. In geometricmodelirg a surfaceis typically representeds a
two-parameteobjectin athree-dimensioal spacej.e.,asurfaceis localamappingS:

) 3
S'yx‘s/}_)x,]%,z’ (10)



whereV x VIR?, and the bold notation refers specificallyto a parameterizedurface
(vectorvaluedfunction). A deformablesurface exhibits somemotion over time. Thus
S = S(r,s,t), wheret € R". We assumesecond-ordecontinuais, orientablesurfaces;
thereforeatevery pointonthesurface(andin time)thereis surfacenormalN = N (r, s, ).
We uses,; to referto theentiresetof pointson the surface.

Localdeformation®f S canbedescribedy anevolutionequationj.e.,adifferentialequa-
tion on S thatincorporateghe posiion of the surface,local andglobal shapeproperties,
andresponseo otherforcing functions Thatis,

aa—f :G(S, ST"S’SJ‘S’TTJ‘S’TS)‘Sssa"')? (11)
wherethe subscriptsrepresenpartial derivatives with respectto thoseparameters.The
evolutionof S canbedescribedy a sumof termsthatdepend®n boththegeometryof S

andtheinfluenceof otherfunctionsor data.

Thereare a variety of differential expressios that can be combinedfor differentappli-
cations. For instance,the model could move in responsdo somedirectional“forcing”
function[8, 9], F : U — IR?, thatis

S
= = F(9). (12)

Alternatively, the surfacecould expandand contractwith a spatiallyvarying speed. For

instance, o8
i N 13
5 = G(9) (13)
whereG : R? — TR is a signedspeedunction. The evolution might alsodependon the

surfacegeometnyitself. For instance,

88—?’ = Srr + Sss (14)
describes surfacethatmoves in way thatis becomesnoresmoothwith respecto its own
parameterizationThis motioncanbe combinedwith themotion of Equationl2to produce
amodelthatis pushedy aforcing functionbut maintainsa certainsmoothressin its shape
andparameterizationl herearemyriadtermsthatdependn boththedifferentialgeometry
of the surfaceandoutsice forcesor functionsto controlthe evolution of a surface.



Figure2: Level-setmodelsrepresenturvesandsurfacesmplicitly usinggreyscaleimages:
a) anellipse is representedsthe level setof animage,b) to changethe shapewe modify
thegreyscalevaluesof theimage.

5 Deformation: The Level SetApproach

Themethodof level-sets proposedy OsherandSethian10] anddescribedextensiely in

[11], providesthe mathematicahnd numericalmechanismg$or computingsurfacedefor

mationsastime-varyingiso-valuesof ¢ by solvinga partialdifferentialequationon the 3D

grid. Thatis, the level-set formulationprovidesa setof numericalmethod thatdescribe
how to manipubtethe greyscalevaluesin avolume, sothattheisosurficesof ¢ movein a
prescribednanner(shavnin Figure2).

We denotethe movementof a point on a surfaceasit deformsasdz/d¢, andwe assume
thatthis motion canbe expressedn termsof the posiion of x € U andthe geometryof
thesurfaceatthatpoint. In this case therearegenerallytwo optionsfor representinguch
surlacemovementsmplicitly:

Static: A single,statico(x) containsafamily of level setscorrespondingo surfacesas
differenttimest. Thatis,

sz) = k1) = Vo) 22 = FW. (15)



To solwve this staticmethodrequiresconstructng a ¢ thatsatisfiesequationl5. This
is aboundaryvalueproblem,which canbe solved somavhatefficiently startingwith
asinglesurfaceusingthe fastmarchingmethodof Sethian12]. This representation
hassomesignificantlimitations,however, becausgby definition) a surfacecannot
passhackoveritself overtime,i.e., motiors mustbe strictly monotamic — inwardor
outward.

Dynamic: The approachs to usea one-parametefamily of embeddingsi.e., ¢(x, t)
changesover time,  remainson the k& level setof ¢ asit moves, and & remains
constantThebehaior of ¢ is obtainedby settingthetotal derivative of ¢(x(t),t) =
k to zero.Thus,

b)) =k = aa—f - V4. i—f. (16)
This approacttanaccommodatenodelsthatmove forward andbackwardandcross
backover their own paths(over time). However, to solve this requiressolving the
initial value problem (usingfinite forward differences)n ¢(x,t) — a potentialy
largecomputatbnalburden.Theremaindenf thisdiscussiorfocuseonthedynamic
case pecausef its superiorflexibili ty.

All surface movementsdependon positicn and geometry and the level-set geometryis
expressedn termsof the differential structureof ¢. Thereforethe dynamicformulation
from equationl6 givesa generaform of the partialdifferentialequationon ¢:

0¢ da 9

whereD"¢ is the setof ordern dervativesof ¢ evaluatedat . Becausehis relationsip
appliesto every level-setof ¢, i.e. all valuesof £, this equationcanbe appliedto all of U,
andthereforethe movenmentsof all the level-set surfacesembeddedn ¢ canbe calculated

from Equationl?.

Thelevel-setrepresentatiohasa numberof practicalandtheoreticabdvantage®ver con-
ventioral surfacemodels especiallyin the context of deformationrandsegmentaton. First,
level-setmodelsare topologrally flexible, they caneasilyrepresentomplicatedsurface
shapeghatcan,in turn,form holes,split to form multiple objects,or meigewith otherob-
jectstoform asingle structure. Thesemodelscanincorporatanary (milli ons)of degreesof
freedom,andthereforethey canaccommodateomplex shapesindeed theshapegormed
by thelevel setsof ¢ arerestrictedonly by theresolutionof thesampling Thus,thereis no
needto reparameterizéhe modelasit undegoessignificantdeformations

Suchlevel-set methodsarewell documentedh theliterature[10, 13] for applicationsuch
ascomputatioal phystcs[14], imageprocessingl5, 16], computervision[17, 18], medi-
calimageanalysiq19, 18], and3D reconstructiorn20, 21]. For instancejn computatonal



physts level-setmethodsare a a powerful tool for modelirg moving interfacesbetween
differentmaterials(seeOsherand Fedkiw [14] for a nice overview of recentresults).Ex-
amplesarewaterair andwateroil. In suchcaseslevel-setmethod canbeusedio compute
deformationghat minimize surfaceareawhile preservingvolumesfor materialsthat split
and memge in arbitraryways. The methodcan be extendedto multiple, non-overlappng
objects.

Level-setmethodshave also beenshown to be effective in extracting surface structures
from biological and medicaldata. For instanceMalladi etal. [18] proposea methodin
which the level-setsform an expandingor contractingcontourwhich tendsto “cling” to
interestingfeaturesn 2D angiogramsAt the sametime the contouris alsoinfluencedby
its own cunvature andthereforeremainssmooth.Whitaker etal. [19, 22] have shavn that
level setscanbe usedto simulate corventional deformablesuriace models,and demon-
stratedthis by extractingskin andtumorsfrom thick-sliced(e.g. clinical) MR data,andby
reconstructinga fetal facefrom 3D ultrasound.A variety of authors[23, 24, 16, 25] have
presentedariationson the methodandpresentedesultsfor 2D and3D data.Sethian11]
givesseveralexamplesof level-st curvesandsurfacefor sggmentng CT andMR data.

5.1 Deformation Modes

In the caseof parametricsurfaces,onecanchoosefrom a variety of differentexpressios
to constructan evolution equatiornthatis appropriateor a particularapplication.For each
of thoseparametriexpressionsthereis a correspondingxpressiorthatcanbeformulated
on ¢, thevolumein which the level-setmodelsareembeddedIn constructiig evolutions
on levelssetstherecanbe no referencdo the underlyingsurfaceparameterizatioterms
dependingn r ands in EquationslO through14). This hastwo importantimplications:
1) only thosesurfacemaovenentsthatarenormalto the surfacearerepresented—arother
movementis equivaent to a reparameterizatio®) all of the derivatives with respectto
surfaceparameters ands mustbe expressedn termsof invariantsurfacepropertieshat
canbederivedwithouta parameterization.

Considerttheterm S, + S, from equationl4. If r, s is anorthonormalparameterization,
the effect of thattermis basedourely on surfaceshapenot on the parameterizationrand
theexpressionS.,.. + S is twice themeancurvature, H, of thesurface.Thecorresponding
level-setformulationis givenby Equation8.

Table 1 shows a list of expressionausedin the evolution of parameterizegurfacesand
their equivalens for level-setrepresentationsAlso given are the assumpbns aboutthe
parameterizatiothatgive riseto thelevel-setexpressions.



Level-Set Parameter

Effect Parametric Evolution . .
Evolution Assumptions
1 | Externalforce F F-Vo¢ None
Expansio/
2 contraction G(x)N G(x)|Vo(z,t)| None
3 Mean Syrr 4+ Sss H|\V| Orthonormal
curvature
4 Gauss Spr X Sss K|V Orthonormal
cunature
Principal
2 _
5| Secondrder S.. or S,, (Hi\/H K) V| cUnALLIeS

Tablel: A list of evolution termsfor parametrianodelshasa correspondingxpressonon
theembedding¢, associateavith thelevel-setmodels.

6 Numerical Methods

By takingthe stratey of embeddingurfacemodelsin volumes,we have corvertedequa-
tions that describethe movementof surfacepointsto nonlinear partial differentialequa-
tionsdefinedonavolume,whichis generallyarectilineargrid. Theexpressio u7’, , refers
to thenth time stepatpositioni, j, £, whichhasanassociatedaluein the3D domainof the
continuousrolumeg(z;, y;, 2 ). Thegoalis to solve thedifferentialequationconsistiry of
termsfrom Table5.1onthediscretegrid uy; ..
The discretization of theseequationgaisestwo impartantissues.First is the availability
of accuratestablenumericalschemedgor solving theseequations.Seconds the problem
of computaibnal compleity andthe fact that we have converteda surfaceproblemto a
volumeproblem,increasingthe dimensonality of the domainover which the evolution
equationsnustbe solved.

Thelevel-settermsin Table1 arecombined basedon the needsof the application to cre-
ateapartialdifferentialequatioron ¢(z, t). Thesoluionsto theseequationsarecomputed
usingfinite differencesAlong thetime axissolutionsareobtainedusingfinite forward dif-
ferencespegginning with aninitial model(i.e., volume) andsteppingsequentiallythrough
a seriesof discretetimessteps(which aredenotedassuperscript®n «). Thusthe update
equations:

n+l _ n n
Ui = Ui+ AtAUT; (18)

Theterm Au7; , is adiscreteapproximatiorto d¢/0t, which consistsof a weightedsum



of termssuchasthosein Table5.1. Thosetermsmust,in turn, beapproximatedisingfinite
differencesonthevolumegrid.

6.1 Up-wind Schemes

Thetermsin Tablel fall into two basiccateyories: the first-orderterms(items1 and2 in
Table 1) andthe second-ordeterms(items3 through5). Thefirst-ordertermsdescribea
moving wave front with a space-arying velocity (expressionl) or speed(expression?).
Equationsof this form cannotbe solved with a simplefinite forward differencescheme.
Suchschemedendto overshoot andthey are unstable.To addresghis issueOsherand
Sethian26] have proposednup-windschemeTheup-windmethodreliesonaone-sided
dervative thatlooksin the up-winddirectionof themoving wave front, andtherebyavoids
the over-shootingassociatedvith finite forwarddifferences.

We denotethe type of discretedifferenceusingsuperscript®n a differenceoperatori.e.,

5t for forward differencesy(—) for backward differencesands for centraldifferences.
For instance differencedn the z directionon a discretegrid, u; ;,, with domainX and

uniform spacingh aredefinedas

8 uige = (wirrgr — wige) /by (19)
(54(;)ui,j,k é (ui’j,k—ui,l,j,k)/h, and (20)
Sotiigr = (Wirrgp — Uii1z)/(2h), (21)
(22)

wherewe have left off thetime superscripfor concisenessSecond-ordetermsarecom-
putedusingthetightest-fittingcentraldifferenceoperatorsFor example,

A

Spatlije = (Uirijr+ Ui 1k — 2uijx) /h2 (23)
A

(5zzuz-,j,k = (ui,j,k—i-l + Us 5 k—1 — 2Ui,j,k) /hz, and (24)
A

OzyUije = OplyUijk (25)

The discreteapproximatbn to the first-ordertermsof in Table 5.1 are computedusing
the up-wind proposedoy Osherand Sethian[10]. This strategy avoids overshoding by
approximatng the gradientof ¢ usinga one-sidedlifferencesn the directionthatis up-
wind of the moving level-settherebyensuringthat no new contoursare createdin the
procesf updatingu;; , (asdepictedin Figure3). The schemes separablelongeach
axis(i.e.,z, y, andz).



Overshoot creates
“new” level sets

g

AtAy, limited by
up-wind differenc

Figure3: The up-windnumericalschemeausesone-sidedierivatvesto preventovershmt-
ing andthe creationof new level sets.

ConsiderTerm1in Table5.1. If we usesuperscript$o denotethe vectorcomponents,e.,
F(z,y,2) = (F9(z,y,2), F¥(2,y, 2), F? (,y, 2)), (26)

theup-windcalculationfor agrid pointu? ., is

1,5,k

5+ ’fl F(q) Ty Yiy 24 >0
F(ﬂ:i,yi,zi) : V(ls(xivyjazkat) ~ Z F(q)(sz,yz,z'a) { St njk F(Q)EJI y. z; <0
q€{z,y,2} q Z,]k i» Yiy Zi
(27)

Thetime stepsarelimited—thefastesmoving wave front canmove only onegrid unit per
iteration. Thatis

1
Alp < . (28)
F Y geimme) SUPj kex 1V E@ (x5, y;, )| }

For Term 2 in Table 5.1 the direction of the moving surfacedependsn the normal,and
thereforethe sameup-windstrateyy is appliedin a slightly differentform.

G(xiayjazk)|v¢(xiayjazka )‘ ~
max (5+ ij,O) + min (5 uzg kao) G(xzayzazz
2 G(xi’yi’zi){ min (5+u 0) + max*(0, uf; 1, 0)  G(q)(ws, ¥, 2) <(& )

qe{z,y,2} L5k

Thetime stepsare,again limited by thefastesmoving wave front:

A
tG > VG >
SSuszkEXﬂ (ll’yj’ k)|}

(30)



To computeapproximatbn the updateto the second-ordetermsin Table5.1requiresonly
centraldifferences Thus,themeancurvatureis approximateds:

Hly = 5 ((etrs)” =+ () + (620 ) B ()" + (3202,) ) auf)
+ ((52“%02 + (5$“2j,k)2> OyyUs,j + ((5$“Zj,k)2 + (5y“2j,k)2) 022 Ui j

n n
‘5w“z‘,j,k5zw“i,j,k]

n

n n n n n n
— 2005 j KOy Ui j kOay Ui j k. — 20y j k02U Oyslij f — 2050 ;1

Suchcurvaturetermscanbe computing by usinga combinatiom of forward andbackward
differencesasdescribedn [27]. In somecaseghis is advantageous-but the detailsare
beyondthescopeof this paper

Thetime stepsarelimited, for stabilty, to
1
Aty < . (32)

Whencombiningterms,the maxinum time stepsfor eachtermsis scaledby oneover the
weightingcoeficientfor thatterm.

6.2 Narrow-Band Methods

If oneis interestedn only a singlelevel set the formulationdescribedoreviously is not
efficient. Thisis becausesolutionsareusuallycomputedover the entiredomainof ¢. The
solutions,é(z, y, z, t) describeheevolution of anembeddediamily of contours While this
densefamily of solutionsmight be advantageoudor certainapplicationsthereare other
applicationghatrequireonly a singlesurfacemodel. In suchapplicationghe calculation
of solutionsover adensdield is anunnecessargomputationaburden,andthe presencef
contourfamiliescanbe a nuisanceébecausdurtherprocessingnightberequiredto extract
thelevel setthatis of interest.

Fortunatelythe evolution of asinglelevel set,¢(x, t) = k, is notaffectedby the choiceof
embeddingTheevolution of thelevel setss suchthatthey evolve independentlyto within

theerrorintroducedby thediscretegrid). Furthermoretheevolution of ¢ isimportantonly
in thevicinity of thatlevel set. Thus,oneshouldperformcalculationdor the evolution of

¢ only in aneighborhoof the surfaceS = {x|¢(x) = k}. In thediscretesetting,there
is a particularsubsenf grid pointswhosevaluescontrola particularlevel set(seeFigure
4). Of course asthe surfacemoves, thatsubsef grid pointsmustchangeto accountfor

its new position.



Figure4: A level curve of a 2D scalarfield passeshrougha finite setof cells. Only those
grid pointsnearesto thelevel curve arerelevantto the evolution of thatcurve.

Adalsteinsa and Sethian28] proposea narrow-bandapproactwhich follows this line of
reasoning.The narrav-bandtechniqueconstructsan embeddingpf the evolving curve or
surfacevia a signeddistanceransform.The distanceransformis truncatedj.e, computed
over afinite width of only m pointsthatlie within a specifieddistanceo thelevel set. The
remainingpointsaresetto constantaluesto indicatethatthey do notlie within thenarrav
band,or tubeasthey call it. The evolution of the surface(they demonstateit for curves
in the plane)is computedby calculatingthe evolution of » only on the setof grid points
thatarewithin a fixed distanceto theinitial level set,i.e. within the narrav band. When
the evolving level setapproachethe edgeof theband(seeFigure5), they calculatea new
distancdransformandanen embeddingandthey repeatheprocessThisalgorithmrelies
onthefactthatthe embeddings nota critical aspecbf theevolution of thelevel set. That
is, the embeddig canbe transformecdbr recomputedat any pointin time, solong assuch
atransformatiordoesnotchangehe positionof the kth level set,andthe evolution will be
unafectedby this changan theembedding.

Despitethe improvementsin computatbn time, the narrav-bandapproachis not optimal
for severalreasonskFirstit requiresabandof significantwidth (m = 12 in theexamplesof
[28]) whereonewouldlik e to have a bandthatis only aswide asnecessaryo calculatethe
derivativesof u nearthelevel set(e.g. m = 2). Thewider bandis necessarpecausehe
narrov-bandalgorithmtradesoff two competingcomputatimal costs. Oneis the costof
stoppirg the evolution andcomputing the posiion of the curve anddistancetransform(to
sub-cellaccurag) anddeterminingthe domainof the band. The otheris the costof com-
puting the evolution processover the entireband. The narrav-bandmethodalsorequires
additionaltechniquessuchassmoothing, to maintainthe stabiliy atthe boundarie®f the
band wheresomegrid pointsareundegoingtheevolution andnearbyneighborsarestatic.



Surface model (level set)

“Outside” — not Time passes

computed —_—

Narrow band/tube
Boundary interference

Recomputdand

Figure5: Thenarrov bandschemdimits computatiorto the vicinity of the specificlevel
set. As the level-setmovesnearthe edgeof the bandthe processs stoppedandthe band
recomputed.



6.3 The Sparse-FieldMethod

The basicpremiseof the narrav bandalgorithmis that computingthe distancetransform
is socostlythatit cannotbe doneat every iterationof the evolution process.The stratgy
proposechereis to usean approximatbn to the distancetransformthat makesit feasible
to recomputehe neighborhoodf the level-setmodelat eachtime step. Computatio of
the evolution equationis computedon a bandof grid pointsthatis only on point wide.
The embeddings extendedfrom the active pointsto a neighborhod aroundthosepoints
thatis preciselythe width needecdat eachtime. This extensionis donevia a fastdistance
transformapproximation

This approachhasseveral advantages.First, the algorithm doespreciselythe numberof
calculationsneededo compue the next posiion of the level curve. It doesnot require
explicitly recalculatingthe positionsof level setsandtheir distancetransforms.Because
the numberof pointsbeingcomputeds sosmall, it is feasibleto usea linked-ist to keep
track of them. Thus, at eachiterationthe algorithmvisits only thosepoints adjacentto
the k-level curve. For large 3D datasets,the very processof incrementinga counterand
checkingthe statusof all of thegrid pointsis prohibitive.

Thespairse-fieldalgorithmis analogouso alocomotie enginethatlaysdown tracksbefore
it andpicksthemup from behind.In this way the numberof computatimsincreasesvith
thesurfaceareaof themodelratherthantheresolutionof theembeddingAlso, the sparse-
field approachdentifiesa singlelevel setwith a specificsetof pointswhosevaluescontrol
theposition of thatlevel set. This allows oneto computeexternalforcesto anaccurag that
is betterthanthe grid spacingof the model, resultingin a modelingsystemthatis more
accuratdor variouskindsof “modelfitting” applicatiors.

Thesparse-fieldlgorithmtakesadvantageof thefactthata k-level surface,S, of adiscrete
imageu (of any dimenson) hasa setof cellsthroughwhich it passesasshavn in Figure
4. Thesetof grid pointsadjacento thelevel setis calledthe activeset andtheindividual
elementsf this setare calledactive points As a first-orderapproximationthe distance
of thelevel setfrom the centerof any active pointis proportioral to the valueof « divided
the gradientmagnitudeat that point Becauseall of the derivatives (up to secondorder)
in this approachare compued using nearesheighbordifferencesonly the active points
andtheir neighborsarerelevantto the evolution of the level-setat any particulartime in
the evolution process.The stratgy is to computethe evolution given by equationl7 on
the active setand then updateneighborhoodaroundthe active set using a fast distance
transform.Becausective pointsmustbeadjacento thelevel-setmodel,their positiors lie
within afixed distanceto the model. Thereforethe valuesof « for locationsin the active
setmustlie within a certainrange.Whenactive-poirt valuesmove out of thisactiverange



they arenolongeradjacento themodel. They mustberemovedfrom thesetandothergrid

points,thosewhosevaluesare moving into the active range,mustbe addedto take their

place.The preciseorderingandexecutionof theseoperationss importantto the operation
of thealgorithm.

The valuesof the pointsin the active setcan be updatedusing the up-wind schemefor
first-ordertermsand centraldifferencedor the mean-curatureflow, asdescribedn the
previous sections. In orderto maintainstability, one mustupdatethe neighborhood®f
active grid pointsin away thatallows grid pointsto enterandleave the active setwithout
thosechangedn statusaffecting their values. Grid points shoutl be removed from the
active setwhenthey arenolongerthenearesgrid pointto the zerocrossing.If we assume
thatthe embeddingu is a discreteapproxination to the distancetransformof the model,
thenthe distanceof a particulargrid point, z,,, = (3, j, k), to thelevel setis given by the
valueof « atthatgrid point. If thedistancebetweergrid pointsis definedto be unity, then
we shouldremove apointfrom theactive setwhenthevalueof v atthatpointnolongerlies

in theintenval [-1, 1] (seeFigure6). If the neighborsof thatpoint maintaintheir distance
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of 1, thenthoseneighborswill move into theactive rangejust z,,, is readyto beremaoved.

Thereare two operationghat are significantto the evolution of the active set. First, the
valuesof u at active pointschangefrom oneiterationto the next. Secondasthe valuesof
active pointspassout of the active rangethey areremoved from the active setandother
neighboringgrid pointsare addedto the active setto take their place. In [21] the author
givessomeformal definitionsof active setsandtheoperationghataffectthem,which show
thatactive setswill alwaysform a boundarybetweenpositive andnegative regionsin the
image,evenascontrolof thelevel setpasse$rom onesetoff active pointsto another

Becausayrid pointsthatarenearthe actve setarekeptat afixedvaluedifferencefrom the
active points, active pointssene to controlthe behaior of non-actve grid pointsto which
they areadjacent.The neighborhoodsf the active setaredefinedin layers, L1,... L,y
andL_q,...L_y,wherethei indicatesthe distanceg(city block distancefrom the nearest
active grid point, and negatve numbersare usedfor the outsidelayers. For notatonal
corvenienceheactie setis denotedL.

The numberof layersshouldcoincidewith the size of the footprint or neighborhoodised
to calculatederivatives. In thisway, theinside andoutsidegrid pointsundego no changes
in their valuesthataffect or distortthe evolution of the zeroset. Most of the level-setwork
relieson surfacenormalsandcurvature,which requireonly second-ordederiativesof ¢.
Second-ordederivativesare calculatedusinga 3 x 3 x 3 kernel(city-block distance2 to
thecorners).Thereforeonly five layersarenecessary? inside layers,2 outsidelayers,and
theactive set). ThesdlayersaredenotedL, Lo, L_, L_5, and L.
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Figure6: Thestatusof grid pointsandtheirvaluesattwo differentpointsin time shav that
asthezerocrossingmoves, activity is passeanegrid pointto another

The active sethasgrid point valuesin the range[—%, %]. The valuesof the grid pointsin

eachneighborhoodayerarekept 1 unit from the next layer closestto the active set(asin

Figure6). Thusthevaluesof layer ; fall in theintenal [ — 1, + 1]. For 2N + 1 layers,
the valuesof the grid points thataretotally insideandoutsdeare N + ; and—N — 1,

respectrely. The procedurefor updatingthe imageandthe active setbasedon surface
movementsis asfollows:

1. For eachactive grid point, z,,, = (4, j, k), do thefollowing:

(a) Calculatethelocal geometryof thelevel set.

(b) Computethenetchangeof u,,, , basedntheinternalandexternalforces,using
somestable(e.g.,up-wind) numericalschemevherenecessary

2. For eachactve grid pointz; addthe changeto thegrid pointvalueanddecideif the
new valueu™'! falls outsidethe[—3, 1] interval. If so,putz,, onlists of grid points
thatarechangingstatuscalledthestatislist; S; or S_y, for ut! > 1 oru? ! < —1,

respectely.

3. Visit thegrid pointsin thelayersL; in theorder; = +1, ...+ N, andupdatethegrid
pointvaluesbasedn thevalues(by addingor subtractingoneunit) of thenext inner
layer, L;-;. If morethanonel;,; neighborexiststhenusetheneighborthatindicates
alevel curve closestto thatgrid point, i.e., usethe maximumfor the outsice layers
andminimumfor theinside layers.If agrid pointin layer L, hasno L;; neighbors,
thenit getsdemotedo L, , thenext level avay from the active set.

4. For eachstatudist S41, Sio, ..., S+y dothefollowing:
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Figure7: Linked-listdatastructuregprovide efficientaccess$o thosegrid pointswith values
andstatughatmustbe updated.

(a) For eachelementzr; onthestatudist S;, remove z; from thelist L,-,, andadd
it tothe L; list, or, in thecaseof i = £(N + 1), removeit from all lists.

(b) Addall L;; neighbordo the S, list.

This algorithmcanbe implementedefficiently usinglinked-list datastructurescombined
with arraysto storethe valuesof the grid points and their statesas shavn in Figure 7.

Thisrequiresonly thosegrid pointswhosevaluesarechangingthe active points andtheir
neighborsto bevisitedateachtime step. Thecomputatiotimegrowsasm™ !, wherem is
thenumberof grid pointsalongonedimenson of « (sometmescalledtheresolution of the
discretesamplirg). Computatbn time for dense-fieldapproachncreasessm™. Them™ !

growth in computaibn time for the sparse-fieldnodelsis consistentwith corventional

(parameterizedinodels,for which computatio timesincreasewith the resolutian of the
domain,ratherthantherange.

Anotherimportantaspecof the performancef thesparse-fielaglgorithmis thelargertime
stepghatarepossible.Thetime stepsarelimited by thespeedf the“f astest'moving level
curwe, i.e.,themaximumof theforce function. Becausehe sparse-fieldnethodcalculates
the movementof level setsover a subsebf theimage time stepsareboundedrom belov
by thoseof thedense-fieldcasej.e.,

sup (g(z)) < sup(g(x)), (33)
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whereg(x) is thespacevaryingspeedunctionand A is theactive set.

Resultfrom previouswork [21] have demongratedseveralimportantaspect®f thesparse-
field algorithm. First, the manipulatonsof the active setandsurroundiig layersallow the
active setto “track” the deformablesurfaceasit moves Theactive setalwaysdividesthe
insideandoutsideof the objectsit describegi.e., it staysclosed).Emprical resultsshov
significantincreasesn performanceaelative to both the computaibn of full domainand
thenarrav-bandmethodasproposedn theliterature.Empirical resultsalsoshawv thatthe
sparse-fieldnethodis aboutasaccurateasboththefull, discretesolution andthenarrov-
bandmethod. Finally, becausdhe methodpositiors level setsto sub-voxel accurag it
avoidsaliasingproblemsandis moreaccuratehentheseothermethodsvhenit comesto
fitting level-setmodelsto othersurfaces.This sub-voxel accurag is importantaspecbof the
implenmentation,andwill significantlyimpactthe quality of theresultsfor the applications
thatfollow.

7 Applications

This sectiondescribeseveralexampksof how level-setsurfacemodelscanbeusedto ad-
dresgproblemsn graphicsyisualization, andcomputewision. Theseexamplesareasmall
selectionof thoseavailablein theliterature.All of theseexampleswhereimplementedis-
ing the sparse-fieldalgorithmandthe VISPack library, which is describedn the section
thatfollows.

7.1 SurfaceMor phing

This sectionsumnarizesthe work of [29], which describeghe useof level-setsurface
modelsto perform3D shapemetamorphosi. The morphingof 3D surfacesis the process
of constructng a seriesof 3D modelsthatconstitue a smooh transiton from oneshapeo
another(i.e.,ahomot@y). Sucha capabilityis interestingor creatinganimatimsandasa
tool for geometriaonodelirg. Thereis notyeta single, generaimethodfor generatingsuch
transitioral shapes.However, thereare several desirableaspectf morphing algorithns
thatallow usto comparegheadequayg of differentapproachew surfacemorphing.Several
desirablepropertiesof 3D surfacemorphingare:

1. Thetransitionprocessshouldbegin with aninitial suriaceandendwith a specified
targetsurface.



2. Themorphirg algorithmshouldapplyto a wide rangeof shapesandtopolagies.

3. Intermediatesurfacesshouldundego continuous3D transitbons (ratherthan conti-
nuity only in theimagespace).

4. A 3D morphingalgorithmshouldincorporateuserinput easily but shoulddegrade
gracefullywithout it.

5. Transitbnal shapesshoulddependonly on the surface geometryof the two input
shapesnduserinput.

Theserequirementsre not exhaustve, but they capturemary of the practicalaspectof
3D morphing.

In this sectionwe shav how level-setmodelsprovide analgorithmfor 3D morphingwhich
meetsmostof thesecriteriaandcompareavorablywith existing algorithms Furthermore,
this algorithmis a naturalextensionof the mathematicaprinciplesdiscussedn previous
sections.Thestratay is to allow a free-formdeformationof onesurface(calledtheinitial
surface)usingthe signeddistanceransformof a secondsurface(the target surface). This
free-formdeformations combinedwith anunderlyingcoordinatdransformatiorthatgives
eitheraroughglobalalignmentof the two surfaces,or one-to-onaelationslips betweera
finite setof landmarksnboththeinitial andtargetsurfaces.Thecoordinateransformation
canbe computedautomaticallyor usinguserinput (asin [30]).

Much of the previous 3D morphing work hasfocusedon morphingparametricmodels
[31, 32] andappliesto only very limited classe®f shapesandtopologes. Severalauthors
have described/olumetrictechniqguesHugheq33] demonstateshow volumescanprovide
topologcal flexibility in surfacemorphing. Lerios et al. [30] followed up with a volume-
basedschemewnhich incorporatesiserinput via underlyingcoordinatetransformationga
known generalizatiortheimagewarpingtechniquehatis oftenusedin imagemorphing).
Neitherof theseapproachefiave dealtwith the deeperissueof deformingthe level sets
of a volume, but ratherrely on the propertiesof the embedding Payne and Toga [34]
aswell asCohen-Or et al. [35] fix the embeddingoroblemby usinga signeddistance
transformto createvolumesfrom surfaces.However, interpolatng distanceransformsan
introduceatrtifactsthatviolate the previously statedpropertiesandboth of thesemethods
useadiscretedistancearansformwhich introduwcesvolume aliasing.



7.1.1 Free-Form Deformations

The distancetransformgives the nearestEuclideandistanceto a setof points, curve, or
surface.For closedsurfacesin 3D, the signeddistanceransformgivesa positive distance
for pointsinside and negative for points outsde (one can also choosethe oppositesign
conventian).

If two connectedshapesverlapthentheinitial surfacecanexpandor contractusingthe
distancdransformof thetarget. The steadystateof sucha deformationprocesss a shape
consisting of the zerosetof the distancetransformof the target. Thatis, theinitial object
becomegshetarget. Thisis the basisof the proposedBD morphing algorithm

Let D(x) bethesigneddistanceransformof thetargetsurface,B, andlet A betheinitial
surface.Theevolution processvhich takesamodelS from A to B is definedby

ox

T N D(x), (34)
wherez(t) € S; andS;—y = A. The free-form deformationscan be combinedwith an
underlyingcoordinatetransformation.The stratgy is to usea coordinatetransformation
(for instancea translationandrotation)to position thetwo surfacesneareachother These
transformationgancapturegrosssimilaritiesin shapeaswell asuserinput. A coordinate
transformations given by

=T (x, ), (35)

where(0 < a < 1 parameterizea continuoudamily of thesetransformationshatbegins
with identity, i.e. ¢ = T'(z, 0). Theevolution equatiorfor a parametricsurfaceis

ox

andthecorrespondindevel-setequations

0 (x, t)

5 = |Ve(2,0) D(I(z,1). (37)

This procesgproducesa seriesof transitionshapegparameterizedby t). The coordinate
transformatiorcan be a global rotation, translation,or scaling,or it might be a warping
of the underlying3D spaceaswasusedby [30]. Incorporatinguserinputis importantfor
ary surfacemorphingtechnique pbecausen mary casedinding the bestsetof transiton
surfacesdependson context. Only userscanapply semanticconsideratiosto the trans-
formation of one objectto another However, this underlyingcoordinatetransformation



Figure8: A 3D modelof ajet thatwashbuilt usingClockworks,a CSGmodelingsystem.

can,in generalachieve only somefinite similarity betweerthe“warped”initial modeland
thetarget,andeventhis mayrequirea greatdeal of userinput. In the eventthata useris
not able or willin g to defineevery importantcorrespondencbetweentwo objects,some
othermethodmust*“fill in” the gapsremainingbetweenthe initial andtarget surface. In
[30] they proposealphablendingto achiese that smoothtransiton—reallyjust a fading
from one surfaceto the other We are proposingthe useof the free-form deformations,
implementedwith level-setmodels,to achieve a continuaistransitionbetweerthe shapes
thatresultfrom theunderlyingcoordinatdransformationWe have alsoexperimenteadvith
waysof automaticallyorientingandscalingobjects using3D momentsin orderto achieve
asignificantcorrespondencleetweerntwo objects.

Figure8 shavs a 3D modelof ajet thatwashbuilt usingClockworks[36], aCSGmodeling
system.Lerioset al. [30] demonstratehe transitionof a jet to a dart, which wasaccom-
plishedusing37 userdefinedcorrespondencesmughlyahundreduserdefinedparameters.
Figure9 shavs theuseof level-setmodelsto construcia setof transition surfacesbetween
ajetandadart. Thetrianglemeshis extractedfrom thevolume usingthemethodof march-
ing cubes[5]. Theseresultsareobtainedwithout any userinput. Distancetransformson
the CSG modelsare computednearthe level surfaceusingan analyticaldescriptionand
extendednto thevolume usingalevel-setmethod[37].

The applicationin this sectionshavs how level-setmodelsmoving accordingto the first-
ordertermgivenin expressior? in Table1 can“fit” otherobjectsby moving with a speed
thatdependsn the signeddistancetransformof the target object. The applicationin the
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Figure9: Thedeformationof thejet to a dartusinga level-setmodelmoving with a speed
definedby the signeddistanceransformof thetargetobject.




next sectionrelies on expression5 of Table 1, a second-ordeflow that dependson the
principal curvaturesof the surfaceitself.

7.2 Filleting and Blending Solid Objects

The constructio of blendingsurfacesis animportanttool in solid modeling Geometric
solid primitivesandtheir intersection®ftenproducesharpcornersor creaseshatareoften

not consistentvith the real-world objectsthatthey areintendedto representThis section
shavshow blendingcanbedescribedcisadeformatiorprocessywheresurfacesmove under
ageometridlow thatcanaddor remove materialbasednlocal curvatureinformation.The

resultis a methodfor solid objectblendingthat doesnot dependon ary particularmodel

representationl husthis methods notrestrictedo aspecificclassof shape®r topologes.

Additionally, theresultsareinvariant they donotdependnarbitrarychoicesof coordinate
systemsr basesTheonly requirements thatthe blendedobjectsmustbe closedsurfaces
with someknown inside-ousidefunction.

Surfaceblendingtechniquesiretypically tied very closelyto thechoiceof geometrigorimi-
tives. For instanceMiddleditchandSeard38] proposea set-theoretienethodfor blending
solidswhich relieson low-orderalgebraicprimitives. A fillet at the joint of two tori re-
guiresthe solution of a degree32 polynomal. Bloomenthaland Shoemak [39] propose
a modelingsystembasedon corvolutions, which relieson a skeletonizedrepresentation
of objects. In generalthe useof convolution to achieve deformationson implicit shapes
resultsin shapeshatrefled boththe shapeof the modelandtheembeddig, ®.

Theblendingmethodproposedn this sectionimplemens aninteratve smoothng scheme
that smoothsonly alongthe level set; the final resultis independenbdf the embedding.
Considerthe caseof fillets. We proposethata fillet canbe constructedrom a processof

“filling in” materialin placesof high curvature. The curvatureof a level-setmodelcanbe

calculatedrom the embeddingandthe deformationof the level setis well definedby the

cunaturetermsin Table1l.

The stratgy is to constructa curvatureterm, k,,, thatconsiss$ of only positive curvatures.
! The principal curvaturesof the level setsof ® arefunctionsof ® andits derivatives. For
aspecific® the principal cunaturesarefunctionsof 3-spacekt; () andk.(x). For adding
materialthejoint betweertwo objectswe consideonly thepositive curvaturecomponers,

The sign of cunatureis definedby the direction of the normals— in this work normds point into the
volumeenclosedy theobject.
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Figure 10: Two rectangularsolid modelsare joined by a volumetricfillet thatis created
from a posiive curvatureflow.
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5 \V®|k, = |V®|k{ + |VD|k], (38)
wherek™ consistof only the positive partsof k£ andis definedaszeroelsavhere.Because
the useof separateurvaturetermscancauseover-shooing, the up-windschemetreating

k, asaspace-aryingvelocity in thenormaldirection)is usedfor this evolution.

Figure10shovshow thepositve-cunatureflow canbeusedo construcfillets. No knowl-
edgeof the underlyingmodelsis necessaryThe fillets grow larger asmoretime passes.
The physcal extentor positionof thefillet canbe controlledby eitherspecifyinga region
of actionor by placinga smallblob of deformablematerialin thejoint thatrequiresafillet.
Figure1l shavs how suchablendingcapabilitycanbe usefulin animaton. In this casea
pair of superquadricsindego arigid transformatio thatcontrolstheir relative positiors.
Level-setmodelswith a positive-cunatureflow areusedto createa smooh joint between
thesetwo primitives. Notice that the positive curvaturemethoddoesnot suffer from the
growth or expanson artifactsthatareoftenassociateavith distance-baseblendingmeth-
ods[40].

Thus, a second-ordeflow cancreatesmooh blendsbetweenobjectsin a way that does
not require specificknowledge of the shapesor topologes of the objectinvolved The
applicationin the next section, 3D sceneareconstructionshavs how a combinatiorof first-

orderandsecond-ordetermsfrom Tablel arecombinedo createechniquehatfits models
to datawhile maintainingcertainsmoothnessonstraintandtherebyoffsettingthe effects
of noise.

7.3 3D Reconstructionfrom Multiple RangeMaps

Level-setmodelsare usefulfor problemsrelatedto 3D reconstructionPreviouswork has
presentedevel-setresultsderived from noisy 3D datasuchas MRI [19] and ultrasound
[41]. In [42] we have shavn how the reconstructiorof objectsfrom multiple rangemaps
canbeformulatedasa problemof finding the surfacethatoptimizesthe posteriorprobabil-
ity given asetof measuremen{®oisyrangemaps)andsomeinformatian aboutthea-priori

probabilily of differentkindsof surfaces.Thatoptimizationproblemcanbeexpressedsa

volumeintegral which canbesolvedwith level-setmodels.This sectionpresentshe math-
ematicalexpressionghat resultfrom thoseformulations and presentssomenew results:
the reconstructiorof entirescenedy fitting level-setmodelsto the datafrom a scanning
LADAR (laserranginganddetection)system

A range mapis a collectionof rangemeasurementsken alongdifferentdirections(lines
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Figure 11: A shortanimationis createdby specifyingthe relative motion betweentwo
superquadricomponent®f anobject. A positve-cunatureflow (appliedframeby frame
to thejoint betweerthetwo 3D models)createsa smooh, flexible object.



of sight) but from asinglepointof view. Rangemapscouldcomefrom any numberof dif-
ferentsourcesncluding laserscannersstructuredight depthsystemsshaperom stereo,
or shapdrom motion. We assumehatsuchrangemapsarenoisyanduncertain.Thegoal
is to combineanumberof rangemapsfrom differentpointsof view to createa 3D structure
thatrefledsthe collective confidenceanddepthmeasures.

Several examplesin the literaturehave appliedparametricnodelsto this task. Turk and
Levoy [43], for instance,’zip” togethertriangle meshesn orderto construct3D objects
from sequencesf rangemapsfrom alaserrangefinder. They performminor adjustmerg
to the surfacepositionin orderaccountfor ambiguty in the rangemaps. Their approach
assumegery little noisein the input, which is reasonablgiven the high quality of their
rangemaps.ChenandMedioni[44] useaparametridtrianglemesh)modelwhich expands
insidea sequencef rangemaps. CurlessandLevoy [45] describea volume-basedech-
niquefor combiningrangedata.They usethe signeddistanceransformto encodevolume
elementswith datathatrepresenthe averageqwith someallowancefor outliers)of mul-
tiple measurementsSurfacesof objectsarethe level setsof volumes.Relatedapproaches
aregivenin [46, 47]. Bajaj et. al. [48] usea Delaunaytriangulationto imposea topol-
ogy on a setof unordered3D points andthenfit trivariateBernstein-Beziepatches—i.e.
a higherorderimplicit model—b the data. Muraki [2] usesimplicit or blobby modelsto
reconstrucbbjectsfrom rangedata. The individual blobsare sphericallysymmetric 3D
potentialsthat are combinedlinearly so that they blendtogether The resultingmodels,
with approximately300 primitivesarequite coarse.

This work differsfrom previouswork in two ways. First, ratherthanheuristics pour recon-
structionstratgy is basedon a strateyy that solvesfor the optimal surfaceestimate. This
optimalestimatencludesinformationaboutone’s expectationf thelikelihood of differ-

entsurfaces.Theresultis not a closed-formsolution,but aniterative processhatseekgo

fit alevel-setmodelto the datawhile enforcinga kind of smodhnessonthedata.

7.3.1 Objective function for multiple range maps

Theevolution equatiorfor the estimaion of optimal surfacess shovn in [42] to consistof
two parts:

ox

i —G(x)N + p(S). (39)
This first part, —G(x) N, is the dataterm, which is a movementwith variablespeed(as
in expressior? from Table 1) thatis the cumulatie effect from all of theindividualrange
maps.The secondpartis the prior, which describeghelik elihood of the surfaceindepen-



dentof thedata. Thedatatermis
G(@) = 3 (@) DV(@) w (DD (2)) 79(@), (40)
j

whereD); is the signeddistancealongtheline of sightfrom arangemeasuremern range
mapj associateghassinghroughz. Thefunctionw : IR — IR is awindowing function
that limits the penaltyof ary onerangemeasuremengndc(-) is a confidencefunction,
which is inverselyproportianal to the level of noisein the rangemeasuremerdassociated
with thesaméine of sight. Theterm~(-) is anintegrationconstanthattakesinto account
the curvilinearcoordinatesystenof therangescanner

Thus,asetof rangemapscreates scalarfunctionof 3D, which describeshe movenentof
asurfacemodelasit seekgheoptimalsurfaceposiion. In theabsencef aprior, p = 0, the
zerosetof thisfunctionis thefinal position(steadystate)of thatevolving surface.Thus,in
the absencef a prior, onecould sampleg(x) andobtainanapproximatiorto the optimal
surfaceestimate. This strategy resultsin analgorithmthatis very muchlik e thatof [45].

Thereare several reasondor going to an iteratve schemefor finding optimal solutiors.
Firstis the useof a prior. In surfacereconstructiongven a very low level of noisecan
degradethe quality of the renderedsurfacesin the final result,andin suchcasesbetter
reconstructiongan be obtainedby introducinga prior. Secondis aliasing. Discretizing
g(x) andfinding the zerocrossingswill causealiasingin thoseplaceswherethetransiton
from positive to negative is particularlysteep.A deformablemodelcanplacethe surface
muchmoreprecisely Thethird reasorfor goingto aniteratve schemds thatdespitethe
windowing functionw(x) thereis interferencebetweendifferentrangemapsat placesof
high cunature.This problemis addressedly introducing a nonlinearitywhichis solvedin

aniteratve schemegiven by equation39. In thework describedn [21], the solution of the
linearproblem thezerosetof g(x), senesastheinitial estimatefor thenonlineariterative
optimization stratey that resultsfrom the inclusionof a prior anda nonlinearterm that
compensatefor lack of any explicit modelof self occlusions.

Equation39includesaprior, whichis alikelihood functionon surfaceshape A reasonable
choiceof prior is onethatmodelsobjectswith lesssurfaceareaasmorelik ely thanobjects
with more surfacearea. Alternatively, one could saythat given a setof surfacesthatare
nearthe data, the algorithm shouldchoosea surface that haslessarea. Often, but not
always,thiswill bethesmoothersurface.The p(S) thatresultsfrom this prior is themean
curvature.Thereforetheevolution of the surface, usingthelevel-stformulation, thatseeks
to maximize the posteriorprobabilty (givena setof rangemapsanda prior thatpenalizes
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Figure12: Rangemaps: Syntheticrangedata200x 200 pixels with 20% Gaussiarwhite
noiseof atorusend(a) andside(b).

surfacearea)is
| | | (Ve -nO(2)T
200 _ ot 52 91 (090 x 10160 ) Lo )
(41)

wheren?) () is theline of sightfrom arangefinderto a 3D point, z, 3 is afree parameter
that controlsthe level of smoohing in the model,and H is the expressionfor the mean
curnvaturegivenin equatiors.

Figurel2 shawvs a pair of simulatdrangemapsconstructedrom ananalyticaldescription
of atorus. These200x 200pixel rangemapsarecorruptedwvith additve Gaussiamoisethat
hasastandardieviation of 20% (asafunctionof thesmallerof thetwo radii). Six synthetic
noise-corruptediewpaints of a torusarecombiredto createa level-setreconstructiorof
atorus. Figure 13(a)shaws theinitial model(80x 80x 40 voxels) usedfor fitting a level-
setmodelsto the rangedata. Figure 13(b) shaws the resultof the level-setmodelsthat
usesl3(a)asaninitial stateandhasa valueof 5 equalto 0.5. Theresultis areasonable
reconstructiorof the noiselessnodel(Figure13(c))which combineghesix pointsof view
andthe smoothimg function.

Figurel4(a)shavsarangemaptakenwith thePerceptrormodelP5000 aninfra-red,time-
of-flight laserrangefinderwith a pan-tilt mechanism Figure 14(b) shavs the amplitudes
associateavith thereturnsignal(anintensty), and14(c)showvs a surfaceplot of therange
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Figure13: (a) An analytically-definednodelof atorus. (b) An initial model(80x80x40
voxels)is constructedy combinirg six pointsof view of atorusandsolvingfor g(x) = 0.
(c) The model,which is attractedo the rangedatabut subjectto internalforces,evolves
andsettlesnto a smooher steadystate.

map to demonstratehe degree of noise (additve and outliers). Figure 14(d) shavs the
confidenceraluesassociateavith thoserangemeasurementd heseconfidencevaluesare
derived from empirical dataaboutthe level of noisein the rangefinder (which depends
on the return amplitude), and someanalysis,from first principles, aboutthe effects of
uncertaintyin the 3D positionsof the scansandthe model— which resultsin the lower
confidenceat edgesasdescribedn [42]. We combinedtwelve suchviews from different
locationsin theroomto generateheresultsthatfollow.

Figurel5(a)shawvstheinitial estimatébasednthezerocrossing®f g(x), and15(b)shovs
theresultof 32iterationswith theprior termandthecorrectionfor thesurfacenormaldirec-
tion. Thesizeof thevolumeis 300 x 150 x 180 voxels andtheresolutionis 1.8 cm/voxe.
Theseresultsshawv the ability of the statistcally-basedapproacto overcomethe noisein
thescannerandthey show thattheinclusian of iterative, model-fittingscheméhelpscreate
moreaccuratereconstructionsThe resolutionof the modelfalls belown that of the scans,
becauseat waslimited by therandom-access-memoayailableon our workstation Some
small features suchasthe armrestsof the chairs,arelost becausef the inaccuraciesn
theregistraton of theindividualrangemaps.
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Figure14: (a) Oneof twelve rangemaps(b) The associate@mpliudemap(c) A surface
plot of therangedatato shawv the level of noise. (d) The confidencaneasuresssociated
with thoserangevalues.



Figure 15: (top) The 3D reconstructiorresultingfrom the zero crossingsof g(x) gives
someaveraging putincludesnoprior. (botton) Theresultof 32iterationswith theiterative
schemaeancludesthe prior andexcludesinfluencesof dataon surfacesthatfaceaway from

thescanner



8 VISPACK

8.1 Intr oduction

VISPACK is asetof C++, object-orientedibrariesfor imageprocessingyolumeprocess-
ing, andlevel-setsurlacemodeling. It consistsof five libraries: Matrix, Image,Volume,
Util, andVoxmodel(level-setmodeling). Thesdibrariescanbeusedseparatelyr together
whencreatingapplications.

VISPACK incorporate®ightbasicdesignattributes. Theseare

Data Handles/Copyon Write:  VISPack is an object-orientedibrary, andassuchwe
allow the objectsto handlememorymanagementandrelieve the programmei(in
mostcases)rom having to worry pointersandthe correspondingnemoryalloca-
tion/deallocationproblems. For this we usethe datahandleswith a copyon write
protocol. Copy constructorgperforma shallav copy with referencecountinguntil a
nonconstoperationon the underlyingbuffersforcesa deepcopy. Thusdeepcopies
areperformedonly whennecessarybut all memoryis maintainedoy the objectsand
objectsbehae as“variables’ratherthanpointers.

Modified Data Hiding: Accessto datain objectsis generallythroughaccessnethods,
however, pointersto buffersfor fastimplementationsareavailable.

Templates: VISPackutilizesthetemplatingconstrucof C++virtually throughot. Many
of the objects,including images,\volumes,lists, andarrays,areintendedto support
awide rangeof datatypes. Thus,via templatirg programmergandefinethe pixels
of differentimagesof differenttypes,suchasfloating point, 24-bit color, and16-bit
greyscale.

Useof Standard File Formats: Whenappropriate/ISPack usesstandardile formats.
We choosdormatsthatarewell known andhave publicly availablelibrariesthatcan
be distributedwith our libraries. The matrix library usesa simpletext format. The
imagelibrary usesTIFF andFITS file formats. Becauseno standardormat exists
for saving volumesof datawe do usearaw file format.

Operator Overloading: Properuseof operatoroverloadinggives usersa corvenient
way to executeoperationson an object. When compinedwith the copy-on-write
corventian, operatoroverloadirg allows programmergo treatmary heary-weight
objects(e.g. imagesand volumes)as variables. For instance the following code
computesion-maxinal edgesn aon afilteredvolume.



Vol une<f| oat > dx, dy, dz;

Vol unme<f | oat > vol gauss = vol . gauss(0.5);

Vol unme<f| oat > vol out = (((dx = vol gauss. dx()). power(2)
*vol _gauss. dx(2)

((dy = vol _gauss. dy()). power(2)*vol gauss. dy(2)
((dz = vol gauss. dz()).power(2)*vol gauss. dz(2)
dx*dy*(dx).dy() + dx*dz*(dx).dz())
dy*dz*(dy).dz()) )).zeroCrossings()

&& ((dx.power(2) + dy.power(2)) > T*T));

+ + + +

8.2 Level-SetSurface-Modeling Library

The Level-SetSurface-Modeling(LSSM) Library is an implementationof the level-set
techniqug[10, 13] specificallyfor deformingsurfacemodelsembeddedn volumes. The
implenmentationusesthe sparse-fieldnethoddescribedn [20]. Thelibrary implenmentsall
of thebasicnumericalalgorithmsandhandlesall of thedatastructuresequiredto perform
LSSM. The strategyy for usingthis library is to subclasghe objectVoxMbdel , setsome
parametersgefinea setof simplevirtual functionsthat control the deformationprocess,
initialize the model, and then direct the modelto iteratvely deformaccordingto those
equations. This sectiondescribeghe relationshp betweenthe mathematicof previous
sectionsandthe VISPack library. Its alsopresentsan exampk of usingVISPack libarary
to do 3D shapemetamorphosiasdescribedn Section7.1.

8.2.1 SurfaceDeformation

The LSSM library allows oneto solve for surfacedeformationsasa functionof time, for
generalevel-setsurfacemovementsof theform:

ox

5 = oF (@, N(@)) + fG(z, N(@))N(2) + N (@) + nE (k(2), k2(2))),  (42)
wherez is apointonthesurface.This equations solvedby representinghesurfaceasthe
kth level setof animplicit functioné(z, ¢) : R* x R* — IR. Thisgives

9¢

5 = oF(@,V9)) - Vo + G(2, V)|V +7|Ve| +nE(D, D*¢),  (43)



whereD¢ and D?¢ are collectionsfirst and secondderivatives of ¢, respectiely. This
equations solvedonadiscretegrid usinganup-windschemegradientcalculationscentral
differencedor thecurvature andforwardfinite differencesn time. TheLSSMlibrary uses
the sparse-fieldmethoddescribedn Section6.3andin [21].

Thus,theLSSM library offersthe following capabilites:

1. Createsaninitial model(with associatedctive set)from avolume.

2. CalculatesAwg; . and At usingvirtual functions(definedby subclassesphat de-
scribeF andG andparameter$valuessetbythesubclass)x B, v, andn.

3. Performsanupdateonthevaluesof u7; ;.

4. Maintainsthelist of active grid pointsandupdateghe layers aroundthosepointsin
orderto maintaina neighborhoodrom whichto calculatesubsequenipdates.

5. Provides accesgo the volume that definesu?’; . andthe linked list of actve grid
points

Giventhevolumedefiningu?; ., onecanthenrely onthefunctionalityof thevolumelibrary
for subsequerrocessingfiile I/O, or surfaceextraction.

8.2.2 Structure and Philosophy of the LSSM Library

Thelibrary is organized(mostlyfor easeof developmnent)into a baseclass,Level Set -
Model , anda derived class,VoxModel . The baseclassdoesall of the book keeping
associatedvith the active setand surroundingayers, the link lists associatedvith those
sets,andinitializing the model. Thusit addsandremoves voxelsfrom the active set(and
surroundingayers)in responsdo an updateoperation. The baseclassassumeshatthe
subclasse&now how to updateindividual voxels Applications are built by subclassig
VoxModel andredefiningasmallsetof virtual functionsthatcontrolthe movementof the
model.

ThesubclassyYoxModel , performsupdateon the grid pointsin the active setof the form
givenin Equationl8, usingfunctionsF' andG andparameters., 3, v, andy. It alsocalcu-
latesthe maximumA¢ thatensurestability. Thusa userwho wishesto performa surface
deformationusingthe LSSM library, would createsubclasof VoxMbdel anddefinethe
appropriatevirtual functionsandsetthe parameterso achiare the desiredoehaior.



8.2.3 ThelLevel Set Mbdel Object

The Level Set Model containsa volume of values,a volume of statusflags, five lists
(oneactwelist, two insidelists, andtwo outsidelists), andthreeparametershatdetermine
theorigin of the coordinatesystenform which the modelperformsits calculations.

There are two constructors,Level Set Model () and Level Set Model ( const
VI SVol unme<f | oat > &) . Thefirst simply initializesthe datastructure andthe second
alsosetthevaluesof themodelvolume (_val ues) totheinput. Oncethevalueshave been
set,onecancreateaninitial volume from thosevaluesby callingconst ruct Li st s(),
which canalsotake a floating-pointargumentthatcontrolsthe scalingof theinput relative
to alocal distanceransformnearthe zeroset.

Thelist thatkeepdrackof theactiveset,called_act i vel i st , keepdrackof thelocation
of thosegrid pointsandasingle floating-pointvalue , which storeshechangen theirvalues
from oneiterationto the next.

Anotherimportantmethoddor usersof this objectis updat e(f | oat ) , which changes
the grey-scale valuesof the grid for the active set accordingto the valuesstoredin
_activeli st, andupdateghe statusof elementson the active list aswell asthe val-
uesand statusof nearbylayers(2 inside and 2 outside). The floating point agumentis
the value of At from Equationl18, andthe returnvalueis the maximumchangethat oc-
curredon the active set. Finally, themethodi t er at e() callsthevirtual methodcal -
cul at e change, avirtual functionwhich setsthevaluesof Au7, , andreturnsthe max-
imum valueof At for stability, andthencallsupdat e. For thisobjectthefunctioncal -
cul at e_change performssometrivial (i.e., uselesspperation.

8.2.4 The VoxModel Object

TheVoxModel objectis asubclas®f Level Set Model , andit addthreethings to the
baseclass.

1. cal cul at e_change() is redefinedto implement the surface deformationde-
scribedin Equatior43.

2. Thevirtual functionsaredeclaredor F' (calledf or ce) andG (calledgr ow). These
functionsaredefinedto returnzerofor this object.



3. Theparametershatcontroltherelative influenceof the varioustermsarereadfrom
file by aroutinel oad_par amns.

4. A methodr escal e(f | oat) isdefinedwhichresampleshevolumeof grid-point
valuesinto anew volume with differentresolutior andredefineshelists (andthereby
themodel)in this new volume. This methodis for performingcoarse-to-finelefor
mationprocedures.

8.3 Example: 3D ShapeMetamorphasis

TheMor ph objectallows oneto constructa sequencef volumesor surfacemeshesising

the 3D shapemetamorphas techniquedescribedn Section7.1, which wasfirst proposed
by Whitaker andBreen[20]. Thistechniquereliesdistanceransformdor boththe source
andtargetobjectsandusesa LSSMsto manipulatethe shapeof the sourcesothatit coin-

cideswith thetarget. The surfacedeformatiorthatdescribeshis behaior is

ox

S = 86 (I(2)) N(a), (44)
whereG(x) is simply the distancetransform(or somemonotaic functionthereof)of the
tamget,andT is a coordinatetransformatiorthatalignsthe sourceandtargetobjects. The
level-setformulationof thisis

99 (x, 1)
ot

= PG (T(2)) V|- (45)

Themorphirg processconsistof severalsteps:

1. Readin distancdransformgin theform of volumes)for bothsourceandtarget.
2. Initialize the LSSM by fitting it to the zerosetof the sourcedistanceransform.
3. Updatethe LSSM accordingto Equation45.

4. Save intermediaterolumessurfacesatregularintenals.

Theremaindeiof this sectionlists the codeandcommentdor threefiles, morph.h(which
declaresthe Mor ph object), morph.C(which definesthe method$ and main.C (which
performsall of thel/O andusesthe Mor ph objectto constructa sequencef shapes.



8.4 Morph.h

I
[l morph.h
/1
/1

#i fndef iris_norph_h
#define iris_norph_h

#i ncl ude "voxnodel / voxnodel . h"
#include "matri x/ matri x. h"

#define I NI T_STATE O
#defi ne MORPH_STATE 1

/1
/1l This is the norph object. It uses all of the machinery of the base
/1l class to manipul ate | evel sets. It needs to have an initial vol une

/1l and a final volunme (which would typically be the distance transform
/1 it mght need a 3D transformation, and it needs to redefine the
/1 virtual function "grow', which takes 6 floats as input, the position

/1 followed by the normal vectors (all will calculated and passed into
/1 this nmethod by the base class). It mght also have a state, that
/1 indicates whether or not it’s been initialized.

I

/'l Functions not defined here should be defined in "norph.C
/1
cl ass Morph: public VoxMde

{
pr ot ect ed:
VI SVol une<f | oat > _di st _source;
VI SVol une<f | oat > _di st _target;
VISMatrix _transform
I

/1 This is the function that is used by the base class to mani pulate the
| evel

/1l set. You can define it to by anything you want. For this object, it
wil |

/[l return a value fromthe di stance transform of the target.

I



virtual float growm(float x, float y, float z,
float nx, float ny, float nz);

/'l There are two states. In the first state, the nodel is trying to fit
/1l to the input data. In this way the nodels starts by |ooking just like

/1l the input data
int _state;

public:

Mor ph(const ©Mor ph& ot her)

{
_dist_target = other. _dist_target;
_initial = other. initial;
_state = MORPH _STATE;
_transform = VISVISMatrix(3, 3);
_transformidentity();
[l initialize();

}

Mor ph( VI SVol une<fl oat> init, VISVol une<fl oat> d)
: VoxModel ()

{
_dist_target = d;
_initial =init;

_State = MORPH_STATE;
_transform = VISVISMatrix(3, 3);
_transformidentity();

[l initialize();

}
void initialize();

/1l for this object | assume that the transformis just a matri x.
/1 but it could be anything

void transforn(const VISVISMatrix& t)

{ _transform=1;}

const VISVISMatri x& transform))
{ return(_transform;}



voi d di stance(const VI SVol une<f| oat> d)
{ _dist _target = d;}

VI SVol une<f | oat > di st ance()

{ return(_dist _target);}

}
#endi f
8.5 Morph.C

#i ncl ude "norph. h"
#i nclude "util/geonetry. h"
#i nclude "util/mathutil.h"

Il

/1l this is the virtual function, that is the guts of it all
/1

fl oat Morph::grow(float x, float y, float z,
float nx, float ny, float nz)
{
/1l this says you are in the norph state (things have been initialized)
i f (_state == MORPH_STATE)
{

float xx, yy, zz;
VI SPoi nt p(4u);

p.at(0) = Xx;
p.at(1l) =vy;
p.at(2) = z;
p.at(3) = 1;

VI SPoi nt p_tnp;
/1l this is where you could put some other transform
p_tnp = _transforntp;

XX 0);
yy _tm.y();



zz = p_tnp.z(),

/1 make sure you are not out of the bounds
/1 of your distance vol une.
if (_dist_target.checkBounds(xx, yy, zz))
/1 if not, get the distance (use trilinear interpolation).
return(_dist_target.interp(xx, yy, zz));
el se
return(0.0f);
}

el se
{
/[l if you are still initializing, then nove toward the zero set of
/1l your initial case
if (_initial.checkBounds(x, vy, 2z))
return(_initial.interp(x, vy, 2));
el se
return(0.0Of);

}
}

/1 this makes the nodel |ook |ike the input.
#define I NI T_I TERATIONS 5
void Mrph::initialize()
{
_values = _initial;
int state tnp = _state;
_state = | NI T_STATE;
construct _I|ists(D FFERENCE_FACTOR)
/'l these couple of iterations are required to nmake sure that the zero
/'l sets of the nodel match the zero sets of the
Il
for (int i =0; i < INT_ITERATIONS; i ++)
{
/1 1Timt the dt to 1.0 so that the nodel settles in to a solution
updat e(:: m n(cal cul ate_change(), 1.0f));
}

_state = state_tnp;



8.6 Main.C

#1 ncl ude
#1 ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

const in
const in
const in

#def i ne
torus. C
#defi ne
#defi ne

#defi ne
#defi ne
#def i ne

#defi ne
#defi ne
#defi ne

float sp

float to
float cu

/'l This

"vol / vol une. h"

"vol /vol unefile.h”
"i mage/ i magefile. h"
" mor ph. h"
<string. h>

t V_HElI GHT = (40);
t V.WDTH = (40);
t V_DEPTH = (40);
XY_RADIUS (12) // this matches the 2.5D data generated in

T RADIUS (4) // this matches the 2.5D data generated in torus.C
S RADIUS (12) // radius of a sphere

B_W DTH ( 20. Of)
B_HEI GHT (60. 0f)
B_DEPTH ( 20. Of)

B_CENTER X (12.0f)
B_CENTER Y (32.0f)
B_CENTER Z (12. 0f)

her e(unsi gned x, unsigned y, unsigned z);

rus(unsi gned x, unsigned y, unsigned z);
be(unsi gned x, unsigned y, unsigned z);

is a programthat does the norph. |If you give it two

/1l argunents, it reads the initial nodel and the dist trans for the

/1 final
sphere
/1l and d

mai n(i nt

{

nodel fromthe two file nanes given, otherwi se, it nmakes a
eforms it into a torus

argc, char** argv)



VI SVol unme<f | oat > vol _source, vol _target;
VI SVol uneFile vol file;

int i;

char fname[ 80];

vol source = VI SVol une<f | oat >( 25, 65, 25) ;
vol source. eval uat e(cube);

if (argc > 2)
{
/'l read in the sourcei ng node
vol _source = VI SVol une<f| oat>(vol _file.read _float(argv[1]));
/1l read in the dist trans of the final nodel
vol target = VI SVol une<fl oat >(vol _file.read float(argv[2]));

}

el se

/1 make up sone vol unes
{

vol _source = VI SVol une<fl oat>(V_WDTH, V_HEI GHT, V_DEPTH)
vol _sour ce. eval uat e( sphere);
vol target = VI SVol une<float>(V_WDTH, V_HEI GHT, V_DEPTH)
vol _target.eval uate(torus);

}

/'l create norph object

Mor ph nor ph(vol _source, vol target);

/1l loads in sonme paraneters (for norphing these are all zero but one)
Il i.e.

/1

I

I

I

nor ph. | oad_par anet er s( " nor ph_par ans”) ;
nmorph.initialize();

vol _file.wite_ float(norph.values(), "nmorphO.flt");

fl oat dt;

/1l do 150 iterations for your nodel to get fromstart to finish
/1l probably don’'t need this nmany iterations



for (i = 0; i < 150; i ++)
{
dt = norph.cal cul ate_change();
/[l limt dt to 0.5 so that node
dt = mn(dt, 0.5f);
nmor ph. updat e(dt) ;

printf("iteration % dt %\n", i, dt);
if (((1 + 1)%0) == 0)
{
/'l save every tenth vol une
sprintf(fname, "norph_out.%.dat", i + 1);
vol _file.wite float(norph.values(), fnanme);
}
}
/'l save a surface nodel (i.e. marching cubes).
vol _file.march(0.0f, norph.values(), ‘‘norph_final.iv'’

printf("done\n");

}

never overshoots goa
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‘We propose that the generalization of signal and image processing to surfaces entails filtering the
normals of the surface, rather than filtering the positions of points on a mesh. Using a variational
strategy, penalty functions on the surface geometry can be formulated as penalty functions on the
surface normals, which are computed using geometry-based shape metrics and minimized using
fourth-order gradient descent partial differential equations (PDE). In this paper, we introduce a
two step approach to implementing geometric processing tools for surfaces: (i) operating on the
normal map of a surface, and (ii) manipulating the surface to fit the processed normals. Iterating
this two-step process, we can efficiently implement geometric fourth-order flows by solving a
set of coupled second-order PDEs. The computational approach uses level set surface models;
therefore, the processing does not depend on any underlying parameterization. This paper will
demonstrate that the proposed strategy provides for a wide range of surface processing operations,
including edge-preserving smoothing and high-boost filtering. Furthermore, the generality of the
implementation makes it appropriate for very complex surface models, e.g. those constructed
directly from measured data.

Catgyoriesand SubjectDescriptors:l.3.5 [Computer Graphics]: ComputationalGeometryandObjectModel-
ing—Curve surface solid and objectrepresentations.

Additional Key Words and Phrases: surface fairing, geometric surface processing, anisotropic
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1. INTRODUCTION

Thefundamentaprinciplesof signalprocessingjiveriseto awide rangeof usefultoolsfor
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to the processingf 3D surfaceshasbecomeanimportantproblemin computergraphics,
visualization,andvision. For instance 3D rangesensingechnologiegproducehigh reso-
lution description®f objects but they oftensuffer from noise.Medicalimagingmodalities
suchasMRI andCT scangproducelarge volumesof scalaror tensormeasurementut

surfacesof interestmustbe extractedthroughsomeseggmentatiorprocessr fitted directly

to the measurementsThesesurfacestypically containtopologicalartifactssuchasholes
andunconnectegieces.

The goal of this paperis to introducea new surfaceprocessingtrateyy thatis flexible,
general,and geometric. By flexible we meanthat the framawork shouldprovide a basis
for a broadvariety of capabilities,including surfaceprocessingools that resemblethe
state-of-the-arin imageprocessinglgorithms. The proposednethodsshouldapplyto a
geneal classof surfaces.Usersshouldbeableto processomplex surfaceof arbitraryand
changingopology andobtainmeaningfulresultswith very little a priori knowledgeabout
the shapes.By geometricwe meanthat outputof surfaceprocessingalgorithmsshould
dependon surfaceshapeand resolution but shouldbe independenof arbitrarydecisions
abouttherepresentatioor parameterization.

The work presentedn this paperis basedon the propositionthat the naturalgeneral-
ization of imageprocessingo surfacesis via the surfacenormal vectos. Thus,a smooth
surfaceis onethathassmoothlyvaryingnormals.Penaltyfunctionsonthesurfacenormals
typically giveriseto fourth-ordermartialdifferentialequationgPDE).Our stratey is to use
atwo stepapproach:(i) operatingon the normalmapof a surface,and(ii) manipulating
the surfaceto fit the processedormals.lteratingthis two-stepprocessye canefficiently
implementfourth-orderflows by solvinga setof coupledsecond-ordePDEs.In thislight,
thedifferencedetweersurfaceprocessingndimageprocessingrethreefold:

(1) Normalsarevectorvaluedandconstrainedo beunitlength;theprocessingechniques
mustaccommodatéhis.

(2) Normalslive onamanifold (the surface)andcannotbe processedisinga flat metric,
asis typically donewith images.

(3) Normalsarecoupledwith the surfaceshapethusthe normalsshoulddragthe surface
alongastheir valuesaremodifiedduring processing.

This paperpresentanimplementatiorthatrepresentsurfacesasthe level setsof vol-
umesandcomputeghe processingf the normalsandthe deformationof the surfacesas
solutionsto a setof PDEs.In someapplicationssuchasanimation,modelsaremanually
generatedby adesignerandtheparameterizatiors notarbitrarybut is animportantaspect
of the geometricmodel. In thesecasesmesh-baseg@rocessingnethodsoffer a powerful
setof tools, suchashierarchicalediting [Guskov et al. 1999], which arenot yet possible
with the proposedrepresentation.However, in other applications,suchas 3D segmen-
tation and surfacereconstructiorfMalladi et al. 1995; Whitaker 1998], the processings
datadriven, surfacescandeformquite far from their initial shapesand changetopology;
hence,userinterventionis not practical. Furthermorewhenconsideringorocessesther
thanisotropicsmoothing suchasnonlinearsmoothingthe creationor sharpeningf small
featurescanexhibit noticeableeffectsof the meshtopology—thecreationof new features
requireschangesn the meshparameterizationln contrastthe underlyinggrid for level
setsis independenbf the surfaceshapejtherefore the only limitation for the creationof
new featuresis the resolutionof the grid. Hence,the useof a level setformulationen-

ACM JournalName,Vol. V, No. N, Month 20YY.
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ablesusto achiere a“black box” behaior andbuild surfaceprocessindechniqueshatare
especiallyusefulwhenprocessingneasurediata.

We haveintroducedananisotropidiffusionfor surfacesbasen processinghenormal
mapin [Tasdizeret al. 2002]. This paperdiscusseshe mathematicafoundationsof the
normalmapprocessingtratey in detailandprovidesdetailsof the numericalimplemen-
tation aswell asintroducinghigh-boosffiltering of normalsasa new surfaceprocessing
tool. Thespecificcontributionsare:

(1) anovel approactbasedon surfacenormalsfor geometrigprocessingf surfaces;

(2) anumericalmethodfor solvinggeometridourth-orderevel setequationgor surfaces
in two simplerstepstherebyavoiding the explicit computatiorof unstablehigh-order
derivatives;and

(3) examplesof threegeometricsurfaceprocessinglgorithmswith applicationsto com-
plex datasets.

Therestof this paperis organizedasfollows. We will discusgelatedsurfaceprocessing
work in Section2. In Section3, we formulateour splitting approactfor solving geomet-
ric fourth-orderlevel setequationdor surfaces. In the limit, this approachs equivalent
to solving the full, fourth-orderflow, Appendix(A), but it generalizeso a wide rangeof
processesnd makesno assumptionsboutthe shapeof the solutions. In Section4, we
shaw resultsfor isotropicandanisotropicdiffusion. To demonstrateéhe flexibility of the
proposedramenork, wewill alsoshow resultsof high-boossurfacefiltering implemented
with ourframawork in Section5. The numericalimplementation®f our approactis cov-
eredin Appendix(B). Conclusionsand directionsfor future work will be discussedn
Section6.

2. RELATED WORK

The majority of surface processingesearchhasbeenin the contect of surfacefairing

with the motivationof smoothingsurfaceso createaestheticallypleasingmodels.Surface
fairing canbe accomplishecatitherby minimizing an enegy function thatfavors smooth
surfacegMoretonand Sequin1992; WelchandWitkin 1992;Halsteadet al. 1993;Welch
and Witkin 1994] or by applying smoothindfilters [Taubin 1995; Desbrunet al. 1999;
Guslov etal. 1999]. Enegy minimizationis a global methodwhereadiltering usesocal

neighborhoodsln therestof this section,we review relatedwork in thesetwo cateyories.
An approachthat falls betweenthesetwo extremesis basedon Wiener filtering which

utilizesarbitrarylocal spectrapropertiesof the mesh[Alexa 2002].

Enegy functionscan dependon the geometryof the surfaceor the parameterization.
Geometricfunctionsmake use of invariantssuchas principal curvatures,which are pa-
rameterizatiorindependentintrinsic propertiesof the surface. Therefore,geometricap-
proachegroduceresultsthatarenot affectedby arbitrary decisionsaboutthe parameter
ization; however, geometricinvariantsare nonlinearfunctionsof surfacederivativesthat
arecomputationallyexpensveto evaluate.Parameterizatiodependenfunctionsarelinear
substitutegor geometridnvariants.

Oneway to smootha surfaceis to incrementallyreduceits surfacearea. This canbe
accomplishedby meancurvatureflow (MCF), a second-ordePDE,

X K+ K
—=-HN=-(-1_—2])N 1
ot ( 2 > @
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wherek;, K, arethe principal curvaturesandH is the meancurvatureat a point x on the
surface,N is the surfacenormal,andthe parametet tracksthe deformingsurfaceshape.
For parameterizedurfaces the membranesnegy function, a linear substitutefor surface
areajs

/QX5+X3dudv )

whereX(u,v) andQ aresurfaceparameterizatioandits domain,respectiely. Thevaria-
tional derivative of (2) is the Laplacian

AX = Xyu+ X, 3)

which is a linear substitutefor meancurvature; however, they are equialentonly if the
parameterizatiois orthonormakverywhere Thesemethodgenerallyproduceunsatiséc-
tory resultsdueto inherentlimitations suchasinability to presere featuresa systematic
shrinking,andtheintroductionof high-cunaturesingularities.

A second-ordeenepy functionis theintegral of total curvatue overthe surfaceS

/ K2+ K2 dS 4)
S

which hasbeenshowvn to deform surfacesinto spheresvhen minimized [Polden1997].
We will referto (4) asthe total curvature penaltywhich should not be confusedwith
the local quantity total curvature. The total curvaturepenaltyis a geometric(invariant)
propertyof thesurfacethatcanbe minimizedby afourth-orderPDEwhichis very difficult
to solve. The meshfairing approachof [Welch andWitkin 1994], which minimizes(4),
fits local polynomialbasisfunctionsto local neighborhoodgor the computationof total
cunature. Thesepolynomial basisfunctionsrangefrom full quadraticpolynomialsto
constrainedquadraticsand planarapproximations.Dependingon the complexity of the
local neighborhoodthe algorithmmustchoose at eachlocation,which basisto emplgy.
Ambiguitiesresultatlocationswheremultiple basegrovide equallygoodrepresentations.

If we penalizethe parameterizatiofi.e. non-geometric)equation(4) becomeghethin
plateenegy function

[ X+ 223G, duav ©)

whereX andQ areasdefinedfor (2). The variationalderivative of (5) is thelinearbihar
monicoperator

AZX = Xuuuu+ 2quw+ Xy (6)

whichis afourth-orderoperatorusedfor surfacefairing [WelchandWitkin 1992].

MoretonandSéquinproposea geometricenegy functionthatpenalizeghe variationof
principle curvatures[1992]. This function hasa sixth-ordervariationalderivative which
requiresvery largecomputatiortimes. Theanalysisandimplementatiorof generakenegy
functionsabove secondrderremainsan openproblem,which is beyondthe scopeof this
paper Evidencein this paperandelsevhere[Desbrunet al. 1999; SchneideandKobbelt
2000]suggestshatfourth-ordergeometridlows form asufficientfoundationfor ageneral,
geometricsurfaceprocessingystem.

Taubin pioneersthe linearfilter basedapproacheso surfacefairing. He obsenesthat
simple Gaussiarfiltering associatedavith the membranesnegy causeshrinkage[1995].
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He eliminatesthis problemby designinga low passfilter usinga weightedaverageof the
Laplacian(3) andthebiharmonicoperato(6). Theweightsmustbefine-tunedo obtainthe
non-shrinkingoroperty Analyzedin thefrequeny domain,thislow-pasdilter canbeseen
asa Gaussiarsmoothingshrinking stepfollowed by an unshrinkingstep. Taubinshavs
thatany polynomialtransferfunctionin the frequeny domaincanbe implementedwith
thismethod[1996]. A relatedapproachn which surfacesaresmoothedy simultaneously
solvingthe membrang?2) andthin plate(5) enegy functionsis proposedn [Kobbeltetal.
1998]. Desbrunet al. useimplicit integrationto build a computationallyefficient method
for meshfairing[1999]. Guslov etal. definesdown- andup-samplingoolsandsmoothing
filters for irregular meshego build a multiresolutionmeshprocessingramewnork [1999].
Their work is basedon a generalizedow passfilter which usesa non-uniformrelaxation
operatorthat minimizesa locally weightedquadraticenegy of second-ordedifferences
onthemesh.

The techniquegproposedn this paperare alsorelatedto that of [Chopp and Sethian
1999], who derive the intrinsic Laplacianof curvaturefor animplicit curve, and solve
the resultingfourth-ordernonlinearPDE. However, their methoddoesnot generalizeto
implicit surfaces.Moreover, they amguethatthe numericalmethodsusedto solve second-
orderflows arenot practical,becausehey lack long term stability. They proposeseveral
new numericalschemesput noneare found to be completelysatistctory due to their
slow computatiorandinability to handlesingularities.As a generalizatiorof this PDEfor
surfaces,SchneidemandKobbeltproposeusingtheintrinsic Laplacianof meancurvature,
AgH, for mesheswhereAy is the Laplace-Beltrambperatori.e. the Laplacianfor pa-
rameterizegurfaceg2000]. However, thatapproactworksonly for meshesandrelieson
analyticpropertiesf the steady-statsolutions AgH = 0, by fitting surfaceprimitivesthat
havethoseproperties Thus,theformalismdoesnotgeneralizevell to applicationssuchas
surfacereconstructionwherethe solutionis a combinationof measuredlataanda fourth-
ordersmoothingterm. Also, it doesnotapplyto othertypesof smoothingprocessessuch
asanisotropiadiffusionthatminimizesnonlinearfeature-preservingenalties We solve a
moregeneraklassof surfaceflows with a variationalbasisin an effective, stablesplitting
method.

An exampleof a splitting strateyy canbe foundin [Ballesteretal. 2001],wherethe au-
thorspenalizethe smoothnessf a vectorfield while simultaneouslyforcing the gradient
directionsof a gray scaleimageto closelymatchthe vectorfield. The penaltyfunctionon
the normalfield is proportionalto the divergenceof the normalvectors. It formsa high-
orderinterpolationfunction,whichis shavn to beusefulfor imageinpainting—receering
missingpatchesof datain 2D images. The strategy of simultaneoushpenalizingthe di-
vergenceof anormalfield andthe mismatchof this field with theimagegradientis closely
relatedto thetotal curvaturepenaltyfunctionusedin this paper However, our formulation
emphasizethe processingf normalson anarbitrarysurfacemanifold (ratherthantheflat
geometryof animage),with anexplicit relationshipto fourth-ordersurfaceflows. Further
morethispaperestablishesew directionsfor surfaceflows—towardedge-preservingur
facesmoothingandfeatureenhancemenOur proposed®DE splitting approachs related
to themethodsn [SchneideandKobbelt2000], whichwe discussn detailin Section3.

Our splitting methodrequiresdiffusing unit-lengthvectorson a non-flatmanifold. Per
onaproposes methodfor diffusing orientation-like quantitieson flat manifolds[1998].
This methodsolvesthe problemof diffusing 2D unit vectorsasa 1D problemof angle
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Fig. 1. Secondwvs. fourth-ordersurfacesmoothing.Fromleft to right: Original model,meancunatureflow, and
isotropicfourth-ordersurfaceflow.

diffusion; however, it is not rotationallyinvariantandit doesnot generalizeto the diffu-

sion of unit vectorsin higherdimensions.Sereral authorsuseharmonicmapstheoryto

solve the diffusion of unit vectorsdefinedon higherdimensionahon-flatmanifolds,e.g.
surfacegBertalmioetal. 2001;Tanget al. 2000]. Hence their methodsarecloselyrelated
to someof the problemswe solwve in this, but they do not provide a solutionto thecoupling
betweersurfaceshapeandthe unit vectorsbecauséeheir goalis not surfaceprocessing.

3. MINIMIZING TOTAL CURVATURE

Oneof the underlyingstrategjiesof our approachis to usegeometricsurfaceprocessing
wherethe outputof the procesdependonly on the shapeof the input surface,anddoes
not containartifactsfrom theunderlyingparameterizationThemotivationfor this strateyy
is discussedn detailin [SchneidelandKobbelt2001],wheretheinfluenceof the parame-
terizationon surfacefairing resultsis clearlyshavn, andhigherordernonlineargeometric
flows areproposedasthe solution.

As anillustration of the importanceof higherordergeometricprocessingconsiderthe
resultsin Figure 1, which demonstratethe differencedetweenprocessingsurfaceswith
meancurvatureflow (MCF) andthe isotropicfourth-orderPDE that minimizesthe total
cunaturepenalty(4). Theamountof smoothingfor both processe this examplewere
chosento be qualitatvely similar, andyet importantdifferencescan be obsened on the
smallerfeaturesof this model. MCF hasshortenedhe hornsof the originalmodel,andyet
they remainsharp—nota desirablebehaior for a“smoothing” process.This behaior for
MCF is well documentedas a pinching off of cylindrical objectsandis expectedfrom
the variational point of view: MCF minimizes surface areaand thereforewill quickly
eliminatesmallerpartsof a model. Sapirodiscussesolume preservingorms of second-
orderflows [2001], but theseprocessesompensatédy enlaging the objectas a wholg
which exhibits, qualitatively, the samebehaior on small features. The isotropicfourth-
orderPDE, on the otherhand,preseresthe structureof thesefeaturesmuchbetterwhile
smoothingthem as can be seenin Figure 1. Note thatall of the surfacesin this paper
arerepresenteénd processed/olumetrically To displaythe results,we rendera mesh
obtainedwith the MarchingCubesalgorithm[LorensonandCline 1987].

We proposea two-stepsolution basedon letting the surfaceshapeto lag the normals
asthey arefiltered and thenrefitting the surfaceto the normalsby a separateprocess.
For generafourth-ordersurfaceflows suchasisotropicandanisotropicdiffusion, both of
thesestepsinvolve solving second-ordePDEs. The first second-ordePDE is usedfor
minimizing a penaltyfunction on the normals. The other second-ordePDE minimizes
thediscrepang betweerthe modifiednormalsandthe surface;in otherwords, it refitsthe
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Fig. 2. Shavn herein 2D, the processbegins with a shapeand constructsa hormal map from the distance

transform(left), modifiesthe normalmapaccordingo a PDE derived from a penaltyfunction (center) andre-fits
the shapeto the normalmap(right).

surfaceto the normals. Figure2 shaws this threestepprocesgraphicallyin 2D—shapes
giveriseto normalmapswhich, whenfilteredgive riseto new normalmapswhich finally
giveriseto new shapesTherestof this sectionis organizedasfollows. Level setmethods
areintroducedin Section3.1. We formulatetotal curvatureasa function of the normal
mapandderive gradientdescenminimizationsfor generafunctionsof total curvaturein
Section3.2;this givesriseto the first PDE mentionedabove. The surfacerefitting process
is discussedn Section3.3;this givesriseto theothersecond-ordePDE.

3.1 Level set methods

In this section we briefly introducethe notationof level setmethods We candescribethe
deformatiorof aregularsurfaceusingthe 3D velocity of eachof its constituenpoints,i.e.,

dx(t)/ot for all x € S. We representhe deformingsurfacesmplicitly asafunctionof the
parametet

S={x(t) [ @(x(t),t) =0}, )
where @ is the embeddingfunction. Surfacesdefinedin this way divide a volumeinto
two parts:inside (¢ > 0) andoutside(@ < 0). It is commonto choosep to bethe signed
distanceransformof S, or anapproximatiorthereof. The surfaceremainsa level setof ¢
over time, andthustaking the total derivative with respecto time (usingthe chainrule)

gives
o@/ot = —0g-0x/ot (8)

Becausdlg is proportionalto the surfacenormal, dx /ot affects ¢ only in the direction
of thenormal—motionin ary otherdirectionis merelya changen the parameterization.
This family of PDEsandthe upwind schemefor solving themon a discretegrid is the
methodsof level sets|Osherand Sethian1988]. For instanceusingthis framewvork and
dx/adt from (1), the PDEon ¢ thatdescribegshe motionof a surfaceby meancurvatureis

09/0t = —0g-HN = —[|0g|[H. (©)

Surfaceintegralsof penaltyfunctionshave correspondingolumeintegralswhich quan-
tify the associategropertiesfor the embeddedsurfacesof ¢. A generalsurfacepenalty
functionbasedn thetotal curvaturepenalty(4) canbe written for level setsurfacesas

%Z/UG(Kf+K22) | 0e || dx, (10)
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whereU ¢ O3 isthevolumetricdomainof ¢. WhenG is theidentity function,(10) reduces
to thetotal curvaturepenalty Therestof this paperdiscussesnethodsor minimizing this
penaltyfunctionin a stableandcomputationallyefficient manner

3.2 Total curvature of normal maps

In this section,we formulatetotal curvatureof a surfacefrom its normalmap. Then,we
derive the variational PDEson the normal map that minimize functionsof total curva-
ture. Whenusingimplicit representation@nemustaccountor thefactthatderivativesof
functionsdefinedon the surfacearecomputedby projectingtheir 3D derivativesontothe
surfacetangentplane.The 3 x 3 projectionmatrix for theimplicit surfacenormalis

P=DOe® Og/||0¢|?, (11)

where® is thetensormproductdefinedasa® a= aa' . Consequentlythe projectionmatrix
ontothesurfacetangentplaneis | — P, wherel is theidentity matrix.

Thelocal geometryof a surfacecanbe describedvith thefirst andsecondundamental
forms, (1) and(11), respectiely [DoCarmo1976]. Theeigervaluesof thematrix (1)~1(11),
which we referto asthe shapematrix, arethe principal curvaturesof the surfaceindepen-
dent of the parameterization.For an implicit surface,the shapematrix is obtainedby
differentiatingthe normalmapandprojectingthe derivative ontothe surfacetangentplane.
We definethedifferentialof thenormalmap

;
ON = (DN(l) Ny, DN(s)) , (12)

asthe matrix whoserows arethe gradientvectorsof the component®f N which we have
denotedby N(i) fori = 1,2, and3. Thenthe shapematrix is the projectionTN (I — P),
which measureshe intrinsic changen the normalsby mappingthe differentialsof N on
to thetangentplanesof ¢. The Euclideannorm of the shapematrix is the sumof squared
principal curvaturesj.e. total curvature,

k%= ki + k5 =|(ON) (1 = P)||?. (13)

We canuse(13) to definean enegy of the normalmapthatis analogougo the general
enegy function of ¢ definedin (10)

%= [ GUIEN) (1 =P x. (14

The first variation of this enegy with respectto the normalsis a secondorder PDE. It
is crucial to obsere that, even thoughthe projection operatorP is a function of ¢, it
independendf N becausave fix ¢ aswe procesdN. Hence,P doesnotincreasaheorder
of thefirst variationof (14). In contrasttakingthefirst variationof (10) with respecto ¢
directly, would have yieldeda muchharderto solve fourthorderPDEon ¢.

As we procesghe normalmapto minimize (14), letting ¢ lag, we mustensurethatthe
normalvectorsmaintainthe unit length constraint. Solutionsto constrainedptimization
problemsdefinedon non-flatmanifoldsarediscussedn [Bertalmioetal. 2001; Tangetal.
2000]. Using the methodof Lagrangemultipliers, we obtainedthe first variation of the
constraineadtnepgy as

97— —-neN- [N 0 -P)) NG =P )
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whereg is the derivative of G with respecto its agument,k2. We will discussseveral
choicesfor G in Section4. The projectionoperatoy | — N ® N, forcesthe changego N
to be perpendiculato itself in accordancevith the unit lengthconstraint.This operatoiis
differentfrom theotherprojectionoperatoil — P dueto thedecouplingdf N ande. Finally,
thegradientdescenPDE for thenormalsis dN/dt = —d¥ /dN.

3.3 Surface evolution via normal maps

We have showvn how to evolve the normalsto minimize functionsof total curvature;how-
ever, thefinal goalis to procesghe surface,which requiresdeforming@. Therefore the
next stepis to relatethe deformationof the level setsof ¢ to the evolution of N. Suppose
thatwe aregiventhenormalmapN to somesetof surfacesbut not necessarilyevel sets
of g—asis the caseif we filter N andlet ¢ lag. We canmanipulatep sothatit fits the
normalfield N by minimizing a penaltyfunction that quantifiesthe discrepang between
thegradientvectorsof ¢ andthetargetnormalmap. Thatpenaltyfunctionis

D= /u D(¢) dx, where D(¢) = v/O¢-Op— O@-N. (16)

The integrand,which is always a positive scalar is proportionalto the sine of the angle
betweerthe gradientvectorsof ¢ andthetargetnormalvectors.
Thefirst variationof this penaltyfunctionwith respecto ¢ is

7 _ _ [H_
do lI0¢ll

whereH? is the meancurvatureof the level setsurfaceand HN is half the divergence
of the normal map. Then, the gradientdescentPDE that minimizes (16) is dg/dt =
—||0¢||d2/de. Thefactorof ||O¢||, whichis typical with level setformulations[Sethian
1999], comesfrom the fact that we are manipulatingthe shapeof the level set,which is
embeddedn ¢, asin (8). Accordingto (17), the surfacemovesasthe differencebetween
its own meancurvatureandthatof the normalfield.

Theproposedplitting strateyy for solvingfourth-orderdevel-setflows entailsprocessing
the normalsand allowing ¢ to lag andthen be refitted later, in a separateprocess. We
have derived a gradientdescentfor the normal map basedon a certainclassof penalty
functionsthat usethe total curvaturedefinedin Section3.2. This processs denotedin
Figure 3 asthe d¢ /N loop. The surfacerefitting to the normal mapis formulatedas
a gradientdescentn (17). This processis the d2/d¢ loop in Figure 3. The overall
algorithmshawn in Figure3 repeatshesetwo stepsto minimize the penaltyfunctionsin
termsof the surface. We referto both of theseprocesseshack-to-backasoneiteration
of our algorithm. In Appendix(A) we will shav thatthe overall procesf concatenating
thesetwo second-ordePDEsis equivalentto thefourth-orderflow ontheoriginal surface.
An alternatesplitting approachor solving the samefourth-orderlevel-setflows would be
to simultaneouslysolve both second-ordePDEsd¥ /dN anddZ/d¢ usinga Lagrange
multiplier insteadof concatenatinghemaswe have done. This approachwastaken by
Ballesteretal. to solvetheimageinpaintingproblem[2001]. However, this approactuses
aweightedsumof thetwo second-ordePDEs;thereforeit is not clearwhetherit solves
the original fourth-orderflow. Moreover, in our case dueto the significantcomputational
overheadof settingup the diffusion of normalvectors,it is moreefficient to concatenate
thetwo second-ordePDEsandto do multiple consecutreiterationsof d¥ /dN.

N] =—[H?—HY] (17

ACM JournalName,Vol. V, No. N, Month 20YY.



10 . Tolga Tasdizen et al.

Iterate forg
to catchN

Iterate to
processN

Fig.3. Flow chart

4. ISOTROPIC AND ANISOTROPIC DIFFUSION

The flexible normal map enegy minimization and surfacerefitting methodologyintro-

ducedin Section3 allows usto experimentwith variousformsof G in (14) thatgive rise
to differentclassesf penaltyfunctions. The choiceof G(k?) = k2 leadsto anisotropic
diffusion. This choiceworks well for smoothingsurfacesand eliminating noise, but it

alsodeformsor removesimportantfeatures This type of smoothings calledisotropicbe-
causat correspondso solvingthe heatequatioronthe normalmapwith aconstantscalar
conductioncoeficient, which is the sameas Gaussiarsmoothing,for images. Isotropic
diffusion is not particularly effective if the goal is to denoisea surfacethat hasan un-

derlying structurewith fine features. This scenariois commonwhen extracting surfaces
from 3D imaging modalities,suchas magneticresonancemaging (MRI), in which the

measurement@reinherentlynoisy.

The problemof preservingfeatureswhile smoothingaway noisehasbeenstudiedex-
tensvely in computewision. Anisotropicdiffusionintroducedn [PeronaandMalik 1990]
hasbeenvery successfuin dealingwith this problemin a wide rangeof images.Perona
& Malik (P&M) proposedo replacel aplaciansmoothingwhichis equivalentto the heat
equationd! /ot = O- Ol with anonlinearPDE

ol/ot=0-[g(]| Ot ||?) D1, (18)
wherel is generallythegrey-levelimage.This PDEis thefirst variationof
[ e(011R) axay, (19)
U

whereg in (18), the derivative of G with respecto || 0l ||?, is the edgestoppingfunction,
andU istheimagedomain.P&M suggestedsingg(x) = e~ I2%/21 wherep is apositive,
free parametethat controlsthe level of contrastof edgesthat can affect the smoothing
process.Noticethatg(]| Ol ||) approache4 for || Ol ||« p andO for || OI ||>> u. Edges
are generallyassociatedvith large image gradients,and thus diffusion acrossedgesis

ACM JournalName,Vol. V, No. N, Month 20YY.
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stoppedwhile regionsthat are relatively flat undego smoothing. Solutionsto (18) can
actuallyexhibit aninversediffusionnearedgesandcanenhancer sharpersmoothedges
thathave gradientggreatetthanu [PeronaandMalik 1990].

A greatdealof researcthasfocusedon modifiedsecond-ordeflows that producebet-
ter resultsthan MCF. Using level set models,several authorshave proposedsmoothing
surfacesby weightedcombinationsof principle curvatures. For instance Whitaker has
proposeda nonlinearreweightingschemethat favors the smallercurvatureandpreseres
cylindrical structure§1994]. Lorigo et al. proposea smoothingby the minimum curva-
ture[2000]. A variety of othercombinationhave beenproposedSapiro2001]. A similar
setof curvature-basedlgorithmshave beendevelopedfor surfacemeshes.For instance,
Clarenzet al. proposea modified MCF asan anisotropicdiffusion of the surface[2000].
They thresholda weightedsumof the principle curvaturesto determinethe surfaceloca-
tionswhereedgesharpenings needed.Tangentialdisplacements addedto the standard
MCF at theselocationsfor sharpeninghe edges. Although, this flow producesresults
thattendto presere sharpfeaturesijt is not a strict generalizatiorof [Peronaand Malik
1990] anisotropicdiffusionfrom imagesto surfaces.Anothermesh-basedodified MCF
is proposedn [Ohtake etal. 2000]wherea thresholdon themeancurvatureis usedto stop
oversmoothing. Taubin proposesa “linear anisotropic” Laplacianoperatorfor meshes
thatis basedn a separatg@rocessingf thenormals[2001]. It is essentiallya reweighting
of the Laplacian. In a differentcontext, anisotropicdiffusion asa modified surfacearea
minimizationfor heightfunctionswasproposedn [Desbrunetal. 2000].

Thesdevel setandmeshbasednethodsareall modificationsof curvatureflows,andare
thereforeall second-ordeprocessesBecausehey arebasedn reweightingsof curvature,
thesemethodsalwayssmooththe surfacein onedirectionor another They do not exhibit
a sharpeningf details,which is achieved by the P&M equation(for images)throughan
inversediffusion process. Hence,thesemethodsare not satishctory generalization®f
the P&M anisotropidaiffusionequation.The generalizatiorof P&M diffusionto surfaces
requiresa higherordergeometricflow which is achieved from variationalprinciplesby
choosingthe appropriatéunctionof total curvaturein (14). For instance,

«2

K2 LS.
G(k?) =2u? (1— e_2u2> , andg(k?) =e 2, (20)

whereg is the derivative of G with respectio k2. The first variationwith respectto the

surface normalsgives a vectorvaluedanisotropicdiffusion on the level set surface—a
straightforward generalizatiorof (18). This flow preseresor enhancesreasof high cur-

vature,which we will call creases Creasesarethe generalizatiorof edgesin imagesto

surfacegEberly 1996].

4.1 Results

Figure4(a)illustratesan exampleof the skin surface,which wasextracted,via isosurgc-
ing, from anMRI dataset. Notice thattheroughnes®f the skinis noise,anartifactof the
measuremenirocess.This modelis alsoquite complex becausedespiteour bestefforts
to avoid it, theisosuricesncludemary corvolutedpassagespin the sinusesandaround
the neck. Isotropicdiffusion, shavn in Figure4(b), is maminally effective for denoising
the headsurface. Notice thatthe sharpedgesaroundthe eyes,nose lips andearsarelost
in this process.The differencedbetweenanisotropicdiffusion andisotropicdiffusioncan
clearly be obsenedin Figure4(c). Thereis no noticeabledifferencein the resultsof the
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Fig. 4. Processingesultson the MRI headmodel: (a) original isosurfce, (b) isotropic diffusion, and (c)
anisotropiddiffusion. The small protrusionunderthe noseis a physicalmarker usedfor registration.

Fig.5. (a)Noisyvenusheadmodel,and(b) smoothedrersionafterthreeiterationsof anisotropiadiffusion.

two processesroundthe smoothareasof the original model suchas the foreheadand
the cheeks;however, very significantdifferencesxist aroundthe lips andthe eyes. The
creasedn theseareaswhich have beeneliminatedby isotropicdiffusion,arepreseredby
the anisotropicprocess.Note thatthe free parameteiu in (20) wasfixedat 0.1 for all of
theresultsshawvn in this paper Unlike, in P&M imagediffusion, this parametedoesnot
needto be changedor differentsurfacemodels.In the contet of P&M imagediffusion,
theunitsof i arein graylevels;consequentlthe optimalchoiceof u isimagedependent.
However, for surfacestheunitsarein curvature whichis dataindependentThis makesit
possibleto choosea u valuethatgivesconsistentesultsovera broadrangeof surfaces.
The computatiortime requiredfor oneiterationof the main processindoop operating
on this modelis approximatelyl5 minuteson a 1.7 GhzIntel processoffor bothisotropic
and anisotropicdiffusion. The resultsshavn in Figure 4(b) and (c) are both after three
iterationswhich translatego around45 minutesof processindime. The generalityof the
proposedpproacttomesatthecostof significantcomputatiortime. However, themethod
is practicalwith state-of-the-artomputersindis well-poisedto benefitfrom parallelcom-
putingarchitecturesgueto its relianceon local, iterative computations.
Anotherexampleof denoisingoy anisotropiadiffusionis showvn in Figure5. Noisewas
addedto the original model,which in this caseis a 221 x 221x 161volume. After three
iterationsof themainprocessindoop thenoisewassuccessfullyemovedwhile preserving
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Fig. 6. (a) Original brainisosurbcefrom MRI dataset,(b) resultof MCF, and(c) after5 iterationsof anisotropic
diffusion.

the featuresof the original model. The quality of theseresultscomparedavorably with
resultsfrom thesamemodelshavn in [Clarenzetal. 2000]. Ourresultsdemonstratbetter
preseration of fine, sharpdetails, suchasthosearoundthe eyesandin the hair. The
computatiortimesperiterationfor this exampleareapproximatelyfive minutescompared
to 15 minutesperiterationfor the examplein Figure4. Thisis indicative of therelatively
high degreeof compleity of the MRI basednodelin the previousexample.

Figure6(a) shavs a differentisosuriice(the cortex) extractedfrom the sameMRI scan
asthe modelin Figure4. The compleity of this model,i.e. the mary tightly nested
folds, make it ill-suited for meshbaseddeformations. Also, the main cortical surface
hasmary detachedieces,an artifact of the segmentationprocess. As anindication of
this compleity, we note that objectenclosedby the cortical surfacehasmore than 700
connecteccomponents.The approachproposedn this papercanautomaticallysimplify
topologicallynoisy featuresdueto thelevel setimplementation— animportantaspecbf
denoisingmeasuredurfaces.

The examplesin Figure 7 demonstratesnotheraspectof the proposedmethod. Al-
thoughthe original modelin Figure 7(a) was constructedasa volume directly from 3D
rangedata[CurlessandLevoy 1996],it doesnot exhibit significantnoise.Hence,smooth-
ing is donewith the purposeof simplificationof the original modelratherthandenoising
in theseexamples.Runningisotropicdiffusionfor mary stepscreatesalinearscalespace
wheredetailsin the modelare progressiely eliminatedin accordancéo their scale;the
scaleson the skin andthe hornshave beeneliminatedin Figure7(b) andFig 7(c), respec-
tively. Whenrunningthe proposedmethodfor anisotropicdiffusion, however, surfaces
tend toward solutionsthat have piecavise smoothnormalswith sharpdiscontinuitiesin
the normal map—analogou$o the behaior of the P&M equationfor intensity images.
Suchpropertiesn thenormalmapcorrespondo surfacesconsistingof planarpatchesand
smoothpatchesoundedby sharpcreasesThus,the proposednethodgeneratea feature
preservingscalespaceyery muchlike thatof P&M for images.Theseresults,which are
shawvn in Figure 7(d) and (e), supportour propositionthat processinghe normalsof a
surfaceis the naturalgeneralizatiorof image processing.The non-linearprogressiorof
eliminationof detailsfrom the smallestscaleto the largestalso suggestsapplicationsof
this methodto surfacecompressiomndmulti-resolutionmodeling.
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(d) (e

Fig. 7. (a) Original model. Isotropicdiffusion: (b) after 10 iterations,and (c) after 20 iterations. Anisotropic
diffusion: (a) after10iterations,and(b) after20iterations.

Fig.8. (a)Originalmodel,(b) after1, and(c) 2 iterationsof high-boosffiltering.

5. HIGH-BOOST FILTERING

The surfaceprocessingramawork introducedin Section3 is flexible and allows for the
implementatiorof even moregeneraimageprocessingnethods.We demonstratehis by
describinghow to generalizémageenhancemerity high-boosffiltering of surfaces.

A high-boosfilter hasafrequeng transformthatamplifieshigh frequeng components.
In image processingthis can be achieved by unsharpmasking[Gonzalezand Woods
1992]. Let the low-passfiltered versionof animagel bei. The high-frequeng com-
ponentsarel, ; = | — I. The high-boostoutputis the sumof the input imageand some
fraction of its high-frequeng components:

lowt=1+al;=1+a)l—al, (21)
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®

(©) (d)

Fig. 9. High-boosffiltering: (a) original model,(b) afterfiltering, (c) close-upof original,and(d) filtered model.

whereaq is a positive constanthatcontrolstheamountof high-boosffiltering.
This samealgorithm appliesto surfacenormalsby a simple modificationto the flow

chartin Figure3. Recallthatthe d# /dN loop producesN™?. Definea new setof normal
vectorsby

N — (14 a)N"— aN™?
T l(L+ a)NP— aNMHL|

This new normalmapis theninput to the d2/dg refitting loop. The effect of (22) is to

extrapolatefrom the previous setof normalsin the directionoppositeto the setof normals
obtainedby isotropic diffusion. Recall that isotropic diffusion will smoothareaswith

high curvatureandnot significantlyaffect alreadysmoothareas.Processinghe loop with

the modificationof (22) will have the effect of increasingthe curvaturein areasof high

cunvature,while leaving smoothareasrelatively unchanged.Thus,we are ableto obtain
high quality surfaceenhancementn fairly complex surfacesof arbitrarytopology, ascan
beobsenedin Figs.8 and9. Thescaleontheskinandtheridge backareenhancedAlso,

notethatdifferentamountsof enhancementanbe achiezed by controllingthe numberof

iterationsof the mainloop. The degreeof low-passfiltering usedto obtainN"™* controls
the size of the featureghat areenhancedFigure9 shovs anotherexampleof high-boost
filtering; noticethe enhancemertf featuregarticularlyon thewings.

(22)
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6. DISCUSSION

Thenatural generalizatiorof imageprocessingo surfacess via thenormals.Thelowest-
orderdifferentialinvariantof imagess thegradientmagnitudeandminimizingaquadratic
penaltyof this quantityproduceghediffusionequationwhich givesriseto Gaussiarblur-
ring. Thelowest-ordedifferentialinvariantsof surfaceshapearethe principal curvatures.
Lik ewise,the curvatureof a 3D surfaceis a function of the gradientof the surfacenormal
asshawn in Section3.2. In this light, total curvature,which is the Euclideannorm of the
Jacobiarof thevectorfield of surfacenormals,is thenaturalgeneralizatiorof the squared-
gradient-magnitudemoothnesgenaltyfor images. Thus,for surfacesfirst variation of
theisotropic total curvatuie penalty ratherthan MCF, is the equivalentof Gaussiarblur-
ring.

Variationalprocessesn the surfacecurvaturehave correspondingariationalformula-
tionson the surfacenormals. The generalizatiorof image-processintp surfacenormals,
however, requiresthat we processthe normalsusing a metric on the surface manifold,
ratherthana simple, flat metric, aswe do with images. By processinghe normalssep-
arately we cansolve a pair of coupledsecond-ordeequationsnsteadof a fourth-order
equation.Typically, we allow oneequation(thesurface)to lag the other, but asthelaggets
very small, it shouldnot matter In this framawork, the diffusion of the surfacenormals
(andcorrespondingnotionsof the surface)is equivalentto the particularfourth-orderflow
thatminimizesthe surfacetotal curvaturepenaltyfunction.

The methodgeneralizebecausave cando virtually anything we wish with the normal
map. A generalizatiorof anisotropicdiffusionto a constrainedyectorvaluedfunction,
definedon a manifold, givesus a smoothingprocesshat preserescreaseslf we wantto
enhancehe surface,we canenhancahe normalsandrefit the surface.

We solve theseequationsusingimplicit surfaces representinghe implicit functionon
adiscretegrid, modelingthe deformationwith the methodof level sets.This level setim-
plementatiorallows usto separat¢he shapeof themodelfrom theprocessingnechanism.
Becausef theimplementationthe methodappliesequallywell to any surfacethatcanbe
representedh avolume.Consequentlyour resultsshown alevel of surfacecomplexity that
goesbeyondthatof previousmethods.

Futurework will studythe usefulnes®f otherinterestingimageprocessingechniques
suchastotal variation[Rudin etal. 1992;Burchard2002]andlocal contrasienhancement.
To date,we have dealtwith postprocessingsurfaces,but future work will combinethis
methodwith sgmentatiorandreconstructionechniquesThe currentshortcomingof this
methodis the computationtime, which is significant. However, the procesdendsitself
to parallelism,andthe adwentof cheap specializedyectorprocessindrardwarepromises
significantlyfasteimplementations.
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A. MATHEMATICAL FOUNDATION

In this section,we will derive the equivalenceof the proposedalgorithm,in thelimit, to
minimizing the original enegy function % definedin (10). Let us rewrite this enegy
functionby observingthatthe principal curvaturesarefunctionsof the derivativesof ¢

9, = /G | Og || dx. 23)
Letde: 0° — O beavolumeof incrementathangesppliedto ¢ : 02 — 0. Thechange
to ¢ inducedby dg canbe expressedasthe volumeintegral of the total derivative of the

penaltyfunction,dG (@) || D¢ ||, whichis theproductof dg andthevariationof thepenalty
functionwith respecto ¢

_ [ aGlBel)
A7, = /U e dodx (24)

Applying the productrule to M , We obtain

dg¢=/‘; | Do d(pdx+/G Dol d(pdx. (25)
U

4y, dgw,z

Thetotal derivative dG (¢) || Og || canbewritten in termsof the surfacenormalsby using
theequality

dG dG
a0 dqo_w-dN, (26)
giventhatthenormalmapis a functionof ¢. Then,thefirst termin (25) canbewritten as
dG
Dp1= [, g NI Dol dx (27)

ACM JournalName,Vol. V, No. N, Month 20YY.



Geometric Surface Processing via Normal Maps . 19

To simplify (27), we derive dN asafunctionof N andd¢g

N = d 29 —g ¢ (28)
I10ell  ~(0p-0p)Y
d0¢p (dO@-N)N
- - ) 29
I (29)

Equation(29) follows from (28) by usingthe chainrule for the differentiation andsubsti-
tuting N backfor g/ || Og ||. Substituting(29) for dN in (27), we get

dG
<p,1—f (dN d0g— (d0e-N) = )dx. (30)

We areonly interestedn processethat maintainthe unit lengthconstraintof the normal
map;thereforedG/dN - N = 0, and(30) is reducedo

dG
p1= dN

wherewe also usethe linearity of differentiationto make the substitutiondCg = COdg.
We treatthis enegy minimizationasanadiabaticproblem,which meanghatenegy flow
acrosgheboundaryof U is zero. Hence,usingNeumanrboundaryconditionsfor U and
integrationby parts,we obtain

-Odedx, (31)

d%l:/ uf d—quodx (32)
? U

We now examinethe secondtermin (25), d¢, 2. As in Section3.2, we treatG asa
function of N; therefore,dueto the decoupllngbetweenN and ¢, G canbe considered
independendf ¢. Usingthis assumptionwe canrewrite d%’ as

dGN || Dg ||
d¥,, = /U —dp do dx, (33)

wherethe superscrippbn GN is to meanthat G is fixed with respecto ¢. Taking the first
variationof dGN || D || yields

Oe
4 _/ (GN >d dx, 34
02= |, A (34)

wherewe usethefactthatd || O¢ || /d0O¢@ = O¢/ || O¢||. Finally, combiningequations
(24), (32), and (34), we canderive the desiredrelationshipbetweenthe variationswith

respecto @ andN
d(G| Dol (dG n_ o )
——=0- +G —— . 35
dg aN " T Oe] 49

Let usnow considerthe flow achieved by processind15) and(17) backto backin one
iterationof themainloop in Figure3 again. At the beginning of iterationn, the normals
arecomputedrom ¢". If we evolve the normalsfor onestepaccordingto (15), insteadof
processinghemmultiple iterations the new normalsare

n+1 __ n dG
N =N"— aN’ (36)
ACM JournalName,Vol. V, No. N, Month 20YY.
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wherewe write g—ﬁ insteadof g—ﬁ becauseve arereferringto the updatefor N ata specific
pointin spacelf weimmediatelyapply (17)to fit ¢ to this new normalmap,we get

dD n dG
— =H? —0-(N"— — 37
iy ( dN) , (37)
whereD is thelocal functiondefinedin (16). BecauseN" is deriveddirectly from ¢", we
have 0-N = H?", which givestherule in our algorithmto make up this infinitesimallag:

dD dG
do = AN’ (38)
Comparingwith (35), we find therule to descenan the enegy asafunctionof ¢
d(G[[Ogl)) _dD ( n_Do )
———=——+0- |G == |. 39
do  ~ dp 1001 49

This establishethemathematicaloundationof our method.However, in ourexperiments,
we havefoundthatthecontribution of thesecondermis very smallandit doesnotchange
theresultsqualitatvely. Thereforewe dropit for the sake of computationaéfficiency, and
implementonly ?i_t?a asdescribedn Section3.

B. NUMERICAL IMPLEMENTATION

By embeddingsurfacemodelsin volumes,we have corvertedequationghatdescribethe
movementof surfacepointsto nonlinearPDEsdefinedon a volume. The next stepis to
discretizethesePDEsin spaceandtime. In this papertheembeddingunction ¢ is defined
on the volumedomainU andtime. The PDEsare solved usinga discretesamplingwith
forwarddifferencesalongthetime axis.

For brevity, we will discusghe numericalimplementatiorin 2D— the extensionto 3D
is straightforvard. The function ¢ : U — O hasa discretesampling@[p, g], where[p,q]
is a grid location and ¢[p,q] = @(Xp,Yq). We will referto a specifictime instanceof
this functionwith superscriptsi.e. ¢"[p,qd] = @(Xp,Yq,tn) . In our calculationswe need
threedifferentapproximationdo first-orderderiatives: forward, backward, and central
differences.We denotethe type of discretedifferenceusing superscript®on a difference
operatori.e., 5*) for forwarddifferencesd(~) for backwarddifferencesandd for central
differences. For instance the differencedn the x directionon a discretegrid with unit
spacingare

5 glp,q]
5 ¢lp.q]
&@[p,q]

olp+1,q —¢[p,q,

o[p,q] — ¢[p—1,q],and (40)

@lp+1,0q—¢[p—1,q]
5 .

The applicationof thesedifferenceoperatorgo vectorvaluedfunctionsdenotescompo-
nentwisedifferentiation.

In describingthe numericalimplementationwe will referto the flow chartin Figure3
for oneiterationof the mainloop. Hence the first stepin our numericalimplementation
is the calculationof the surfacenormalvectorsfrom ¢". Recallthatthe surfaceis alevel
setof @" asdefinedin (7). Hence the surfacenormalvectorscanbe computedasthe unit

e e

>

ACM JournalName,Vol. V, No. N, Month 20YY.



Geometric Surface Processing via Normal Maps . 21

vectorin the directionof the gradientof ¢". The gradientof ¢" is computedwith central
differencesas

&o" )
Og" ~ ; 41
® ( &9 (41)
andthenormalvectorsareinitialized as
NU=0 = 0¢"/[|0¢"]|. (42)

Becausep" is fixed and allowed to lag behindthe evolution of N, the time stepsin the
evolution of N are denotedwith a differentsuperscriptu. For this evolution, dN/dt =
—d¢/dN , whichis derivedin (15).

We now describehow to numericallycomputed¥ /dN. This computationis imple-
mentedwith smallessupportareaoperatorswhich usethesmallesipossibleneighborhood
of voxelsto computethe requiredoutput. The Laplacianof a functioncanbe computedn
two stepsby first applyingthe gradientoperatorandthenthe divergenceoperator In 2D,
the gradientof the normalsproducesa 2 x 2 matrix, which we call the flux matrix. Next,
the divergenceoperatorcollapseghe flux matrixto a 2 x 1 vector The “columns” of the
flux matrix arecomputedndependenthas

MU SFINY — (@(+) (pn) éru’ (43)
I\ﬁ“ ~ 5s$+)Nu_ (555+)(pn) cy:+u (44)

wherethe time index n remainsfixed aswe incrementu. The positionsof M, which is
computedvith forwarddifferencesarestaggeredff thegrid by half apixel, seeFigure10.

X+
For instance MY usesinformationfrom positions[p+ 1,q] and[p,q]; hence,it exists at

[p+1/2,q]. We usethefollowing notation:for somefunctiona, o, anda will denotethe
functioncomputedat[p+ 1/2,q] and[p,q-+ 1/2], respectiely.

X+
To computethe intrinsic derivativesof NY on the level setsof ¢", (6>§+)qo“) CY, and

y+ X y+
(6§+)q)”) CY aresubtractedrom the regular derivativesof NY. The variablesCY and Ct
arecomputedasfollows

Xt x+u‘ Xt Xt
C" = ON"-DO¢" / (|07, (45)
y+ y+ y+ y+ 2
C" = ON"-O¢" / 1095, (46)

X+

wherethematrix ON is asdefinedin (12). In (45), thedot productbetweerthematrix N
X+ X+

andthe vectorg¢" / ||0¢"||?> denoteshe vectorwhosecomponentsrethe dot products
X+ X+ X+

of therows of ONY andthevectorC¢" / ||0¢"||2. Thesameappliesto (46). Thevariables

o+ v+
(45) and(46) mustbe computedat the samelocationsaleI Y andM"Y, respectiely. These
computationgredonewith the smallestsupportareaoperatorsusingthe symmetric2 x 3
grid of samplesaroundeachstaggeregoint. For instance the staggeredyradientsof ¢,
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g1
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~ M
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—@ @ @—
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® — Grid for N, @, and dG/dN
O — Grid for M

Fig. 10. Computationagrid.

which areneededor the evaluating(45) and(46), arecomputedas

T 5 glp,q]

So= 0950~ L(&0lp,cl+ &,0p+1,a)) )
v+ 1

P D(p”[p,q-i-%] ~ ( z(5x¢[pé?]+)+¢?;foé]p,q+l]) )

X:
The staggeredjradientmatricesof the normals,Dltlu and Dyltl“, which arealsoneededor
evaluating(45) and(46), arecomputedvith the samestencil.
After the computatiorof theflux, backwardsdifferencesareusedto computethe diver-
genceoperationin (15). For isotropicdiffusion,

(47)

x+ v+
A =57 MY+ MY, (48)
andfrom (15)
_|4#
dN
Theresultsof the backwardsdifferencingaredefinedat the original ¢ grid location[p, g]
becausehey undothe forward staggeringn the flux locations. Therefore,both compo-
nentsof A andthusd¥ /dN arelocatedon the original grid for ¢.
To evaluate(15) for anisotropicdiffusion, we alsoneedto computeg(k?) atthe precise

locationswherethe flux (43) and(44) arelocated. Hence,we computethe total intrinsic
curvatureof thenormals

]um(l —NU@NY) AU = AY— (AU NUYNY, (49)

X+ x+ X+ X+
k? = [|[ONY|[? —c"-CY,
v v+ v+ Y+
k% = [JONY||2—CY-CY, (50)

where|| - ||? is the Euclideannorm, the sumof the squaref all elementsof the matrix.
ACM JournalName,Vol. V, No. N, Month 20YY.
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Then,thedivergencefor anisotropiadiffusionis computedas

X+ X+ y+ y+

20 = &) g Y] + &) g0 e, 1)
andthetangentialprojectionis appliedto this vectorasin (49).
Startingwith theinitializationin (42) for u = 0, weiterate
NLH—l — Nu _ % ! (52)
dN

for a fixed numberof steps,25 iterationsfor the examplesin this paper In otherwords,
we do notaim at minimizing the enegy givenin (14) in thed¥ /dN loop of Figure3; we
only reduceit. Theminimizationof total meancurvatureasa functionof ¢ is achievedby
iteratingthe mainloopin Figure3.

Oncetheevolution of N is concluded g is refittedto the new normalvectorsaccording
to (17). We denotethe evolvednormalsby N™1. To solve (17) we mustcalculateH? and
HNM, which is the inducedmeancurvatureof the normalmap;in otherwords, it is the
cunvatureof thehypotheticatargetsurfacethatfits thenormalmap. Curvaturefrom afield
of normalsis givenby

HN™ ~ SNDEL 4+ N, (53)
wherewe have usedcentraldifferenceson the component®f the normalvectorsthatare
denotedby the subscriptgx) and(y). The quantityHNn+1 needsto be computedonceat
initialization asthe normalvectorsremainfixed during the refitting phase. Let v be the
time stepindex in the d2/dg loop. H?" is the meancurvatureof the moving level set
surfaceattime stepv andis calculatedrom ¢ with the smallestareaof support

(+) (v (+) "
H A 5x(—)5xx_+¢’ L&) d/yf” (54)
|Imtogd] 10¢]|
wherethe gradientsin the denominatorsare staggeredo matchthe locationsof the for-
ward differencesn the numerator The staggeredyradientsof ¢ in the denominatorare
calculatedusingthe 2x 3 neighborhoodhsin (47).

ThePDEin (17)is solvedwith afinite forwarddifferencesbhut with theupwindscheme
for the gradientmagnitudgOsherand Sethian1988], to avoid overshootingandmaintain
stability. The up-wind methodcomputesa one-sidedderivative thatlooksin the up-wind
directionof the moving wave front, andtherebyavoids overshooting.Moreover, because
we areinterestedn only a singlelevel setof ¢, solving(17) overall of U is notnecessary
Differentlevel setsevolve independentlyand we can computethe evolution of ¢ only
in a narrov bandaroundthe level setof interestandre-initialize this bandas necessary
[AdalsteinsorandSethian1995;Penget al. 1999]. See[Sethian1999]for moredetailson
numericalschemesndefficient solutionsfor level setmethods.

Usingthe upwindschemendnarrav bandmethods @'+ is computedrom ¢’ accord-
ing to (17) usingthe curvaturescomputedn (53) and(54). This loopis iterateduntil the
enegy in (16) ceasedo decreaselet vy, ., denotethe final iteration of this loop. Then
we set@ for the next iterationof themainloop (seeFigure3) as@™?! = ¢'fna andrepeat
the entire procedure.The numberof iterationsof the mainloop is a free parametethat
generallydetermineshe extentof processing.

ACM JournalName,Vol. V, No. N, Month 20YY.



TO APPEAR IN |EEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2004 2

A Streaming Narrow-Band Algorithm: Interactive
Computation and Visualization of Level Sets

Aaron E. Lefohn, Joe M. Kniss, Charles D. Hansen, Ross T. Whitaker
(Invited Paper)

Fig. 1. Interactive level-set segmentation of a brain tumor from a 256 x
256 x 198 MRI with volume rendering to give context to the segmented
surface. A clipping plane shows the user the source data, the volume rendering,
and the segmentation simultaneously. The segmentation and volume rendering
parameters are set by the user probing data values on the clipping plane.

Abstract— Deformable isosurfaces, implemented with level-set
methods, have demonstrated a great potential in visualization and

I. INTRODUCTION

Level-set methods [1] rely on partial differential equations
(PDEs) to model deforming isosurfaces. These methods have
applications in awide range of fields such as visualization, sci-
entific computing, computer graphics, and computer vision [2],
[3]. Applications in visualization include volume segmenta
tion [4], surface processing [5], and surface reconstruction [6].

The use of level sets in visualization can be problematic.
Level sets are relatively slow to compute and they typicaly
introduce several free parameters that control the surface
deformation and the quality of the results. Setting these free
parameters can be difficult because, in many scenarios, a
user must wait minutes or hours to observe the results of a
parameter change. Although efforts have been made to take
advantage of the sparse nature of the computation, the most
highly optimized solvers are till far from interactive. This
paper proposes a solution to the above problems by mapping
the level-set PDE solver to a commodity graphics processor.

While the proposed technology has a wide range of uses
within visualization and elsewhere, this paper focuses on a
particular application: the analysis and visualization of volume
data. By accelerating the PDE solver to interactive rates and
coupling it to a real-time volume renderer, it is possible to
visualize and steer the computation of a level-set surface as it
moves toward interesting regions within a volume. The volume

computer graphics for applications such as segmentation, surface g - !
processing, and physically-based modeling. Their usefulness hasrenderer provides visual context for the evolving level set due

been limited, however, by their high computational cost and to the global nature of the transfer function’s opacity and color
reliance on significant parameter tuning. This paper presents assignment. Also, the results of a level-set segmentation can
a solution to these challenges by describing graphics processorspecify a region-of-interest for the volume renderer [7].

(GPU) based algorithms for solving and visualizing level-set . . . ]
solutions at interactive rates. The proposed solution is based on T he main contributions of this paper are:

a new, streaming implementation of the narrow-band algorithm.
The new algorithm packs the level-set isosurface data into
2D texture memory via a multi-dimensional virtual memory

system. As the level-set moves, this texture-based representation
is dynamically updated via a novel GPU-to-CPU message passing

scheme. By integrating the level-set solver with a real-time volume
renderer, a user can visualize and intuitively steer the level-set

surface as it evolves. We demonstrate the capabilities of this

technology for interactive volume segmentation and visualization.

Index Terms— Deformable Models, Image Segmentation, Vol-
ume Visualization, GPU, Level Sets, Streaming Computation,
Virtual Memory

All authors are associated with the Scientific Computing and Imaging
Ingtitute at the University of Utah.
e-mail:{lefohn|jmk|hansen|whitaker } @sci.utah.edu

o Anintegrated system demonstrating that level-set compu-
tations can be intuitively controlled by coupling a real-
time volume renderer with an interactive solver

o A GPU-based 3D level-set solver that is approximately
15 times faster than previous optimized solutions

o A multi-dimensiona virtual memory scheme for GPU
texture memory that supports computation on time-
dependent, sparse data

« Readl-time volume rendering directly from a packed, 2D
texture format. The technique also enables volume ren-
dering from a data set represented as a single set of 2D
dlices.

o A message passing scheme between the GPU and CPU
that uses automatic mipmap generation to create compact,
encoded messages

« Efficient computation of a volumetric distance transform
on the GPU
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Il. BACKGROUND AND RELATED WORK
A. Level Sets

This paper describes a new solver for an implicit repre-
sentation of deformable surface models called the method
of level sets [1]. The use of level sets has been widely
documented in the visudlization literature, and several works
give comprehensive reviews of the method and the associated
numerical techniques [2], [3]. Here we merely review the
notation and describe the particular formulation that is relevant
to this paper.

An implicit model represents a surface as the set of points
S = {z|¢(z) = 0}, where ¢ : R® — R. Level-set methods
relate the motion of that surface to a PDE on the volume, i.e.

¢/t = —V¢ - T, 1)

where ¢ describes the motion of the surface. Note that ©
can vary in both space and time. Within this framework one
can implement a wide range of deformations by defining an
appropriate v. This velocity term is often a combination of
several other terms, including data-dependent terms, geometric
terms (e.g. curvature), and others. In many applications, these
velocities introduce free parameters, and the proper tuning
of those parameters is critical to making the level-set model
behave in a desirable manner. Equation (1) is the general form
of the level-set equation, which can be tuned for wide variety
of problems and which motivates the architecture of our solver.

The proposed solver addresses the issues surrounding the
solutions of (1). For this paper, however, we restrict the
discussion on the particular form of this equation that is
suitable for the segmentation application described in Sect. VI-
A. This specia case of (1) occurs when & = G(Z, t)ii, where
7 is the surface normal and G is a scalar field, which we refer
to as the speed of the level set. In this case (1) becomes

96/t = —|V|G. @

Equation (2) describes a surface motion in the direction of the
surface normal, and thus the volume enclosed by the surface
expands or contracts, depending on the sign and magnitude of
G.

Another important specia case occurs when G, in (2), isthe
mean curvature of the level-set surface. The mean curvature
of the level sets of ¢ are expressed as

H=_V =" €)

In volume segmentation and surface reconstruction this mean
curvature term is typically combined with an application-
specific data term in order to obtain a smooth result that
reflects interesting properties in the data.

There is a special case of (1) in which the surface mo-
tion is strictly inward or outward. In such cases the PDE
can be solved somewhat efficiently using the fast marching
method [3] and variations thereof [8]. However, this case
covers only a very small subset of interesting speed functions.
In general, we are concerned with solutions that allow the
model to expand and contract as well as include a curvature
term.

1

itialli 3

|n|t|a||I.ZE 4 Execute . Updat'e |
Computational Kernel omputat.lona

Domain Domain

Fig. 2. The three fundamental stepsin a sparse-grid solver. Step 1 initiaizes
the sparse computational domain. Step 2 executes the computational kernel
on each element in the domain. Step 3 updates the domain if necessary. Steps
2 and 3 are repeated for each solver iteration.

Efficient algorithms for solving the more general equation
rely on the observation that at any one time step the only
parts of the solution that are important are those adjacent
to the moving surface (near points where ¢ = 0). This
observation places level-set solvers as part of a larger class
of solvers that efficiently operate on time-dependent, sparse
computational domains—i.e. a subset of the origina problem
domain (Figure 2).

Two of the most common CPU-based level-set solver tech-
niques are the narrow-band [9] and sparse-field [6], [10]
methods. Both approaches limit the computation to a narrow
region near the isosurface yet store the complete computational
domain in memory. The narrow-band approach implements the
initialization and update steps in Figure 2 (Steps 1 and 3) by
updating the embedding, ¢, on a band of 10-20 pixels around
the model, using a signed distance transform implemented with
the fast marching method [3]. The band is reinitialized when-
ever the model (defined as a particular level set) approaches
the edge. In contrast, the sparse-field method only traverses the
complete domain during the initialization step of the algorithm
in Figure 2. The sparse-field approach keeps a linked list of
active data elements. The list is incrementally updated via a
distance transform after each iteration. Even with this very
narrow band of computation, update rates using conventional
processors on typical resolutions (e.g. 256 voxels) are not
interactive. This is the motivation behind our GPU-based
solver. Although the new solver borrows ideas from both
the narrow-band and sparse-field algorithms, it implements a
new solution that conforms to the architectural restrictions of
GPUs.

B. Scientific Computation on Graphics Processors

Graphics processing units have been developed primarily
for the computer gaming industry, but over the last severa
years researchers have come to recognize them as a low cost,
high performance computing platform. Two important trends
in GPU development, increased programmability and higher
precision arithmetic processing, have helped to foster new non-
gaming applications.

For many data-parallel computations, graphics processors
out-perform central processing units (CPUs) by more than an
order of magnitude because of their streaming architecture [11]
and dedicated high-speed memory. In the streaming model of
computation, arrays of input data are processed identically by
the same computation kernel to produce output data streams.
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In contrast to vector architectures, the computation kernel
in a streaming architecture may consist of many (possibly
thousands) of instructions and use temporary registers to hold
intermediate values. The GPU takes advantage of the data-
level parallelism inherent in the streaming model by having
many identical processing units execute the computation in
parallel.

Currently GPUs must be programmed via graphics APIs
such as OpenGL or DirectX. Therefore all computations must
be cast in terms of computer graphics primitives such as
vertices, textures, texture coordinates, etc. Figure 3 depicts the
computation pipeline of a typical GPU. Vertices and texture
coordinates are first processed by the vertex processor. The
rasterizer then interpolates across the primitives defined by
the vertices and generates fragments (i.e. pixels). The fragment
processor applies textures and/or performs computations that
determine the final pixel value. A render passis a set of data
passing completely through this pipeline. It can also be thought
of as the complete processing of a stream by a given kernel
(i.e. a ForEach call).

Grid-based computations are solved by first transferring
the initial data into texture memory. The GPU performs the
computation by rendering graphics primitives that access this
texture. In the simplest case, a computation is performed on all
elements of a 2D texture by drawing a quadrilateral that covers
the same number of grid points (pixels) as the texture. Memory
addresses that identify each fragment’s data value as well as
the location of its neighbors are given as texture coordinates.
A fragment program (the kernel) then uses these addresses
to read data from texture memory, perform the computation,
and write the result back to texture memory. A 3D grid
is processed as a sequence of 2D dlices. This computation
model has been used by a number of researchers to map
a wide variety of computationally demanding problems to
GPUs. Examples include matrix multiplication, finite element
methods, multi-grid solvers, and others [12]{14]. All of these
examples demonstrate a homogeneous sequence of operations
over a densely populated grid structure.

Strzodka et al. [15] were the first to show that the level-
set equations could be solved using a graphics processor.
Their solver implements the two-dimensional level-set method
using a time-invariant speed function for flood-fill-like image
segmentation, without the associated curvature. Lefohn and
Whitaker demonstrate a full three dimensional level-set solver,
with curvature, running on a graphics processor [16]. Neither
of these approaches, however, take advantage of the sparse
nature of level-set PDEs and therefore they perform only
marginally better (e.g. twice as fast) than sparse or narrow
band CPU implementations.

This paper presents a GPU computational model that sup-
ports time-dependent, sparse grid problems. These problems
are difficult to solve efficiently with GPUs for two reasons. The
first isthat in order to take advantage of the GPU’s parallelism,
the streams being processed must be large, contiguous blocks
of data, and thus grid points near the level-set surface model
must be packed into a small number of textures. The second
difficulty is that the level set moves with each time step,
and thus the packed representation must readily adapt to the

Vertex & Texture
Coordinate data

Rasterize

Texture data

Frame/Pixel Buffer
T TTTT

T

Fig. 3. The modern graphics processor pipeline.

changing position of the model. This requirement isin contrast
to the recent sparse matrix solvers [17], [18] and previous
work on rendering with compressed data [19], [20]. Recent
work by Sherbondy et a. [21] describes an aternative time-
dependent, sparse GPU computation model which is discussed
in Section VI-C.

C. Hardware-Accelerated Volume Rendering

Volume rendering is a flexible and efficient technique for
creating images from 3D data [22]{24]. With the advent of
dedicated hardware for rasterization and texturing, interactive
volume rendering has become one of the most widely used
techniques for visualizing moderately sized 3D rectilinear
data [25], [26]. In recent years, graphics hardware has become
more programmable, permitting rendering features with an
image quality that rival sophisticated software techniques [27],
[28]. In this paper, we describe a novel volume rendering
system that leverages programmable graphics hardware to
render the packed level-set solution data.

I1l. A VIRTUAL MEMORY ADDRESS SCHEME FOR SPARSE
COMPUTATION

The limited computational capabilities of modern GPUs,
their data-parallel streaming architecture, and our goa of
interactive performance impose some important design re-
strictions on the proposed solver. For instance, the data-
paralel computation model regquires homogeneous operations
on the entire computational domain, and memory constraints
require us to process and store only the active domain on the
computational processor (i.e. the GPU). Furthermore, GPUs do
not support scatter write operations, and the communication
bandwidth between the GPU and CPU is insufficient to allow
transmission of any significant portion of the computational
domain. Our new streaming, narrow-band level-set solver
works efficiently within these restrictions and leverages GPU
capabilities by packing the active computational domain into
2D texture memory. The GPU solves the 3D, level-set PDE
directly on this packed format and quickly updates the packed
representation after each solver iteration.

Re-mapping the computational domain (a subset of a vol-
ume) to take advantage of the GPU’s capabilities has the unfor-
tunate effect of making the computational kernels extremely
complicated—that is difficult to design, debug, and modify.
The kernel programmer must take the physical memory layout
into consideration each time the kernel addresses memory.
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Other researchers have successfully re-mapped computational
domains to efficiently leverage the GPU’s capabilities [12],
[17], [18], [29], but they invariably describe these complex
kernels in terms of the physical memory layout. This section
presents a solution to this problem for level-set computation
that allows kernels to access memory asif it were stored in the
original, 3D domain—irrespective of the 2D physical layout
used on the GPU. Our solution is an extension to the virtual
memory systems used in modern operating systems.

A. Traditional Virtual Memory Overview

Nearly al modern operating systems contain a virtual
memory system [30]. The purpose of virtual memory isto give
the programmer the illusion that the application has access
to a contiguous memory address space, while alowing the
operating system to alocate memory for each process on
demand, in manageable increments, from whatever physical
resources happen to be available. Note that there are two
meanings of virtual memory. The first is the mapping from a
logical address space to a physical address space. The second
is the mechanism for mapping logical memory onto a physical
memory hierarchy (e.g. main memory, disk, etc). For this
discussion, virtual memory only refersto the former definition.

Virtual memory works by adding a level of indirection
between physical memory and the memory accessed by an
application. Most conventional virtual memory systems divide
physical and virtual memory into equaly sized pages. The
data addressed by an application’s contiguous virtual address
space will often be stored in many, disconnected physical
memory pages. A page table tracks the mapping from virtual
to physical memory pages. When an application requests
memory, the system alocates physical memory pages and
updates the page table. Note that the virtual and physical pages
are identically sized.

When an application accesses memory via avirtual address,
the system must first perform a virtua-to-physical address
trandation. The virtual address, VA, is first converted to a
virtual page number, VPN. The system uses the page table to
convert the VPN to a physical page address, PPA. The PPA is
the physical address of the first element in a page. Finally, the
memory system obtains the physical address, PA, by adding
the PPA to the offset, OFF. The OFF is the linear distance
between the virtual address and the beginning of the virtua
page which contains it. The address computation is

VPN %{g]

PPA «— PageTable(VPN) (4
OFF «— mod(VA,S[P])

PA  — PPA + OFF,

where S[P] is the size of a memory page.

B. Multi-Dimensional Mirtual Memory for GPUs

The virtual memory system used in our solver is a multi-
dimensional extension of the traditional virtual memory sys-
tem described in Section I11-A.

Traditional virtual memory systems use one-dimensional
virtual and physical address spaces. Our system uses a 3D

...........................................................................................................................

Physical Memory (G) Physical Page (Gp)

Fig. 4. The multi-dimensional virtual and physical memory spaces used
in our virtual memory system. The origina problem space is V, the virtual
address space. The virtual page space, Vp, is a subdivided version of V.
Virtual memory pages are mapped to the physical page space, Gp, by the
page table. The inverse page table maps physical pages in Gp to virtua
pages in Vp. The collection of al elementsin Gp constitute G, the physical
memory of the hardware.

virtual and a 2D physica memory address space. We use a
3D virtual memory space because the level-set computation is
inherently volumetric. The 2D physical memory address space
is motivated by the fact that GPUs are optimized to process
2D memory regions. By using a 2D physical address space,
we are able to process the entire active volumetric domain
simultaneously. This maximizes the benefit of the paralld,
SIMD architecture of the GPU. We also make the simplifying
assumption that virtual and physical pages are identica in
dimension and size. Thus, the virtual space is not partitioned
equally in all axes: 2D pages must be stacked in 3D to populate
the problem domain as seen in Figure 4. Our system uses
pages of size S[P] = (16,16). This size represents a good
compromise between a tight fit to the narrow computational
domain and the overhead of managing and computing pages.
Empirical results validate this choice.

We now introduce notation for the various address spaces
in our system. We notate the space of K-length vectors of
integers as Z. The set of al voxels in the 3D virtual address
space (i.e. the problem domain) is defined as V c Z3. Each
of the virtual memory pages is a set of contiguous voxels in
V; the space of al virtual pages is Vp (Figure 4). Similarly,
the physical address space, G C Z?, is subdivided into pages
to form the physical page space, Gp. The elements within
a virtual or physica page are addressed identically using
elements of P C Z2. We aso define a size operator for the 2D
and 3D spaces described above. For X in {V,Vp, G, Gp, P},
we define S[X] to be a 2-vector or 3-vector (according to
the dimension of X) giving the number of elements along
each axis of the space X. Note that S[Vp] = S[V]/S[P] and
S[Gp] = S[G]/S[P] (using component-wise division).

Virtual-to-physical  address trandation in a multi-
dimensional virtual memory system works anaogously
to the 1D algorithm. Virtual addresses are now 3D position
vectors in V and physical addresses are 2D vectors in G.
The page table is a 3D table that returns 2D physical page
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Page Table

Virtual memory space V' Physical memory space G

Fig. 5. The virtual-to-physical address trandation scheme in our multi-
dimensional virtual memory system. A 3D virtual address, VA, is first
trandated to a virtua page number, VPN. A page table translates the VPN
to a physical page address, PPA. The PPA specifies the origin of the physical
page containing the physical address, PA. The offset is then computed based
on the virtual address and used to obtain the final 2D physical address, PA.

addresses. With these multi-dimensional definitions in mind,
Eq (4) still applies to the vector-valued quantities. Figure 5
shows an example multi-dimensional address trandation.

For the level-set solver in this paper, the multi-dimensional
virtual memory system is implemented in part by the CPU and
in part by the GPU. The CPU manages the page table, handles
memory allocation/deallocation requests, and trandates VPNs
to PPAs. The GPU issues memory allocation/deallocation re-
quests and computes physical addresses. We further divide the
GPU tasks between the various processors on the GPU. The
fragment processor creates memory allocation/deallocation re-
quests. The address trand ation implementation uses the vertex
processor and rasterizer to compute all PAs. Sections |11-C
and 111-D describe the architectural and efficiency reasons
for assigning the various virtual memory tasks to specific
processors.

C. Virtual-to-Physical Address Translation

This section explains the details of the virtual-to-physical
address scheme used in our GPU-based virtual memory sys-
tem. Because the trandation algorithm is executed each time
the kernel accesses memory, its optimization is fundamental
to the success of our method.

The simplest and most general way to implement the
virtual-to-physical address tranglation for a GPU-based virtual
memory system is to directly implement the computation in
(4) and store the page table on the GPU as a 3D texture. A
significant benefit of this approach is that it is completely gen-
eral. Unfortunately, without dedicated memory-management
hardware to accelerate the tranglation, this scheme suffers from
severa efficiency problems. First, the page table lookup means
that a dependent texture read is required for each memory
access. A dependent texture is defined as using the result
of one texture lookup to index into another. This may cause
a significant loss in performance on current GPUs. Second,
storing the page table on the GPU consumes limited texture
memory. The third problem is that a divide, modulus, and
addition operation are required for each memory access. This
consumes costly and limited fragment program instructions.
Note that Section I11-D discusses other problems with storing
the page table on the GPU related to the limited capabilities
of current GPU architectures.

A B Zivi
: Z;
=

i : Zi-l

Edge Interior

L -
o = P> = P
- C >
Edge Corner
Fig. 6. The substream boundary cases used to staticaly resolve the

conditionals arising from 3 x 3 x 3 neighbor accesses across memory page
boundaries. The nine substream cases are: interior, left edge, right edge, top
edge, bottom edge, lower-left corner, lower-right corner, upper-right corner,
and upper-left corner (). The interior case accesses its neighbors from only
three memory pages (b). The edge cases require six pages (c), and the corner
cases require twelve memory pages (d). Note that for reasonably large page
sizes, the more cache-friendly interior case has by far the highest number of
data elements.

We can avoid the memory and computational inefficien-
cies that arise from storing the page table on the GPU by
examining the pattern of virtual addresses required by the
application’s fragment program. In the case of our level-set
solver, the fragment programs only use virtual addresses within
a 3 x 3 x 3 neighborhood of each active data element. This
means that each active memory page will only access adjacent
virtual memory pages (Figure 6). Moreover, we show that this
simplified trandation case makes it possible to lift the entire
address trandation from the fragment processor to the vertex
processor and rasterizer.

Once we resolve the virtual addresses used by a fragment
program, we can determine which virtual pages each active
page will access. With this relative page information, the
GPU can perform the virtual-to-physical address trandation
without a page table in texture memory. The CPU makes this
possible by sending the PPAs for al required pages to the
GPU as texture coordinates. The GPU can then use the relative
neighbor offset vectors to decide which adjacent page contains
the requested value (see Figure 6(a)).

The GPU’s task of deciding which adjacent page contains
a specific neighbor value unfortunately requires a significant
amount of conditional logic. This logic must classify each
data element into one of nine boundary cases: one of the four
corners, one of the four edges, or an interior element (see
Figure 6). Unfortunately current fragment processors do not
support conditional execution. This logic could aternatively
be encoded into a texture; however, this would again force
the use of an expensive dependent texture read. Just as
statically resolving virtual addresses allowed us to optimize
the GPU computation, al active data elements can be pre-
classified into the nine boundary cases. The result is that all
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memory addresses used in each case will lie on the same
pages relative to each active page (see Figure 6). In other
words, the memory-page-locating logic has been staticaly
resolved by pre-classifying data elements into their respective
boundary cases. The data elements for these substream cases
are generated by drawing unique geometry for each case. The
corner substream cases are represented as points, the edges as
lines, and the interior regions as quadrilaterals.

Kapasi et al. [31] describe an efficient solution to con-
ditional execution in streaming architectures. Their solution
is to route stream elements to different processing elements
based on the code branch. Substreams are merely a static
implementation of this data routing solution to conditional
execution. The advantage is that the computation kernel run on
each substream contains no conditional logic and is optimized
specifically for that case. Our solution additionally gains from
optimized cache behavior for the most common, interior, case
(77% of the data points in a 16 x 16 page). The interior
data elements require only three memory pages to access all
neighbors (Figure 6(b)). In comparison, reading all neighbors
for an edge element requires loading six pages (Figure 6(c)).
The corner cases reguire twelve pages from disparate regions
of physica memory(Figure 6(d)). The corner cases account
for less than 2% of the active data elements.

With the use of substreams, the GPU can additionaly
optimize the address computation by computing physical ad-
dresses with the vertex processor rather than the fragment
processor. Because all data elements (i.e. fragments) use
exactly the same relative memory addresses, the offset and
physical address computation steps of (4) can be generated by
interpolating between substream vertex locations. The vertex
processor and rasterizer can thus perform the entire address
trangdlation. This optimization distributes computationa |oad
to under-utilized processing units and reduces the number of
limited and expensive fragment instructions.

D. Bootstrapping the Virtual Memory System

This section describes the steps required to initiaize the
GPU virtual memory system. To begin, the application speci-
fies the page size, J[P], the virtual page space size, S[Vp], and
the fundamental data type to use (i.e. 32-bit floating point, 16-
bit fixed point, etc.). The virtual memory system then allocates
an initia physical memory buffer on the GPU. It also creates
a page table, an inverse page table, a geometry engine, and
a stack of free pages on the CPU. The decision to place the
aforementioned data structures on the CPU is based on the
efficiency concerns described in Section 111-C as well as GPU
architectural restrictions. These restrictions include: the GPU’s
lack of random write access to memory, lack of writable 3D
textures, lack of dynamically sized output buffers, and limited
GPU memory.

The page table is defined to store a MemoryPage object
that contains the vertices and texture coordinates required by
the GPU to access the physical memory page. The inverse page
tableis designed to store a VPN vector for each active physical
page. Figure 5 shows these mappings. Note that the page table
and inverse page table were referred to as the unpacked map
and packed map respectively in Lefohn et al. [32].

The vertices and texture coordinates stored in the
MemoryPage object are actually pointers into the geometry
engine. The geometry engine has the capability of quickly
rendering (i.e. processing) any portion of the physical mem-
ory domain. Thus the geometry engine must generate the
substreams for the set of active physical pages. The last
initialization step is the creation of the free-page stack. The
virtual memory system simply pushes all physical pages (i.e.
pointers to MemoryPage objects) defined by the geometry
engine onto a stack.

The application issues GPU physica memory allocation
and deallocation requests to the virtual memory system. Upon
receiving a virtual page request, the system pops a physical
page from the free-page stack, updates the page tables, and
returns aMemoryPage pointer to the application. The reverse
process occurs when the application deallocates a virtual
memory page.

The level-set solver generates memory page alocation and
deallocation requests after each solver iteration based on the
form of the current solution. Section 1V-D describes how
the solver uses the GPU to efficiently create these memory
requests.

1V. SPARSE GPU LEVEL-SET SOLVER

This section now explains our GPU level-set solver im-
plementation using the virtual memory system and level-set
equations presented in Section 111 and Section I1-A. Note that
the details of the level-set discretization are found in Lefohn
et al. [33].

A. Initialization of Computational Domain

The solver begins by initializing the sparse computational
domain (Step 1 in Figure 2). An initia level-set volume
is passed to the level-set solver by the host application.
The sparse domain initialization involves identifying active
memory pages in the input volume, allocating GPU memory
for each active page, then sending the initial data to the GPU.

The solver identifies active virtual pages by checking each
data element for a non-zero derivative value in any of the six
cardinal directions. If any element in a page contains non-
zero derivatives, the entire page is activated. The initialization
code then requests a GPU memory page from the virtual
memory system for each active page. The level-set data is
then drawn into GPU memory using the vertex locations in
each MemoryPage oObject.

This scheme is effective only because the input level-set
volume is assumed to be a clamped distance transform—
meaning that regions on or near the isosurface have non-
zero gradients while regions outside or inside the surface
have gradients of zero. The outside voxels have a value of
zero (black) and the inside ones have a value of one (white).
Section IV-B explains how the distance transform embedding
is maintained throughout the level-set computation.

The inactive virtual pages do not need to be represented in
physical memory. If an active data element queries an inactive
value, however, an appropriate value needs to be returned.
Because al inactive regions are either uniformly black or
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Fig. 7. The level-set solver’'s use of the paged virtual memory system. All
active pages (i.e. those that contain non-zero derivatives) in the virtual page
space (a) are mapped to unique pages of physical memory (b). The inactive
virtual pages are mapped to the static inside or outside physical page. Note
that the only data stored on the GPU is that represented by (b).

white, we solve this boundary condition problem by defining
a special, inactive page state. A virtual page in this state is
mapped to one of two static physical pages. One of these
static pages is black, representing regions outside of the level-
set surface. The other static page is white and represents
regions inside the level-set surface. The page table contains
these many-to-one mappings, but the inverse page table does
not store avalid entry for the static pages. Note that we could
have alternatively solved this boundary problem using single
pixels instead of entire pages. We also could have solved the
problem by creating substreams for the active elements on the
boundary of the active set.

B. Distance Transform on the GPU

In order to take advantage of the sparse nature of level-
set solutions, algorithms must maintain a somewhat consistent
level-set density, which is defined as the number of level sets
per unit volume. If the level-set density becomes too low
(spread out) it can become difficult to efficiently isolate the
computation to the desired interface. Alternatively, a level-
set density that becomes too high (close together) can cause
aliasing and numerical problems. The most common way
of maintaining a desired level-set density is to keep the
embedding, ¢, resembling a distance transform [6], [9], [34].

The new streaming level-set solver maintains the distance
transform by introducing an additional speed term, G-, to the
level-set PDE (1) that controls the surface motion. This speed
term pushes the level sets of ¢, either closer together or farther
apart, so that they resemble a clamped distance transform
(CDT). The CDT has a constant level-set density within a
predefined band and ensures that voxels near the isosurface
have finite derivatives while those farther away have gradient
magnitudes of zero. As described in Sections IV-A and 1V-
D, the identification of zero-derivative regions is critical for
an efficient solver implementation. This rescaling speed term,
G, is computed as

Gr = ¢g¢ - ¢|v¢|7 (5)

where g, is the target gradient magnitude within the compu-
tational domain, and |V¢| is the gradient magnitude in the
direction of the level-set model isosurface. The target param-
eter, g4, can be set based on the numerical precision of the

level-set data. By setting g4 sufficiently high, numerical errors
caused by underflow can easily be avoided. It is important to
note that GG is strictly a numerical construct; it does not affect
the movement of the zero level set, i.e. the surface model. Also
note that the solver can be used to compute only the distance
transform (i.e. no surface movement) by setting g, to one and
making G, the only speed term.

C. Level-Set Computation

The GPU next performs the level-set computation (Step
2 of the sparse agorithm in Figure 2). The details of the
level-set discretization used by our solver are given in Lefohn
et a. [33]. This section gives a high-level overview of the
computation. The level-set update proceeds in the following
steps:

ZF.) Compute 1st and 2nd partial derivatives.

B. Compute N level-set speed terms.

C. Update level-set PDE.

The derivative computation in Step A above uses the
substream-based, virtual-to-physical address scheme described
in Section 111-C. The derivatives are computed in nine sub-
stream render passes, each of which outputs to the same four,
4-tuple buffers. The speed function computations in Step B
are application-dependent. Example speed terms include the
curvature computation described in (3), the rescaling term
described in (5), and the thresholding term described in (7).
There will be zero or more render passes for each speed
function. The level-set update (Step C) is the up-wind scheme
described in Lefohn et a. [33]. This is computed in a single
pass. Note that additional GPU memory must be alocated
to store the intermediate results accumulated in Steps A and
B before they are consumed in Step C. Our solver performs
register alocation of temporary buffers to minimize GPU
memory usage.

D. Update of Computational Domain

After each level-set update, the solver determines which
virtual pages need to be added-to or removed-from the active
domain. The solver accomplishes this by aggregating gradient
information from al elements in each active page. In our
solver, the GPU must compute this information because the
level-set solution exists only in physical memory. The active
set must be updated by the CPU, however, because the page
table and geometry engine exist in CPU main memory. In
addition, the amount of information passed from the GPU to
the CPU must be kept to a minimum because of the limited
bandwidth between the two processors. This section gives an
overview of an algorithm that works within these constraints.
Lefohn et a. [33] explains the full details of the algorithm.

The GPU creates a memory allocation/deallocation request
by producing a small image (of size S[Gp]) with asingle-byte
pixel per physical page. The value of each pixel is a bit code
that encapsulates the activation or deactivation state of each
page and its six adjacent neighbors (in Vp). The CPU reads
this small (< 64kB) message, decodes it, and submits the
alocation/deallocation requests to the virtual memory system
(Figure 8).
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Fig. 8. The GPU'’s creation of a memory alocation/deallocation request.
Step A uses solver-specific data to create two buffers containing the active
state of each data element and its adjacent neighbors. Step B uses automatic
mipmapping to reduce the buffers from size S[G] to the physical page space
size, S[Gp]. Step C combines the information from the two down-sampled
state buffers into an eight-bit code for each pixel. This code encapsulates
whether or not each active virtual memory page and its adjacent neighbors
should be enabled. In step D, the CPU reads the hit-code buffer, decodes it,
and allocates/deallocates pages as requested.

Vi

State Bitvector (bits)

The GPU creates the bit-code image by first computing two,
four-component neighbor information buffers of size S[G]
(Step A of Figure 8). This computation uses the previously-
computed, one-sided derivatives of ¢ to identify the required
active pages. A page must be activated if it contains elements
with non-zero gradient magnitudes. The automatic mipmap-
ping GPU feature is then used to down-sample the resulting
buffers (i.e. aggregate data samples) to the page-space image
(Step B in Figure 8). The final GPU operation combines the
active page information into the bit code (Step C in Figure 8).
A fragment program performs this step by emulating a bit-
wise OR operation via conditional addition of powers of two.
Finally, in step D of Figure 8, the CPU reads this message
from the GPU.

Note that the use of automatic mipmapping places some
restrictions on the maximum memory page size due to quan-
tization rounding errors that arise when down-sampling 8-bit
values. This limitation can be relaxed by using a 16-bit fixed-
point data type. Alternatively, floating-point values can be used
if the down-sampling is performed with fragment program
passes instead of automatic mipmapping.

E. GPU Implementation Details

The level-set solver and volume renderer are implemented
in programmable graphics hardware using vertex and frag-
ment programs on the ATl Radeon 9800 GPU. The pro-
grams are written in the OpenGL ARB_vertex_program and
ARB_fragment_program assembly languages.

There are several details related to render pass output buffers
that are critical to the performance of the level-set solver. First
is the ability to output multiple, high-precision 4-tuple results
from a fragment program. Writing sixteen scalar outputs from
a single render pass enables us to perform the expensive 3D
neighborhood reconstruction only once and use the gathered
data to compute the derivatives in a single pass. Second, we
avoid the expensive change between render targets [35] (i.e.
pixel buffers) by allocating a single pixel buffer with many
render surfaces (front, back, aux0, etc.) and using each surface
as a separate output buffer.

Lastly, there is a subtle speed-versus-memory trade-off that
must be carefully considered. Because the physical-memory
texture can be as large as 20482, storing intermediate results
(e.g. derivatives, speed values, etc.) during the computation
can require a large amount of GPU memory. This memory
requirement can be minimized by performing the level-set
computation in sub-regions. The intermediate buffers must
then be only the size of the sub-region. This partitioning
does reduce computational efficiency, however, and so the sub-
regions are made as large as possible. We currently use 5122
sub-regions when the level-set texture is 20482 and use asingle
region when it is smaller.

V. VOLUME RENDERING OF PACKED DATA

The direct visualization of the level-set evolution is impor-
tant for a variety of level-set applications. For instance, in
the context of segmentation, direct visualization allows a user
to immediately assess the quality and accuracy of the pending
segmentation and steer the evolution toward the desired resullt.
Volume rendering is a natural choice for visualizing the level-
set surface model, because it does not require an intermediate
geometric extraction, which would severely limit interactivity.
If one were to use marching cubes, for instance, a distinct
triangle mesh would need to be created (and rendered) for each
iteration of the level-set solver. The proposed solver, therefore,
includes a volume renderer, which produces afull 3D (transfer-
function based) volume rendering of the evolving level set on
the GPU [28].

For rendering the evolving level-set model, we use a variant
of traditional 2D texture based volume rendering [25]. We
modify the conventional approach to render the level-set
solution directly from the packed physical memory layout,
which is physically stored in a single 2D texture. Because the
level-set data and physical page configuration are dynamic, it
would be inefficient to pre-compute and store three separate
versions of the data, sliced along cardinal views, asistypicaly
done with 2D texture approaches. Instead we reconstruct these
views each time the volume is rendered. This new technique
is thus both applicable to rendering compressed data as well
as traditional texture-based volume rendering from a single set
of 2D dlices.

The volume rendering algorithm utilizes a two pass ap-
proach for reconstruction and rendering. Figure 9 illustrates
the steps involved. An additional off-screen buffer caches
two reconstructed neighboring slices containing the level-set
solution and its gradient (Figure 9 A). During the rendering
phase arbitrary dlices along the preferred dice direction are
interpolated from these neighboring slices (Figure 9 B). Once
all interpolated slices between slice ¢ and i —1 are rendered and
composited, the next dlice (i + 1) is reconstructed. This newly
reconstructed slice replaces the cached dlice, i — 1. The GPU
then renders and composites the next set of interpolated slices
(i.e. those between dlice i + 1 and 4). This pattern continues
until al slices have been reconstructed and rendered.

When the preferred dlice axis, based on the viewing angle, is
orthogonal to the virtual memory page layout, we reconstruct
2D dlices of the level-set solution and its gradient using a
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Fig. 9. Two pass rendering of packed volume data. In step A, a 2D dlice (z)
is reconstructed from the physical page (packed) layout, Gp. In step B, one or
more intermediate slices between ¢ and : — 1 are interpolated, transformed into
optical properties (via the transfer function), lit, and rendered for the current
view. The next iteration begins by reconstructing slice ¢ + 1, replacing i — 1,
and so on.
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Fig. 10. Reconstruction of a slice for volume rendering the packed level-set
model: (8) When the preferred slicing direction is orthogonal to the virtual
memory page layout, the pages (shown in alternating colors) are draw into a
pixel buffer as quadrilaterals. (b) For dlicing directions parallel to the virtual
page layout, the pages are drawn onto a pixel buffer as either vertica or
horizontal lines.

textured quadrilateral for each page, as shown in Fig. 10 A.
On the other hand, if the preferred dlice direction is parallel
to the virtual page layout, we render a row or column from
each page using textured line primitives, as in Fig. 10 B. In
both cases, dlices are reconstructed into a pixel buffer which
is bound as a texture in the rendering pass. These dlices are
reconstructed at the same resolution as level-set solution.

In the rendering phase, we leverage the hardware's bilinear
filtering for in-plane interpolation of the reconstructed level-set
slice. Trilinear interpolation of an arbitrary slice between two
adjacent reconstructed dlices is accomplished by combining
them, i.e. performing linear interpolation along the preferred
dlice direction, in the fragment program. This same fragment
program aso evaluates the transfer function and lighting
for the interpolated data. For efficiency, we also reuse data
wherever possible. For instance, lighting for the level-set
surface, evaluated in the rendering phase, uses gradient vectors
computed during the level-set update stage.

V1. APPLICATION AND RESULTS

This section describes an application for interactive volume
segmentation and visualization, which uses the level-set solver
and volume renderer described previ