Géométrie différentielle

damien.rohmer@cpe.fr

Notion de topologie

■ Topologie = Étude de la structure d'un espace indépendamment de sa géométrie.

2 surfaces sont topologiquement équivalentes si on peut transformer l'une en l'autre par des transformations continues (pas de déchirures ni soudures).

Notion de variété

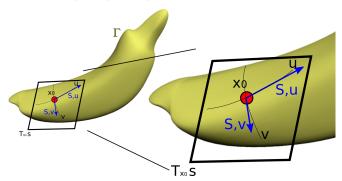
- Une surface Γ est une 2-variétée (manifold) ssi tout point possède un voisinage homéomorphe à un (demi) disque.
- Homéomorphisme = application bijective continue + reciproque continue.

Notion de continuité

Soit Γ la surface associée au mapping S.

$$S: \left\{ \begin{array}{ll} \mathcal{D} \subset \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (u,v) & \mapsto & S(u,v) \end{array} \right.$$
$$\Gamma = tr_{\mathcal{D}}(S) = \left\{ \mathbf{x} \in \mathbb{R}^3 \middle| \forall (u,v) \in \mathcal{D}, S(u,v) = \mathbf{x} \right\}$$

- S est C^1 ssi $S_{,u}$ et $S_{,v}$ sont définies et continues.
- S est C^2 ssi $S_{,uu}$, $S_{,vv}$ et $S_{,uv}$ sont définies et continues.



Notion de continuité

- \blacksquare Γ est \mathcal{G}^1 si il existe un plan tangent partout.
- \blacksquare Γ est \mathcal{G}^2 si sa courbure est continue partout.

Remarque $S \subset C^k \neq \Gamma \subset G^k$.

 \mathcal{G}^2 nécessaire pour reflets.

Exemple de continuité

$$f: \left\{ egin{array}{ll} x(t)=t \ y(t)=t \end{array}
ight., t\in [-1,0[& {
m et} \end{array} \left\{ egin{array}{ll} x(t)=t/2 \ y(t)=t/2 \end{array}
ight., t\in [0,2] \end{array}
ight.$$

• f est-elle C^2 ? G^2 ?

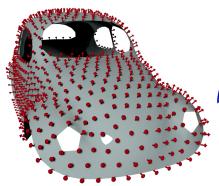
$$g: \left\{ \begin{array}{l} x(t) = t \\ y(t) = t^2 \end{array}, t \in [-1, 0[\quad \text{et} \quad \left\{ \begin{array}{l} x(t) = t \\ y(t) = -t^2 \end{array}, t \in [0, 1] \right. \right.$$

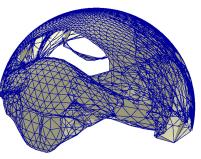
■ g est-elle C^2 ? G^2 ?

Plan tangent

- Surface de \mathbb{R}^3 : $S(u, v) = (S_x(u, v), S_y(u, v), S_z(u, v))$
- Normale: $n^{S}(u, v) = (S_{,u} \times S_{,v})/||S_{,u} \times S_{,v}|| \in \mathbb{S}^{2}$
- Espace tangent de S en x_0 : $T_{x_0}S = Im(DS(u, v)) = \{S_{,u}(u, v)h_u + S_{,v}(u, v)h_v | (h_u, h_v) \in \mathbb{R}^2\}.$
- Application de Gauss :

$$N: \left\{ egin{array}{ll} \Gamma &
ightarrow & \mathbb{S}^2 \\ x_0 = \mathcal{S}(u,v) &
ightarrow & \mathcal{N}(x_0) = \mathcal{N}(u,v) \end{array}
ight.$$

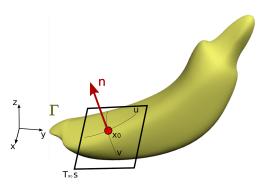




Propriétés intégrales

Propriétés intégrales :

- Aire de Γ : $\int \int_{(u,v)\in\mathcal{D}} \|S_{,u} \times S_{,v}\| du dv$.
- Volume domaine défini par $\Gamma: \int \int_{(u,v)\in\mathcal{D}} S_z(u,v) \, n_z^S(u,v) \mathrm{d}u \mathrm{d}v$

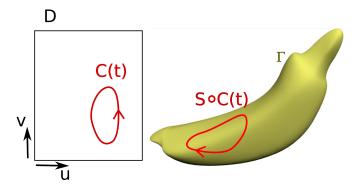


Première forme fondamentale

- Courbe $C \subset \mathcal{D}$ de longueur $L = \int_t \langle C'(t), C'(t) \rangle^{1/2} dt$.
- Longueur de $C_S = S(C_x, C_y)$

$$L_{\mathcal{S}} = \int_{t} \langle (\mathcal{S} \circ \mathcal{C})'(t), (\mathcal{S} \circ \mathcal{C})'(t) \rangle^{1/2} dt$$

= $\int_{t} (\mathcal{C}'^{\mathsf{T}}(t) I_{\mathcal{S}}(t) \mathcal{C}'(t))^{1/2} dt$



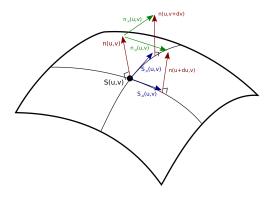
Première forme fondamentale

■ I_S : Première forme fondamentale / tenseur métrique

$$\mathbf{I}_{\mathcal{S}} = \left(egin{array}{cc} \mathbf{\mathcal{S}}_{,u}^2 & <\mathbf{\mathcal{S}}_{,u},\mathbf{\mathcal{S}}_{,v}> \ <\mathbf{\mathcal{S}}_{,v}^2 > \ \end{array}
ight)$$

- lacksquare I_S: forme quadratique associée à < dS, dS >
- $\sqrt{\det(I_S)}$ = variation d'aire infinitesimale ⇒ Aire de $\Gamma = \int \int_{(u,v)\in\mathcal{D}} \sqrt{\det(I)} \, du \, dv$

Dérivées des normales



Les vecteurs $(S_{,u},S_{,v})$ et $(n_{,u},n_{,v})$ définissent le même plan tangent.

Seconde forme fondamentale

Les vecteurs $(n_{,u}, n_{,v})$ peuvent s'exprimer dans le plan $(S_{,u}, S_{,v})$.

$$\begin{cases} n_{,u} = w_{00} S_{,u} + w_{01} S_{,v} \\ n_{,v} = w_{10} S_{,u} + w_{11} S_{,v} \end{cases}$$

Sous forme matricielle

$$\begin{pmatrix} n_{,u}^T \\ n_{,v}^T \end{pmatrix} = W_{\mathcal{S}} \begin{pmatrix} S_{,u}^T \\ S_{,v}^T \end{pmatrix}$$

En multipliant par $(S_{,u}, S_{,v})$.

$$II_{\mathcal{S}} = W_{\mathcal{S}} \ I_{\mathcal{S}}$$

Avec II_S la seconde forme fondamentale associée à à S.

$$II_{\mathcal{S}} = \left(\begin{array}{cc} \langle n_{,u}, \mathcal{S}_{,u} \rangle & \langle n_{,u}, \mathcal{S}_{,v} \rangle \\ \langle n_{,v}, \mathcal{S}_{,u} \rangle & \langle n_{,v}, \mathcal{S}_{,v} \rangle \end{array}\right)$$

Relation aux dérivées secondes

Par orthogonalité

$$\left\{ \begin{array}{l} < n, S_{,u} >= 0 \\ < n, S_{,v} >= 0 \end{array} \right.$$

En dérivant

$$\left\{ \begin{array}{l} < n_{,u}, \mathcal{S}_{,u} > = - < n, \mathcal{S}_{,uu} > \\ < n_{,v}, \mathcal{S}_{,u} > = - < n, \mathcal{S}_{,uv} > \\ < n_{,v}, \mathcal{S}_{,v} > = - < n, \mathcal{S}_{,vv} > \end{array} \right.$$

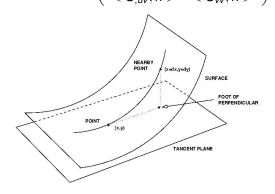
Expression de II_S uniquement à partir de n et des dérivées secondes de S.

$$II_{\mathcal{S}} = - \left(\begin{array}{cc} < \textit{n}, \textit{S}_{,\textit{uu}} > & < \textit{n}, \textit{S}_{,\textit{uv}} > \\ < \textit{n}, \textit{S}_{,\textit{uv}} > & < \textit{n}, \textit{S}_{,\textit{vv}} > \end{array} \right)$$

Seconde forme fondamentale

II forme quadratique associée à < dS, dn >
 développement de Taylor de la surface dans le plan tangent.

$$\Pi_{S} = \left(\begin{array}{ccc} < n_{,u}, S_{,u} > & < n_{,u}, S_{,v} > \\ < n_{,v}, S_{,u} > & < n_{,v}, S_{,v} > \end{array} \right)$$
 $\Leftrightarrow \Pi_{S} = -\left(\begin{array}{ccc} < S_{,uu}, n > & < S_{,uv}, n > \\ < S_{,uv}, n > & < S_{,vv}, n > \end{array} \right)$



Application de Weingarten

La matrice W_S telle que

$$W_{\mathcal{S}} = II_{\mathcal{S}} I_{\mathcal{S}}^{-1}$$

est la matrice de Weingarten (ou Shape operator). W_S est diagonalisable et possède des valeurs propres réelles.

$$W_s = V^T \wedge V$$
,

avec

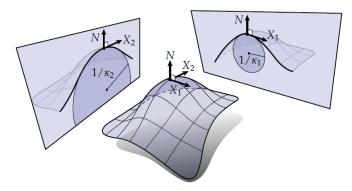
$$\Lambda = \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right)$$

 λ_1, λ_2 sont les courbures principales de la surface.

Rem. Application de Weingarten = différentielle de l'application de Gauss.

Courbure principales

- Valeurs propres de W_S : courbures principales (λ_1, λ_2) .
- Rayons de courbures principales $(r_1 = 1/\lambda_1, r_2 = 1/\lambda_2)$.
- Vecteurs propres de W_S : directions $(\mathbf{v}_1, \mathbf{v}_2)$ des courbures principales.



[Keenan Crane, Digital Geometry Processing with Discrete Exterior Calculus, SIGGRAPH 2013]

Types de courbures

Une surface peut être localement du type

- Planaire $\lambda_1 = \lambda_2 = 0$.
- Cylindrique $|\lambda_i| > 0$, $\lambda_i = 0$.
- Parabolique $sign(\lambda_1) = sign(\lambda_2)$.
- Elliptique $sign(\lambda_1) = -sign(\lambda_2)$.



[Keenan Crane, Digital Geometry Processing with Discrete Exterior Calculus, SIGGRAPH 2013]

Courbures moyennes et de Gauss

Courbure de Gauss :

$$K_S = \kappa_1 \kappa_2 = \det(W_S) = \frac{\det(II_S)}{\det(I_S)}$$

Courbure moyenne :

$$H_{\mathcal{S}} = \frac{1}{2}(\kappa_1 + \kappa_2) = \frac{1}{2} \operatorname{tr}(W_{\mathcal{S}})$$

- $H = 0 \Rightarrow$ surface minimale
- 2 Surfaces isométriques on le même K
- K = 0 Surface développable

© Paul Nylander M. Nettelbladt

Relation intégrale

Théorème de Gauss-Bonnet :

$$\int_{\mathcal{S}} K \mathrm{d} A + \int_{\partial \mathcal{S}} k_g \mathrm{d} s = 2\pi \chi(\mathcal{S})$$

- \blacksquare k_g : courbure géodésique.
- χ : Caractéristique d'Euler (invariant topologique).

Application pour un polygone au voisinage d'un sommet :

$$\frac{1}{A}\left(\sum_{i}\theta_{i}-2\pi\right)\simeq K$$

