4ETI Synthese d'images Rendu volumique

CPE Lyon damien.rohmer@cpe.fr

2013

Rendu volumique

Introduction

Donnees scalaires surfaciques
Donnees scalaires volumiques

Visualisation Exemples de visualisations

Rendu volumique

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Introduction

Donnees scalaires surfacique

Donnees scalaires volumique

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Rendu volumique

Introduction

Donnees scalaires surfaciques
Donnees scalaires volumiques

Visualisation
Exemples de visualisations
Classification

Introduction

Visualization is any technique for creating images, diagrams or animations to *communicate a message*.

Visualisation de données scientifiques :

- Abstraites (...)
- Physique theorique (fluides, ...)
- Medicales (Rayons X, IRM, Imagerie, ...)
- Techniques (Pieces mécaniques ...)
- . . .

Introduction ees scalaires surfaciques

Visualisati

s surfaciques Exemples de visualisations

Problématique

- Données complexes : non visualisables directement (tenseurs, densitées, ...)
- Données nombreuses : 10,100 Gb (paysages, scanners, ...)
- Données bruitées (médical, ...)

But : Arriver à visualiser ce qui est **significatif**, de manière **utile**, **rapidement**.

Rendu volumique

Introduction

Donnees scalaires surfaciques

Visualisation
Exemples de visualisations

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Introduction
Donnees scalaires surfaciques

Visualisation

Exemples de visualisations

Donnees scalaires volumiques

Quels type de données

Types de données variés

- champ scalaire (température, pression, ...)
- champ vectoriel (vitesse, orientation, ...)
- champ tensoriel (contraintes mécaniques, courbure, ...)

Définit on les données sur une surface, un volume ?

Rendu volumique

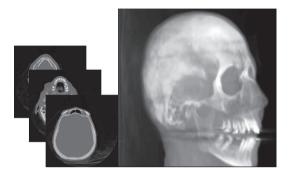
Introduction

Donnees scalaires surfaciques

Visualisation
Exemples de visualisations

Champ scalaire

Surface du domaine ou caracteristiques internes

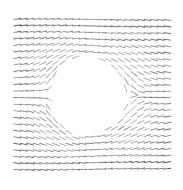


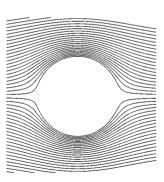
Rendu volumique

Exemples de visualisations

Champ scalaire

Section 2D ou vue volumique (isosurfaces, textures volumiques, ...)

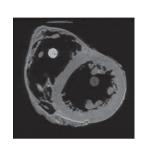

Rendu volumique

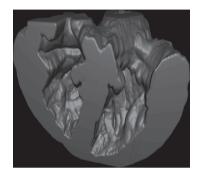

Donnees scalaires surfaciques

Exemples de visualisations

Champ Vectoriel

Vecteurs ou Trajectoires


Rendu volumique


Donnees scalaires surfaciques Donnees scalaires volumiques

Exemples de visualisations

Champ scalaire

Section 2D ou isosurfaces 3D

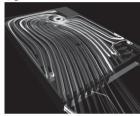
Rendu volumique

Donnees scalaires surfaciques

Exemples de visualisations

Champ Vectoriel

Vecteurs ou Trajectoires (les lignes de flux peuvent etre un objet reel)


Introduction
Donnees scalaires surfaciques

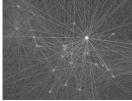
Visualisation
Exemples de visualisations

Champ Vectoriel

Simulations physiques complexes (streamlines, hyperstreamlines, ...)

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques


Visualisation
Exemples de visualisations

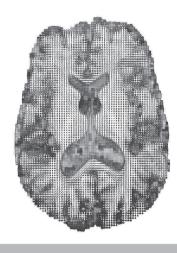
Grand ensemble de Données

Les données physiques aquises sont souvent trop nombreuses ! (Cartographies, Reseaux, . . .)

Rendu volumique

Introduction

Donnees scalaires surfaciques


Donnees scalaires volumiques

Visualisation

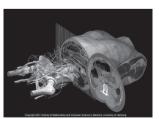
Exemples de visualisations

Champ Tensoriel

Matrices symétriques 3×3 . (Ellipsoids, glyphs, orientation, fiber-tracking, . . .)

Rendu volumique

Introduction


Donnees scalaires surfaciques

Visualisation
Exemples de visualisations

Grand ensembles de Données

Visible Human Project 40GB (0.33mm)

Introduction
Donnees scalaires surfaciques

Visualisation
Exemples de visualisations
Classification

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Rendu volumique

Introduction Donnees scalaires surfaciques

Introduction Marching-square

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Rendu volumique

Introduction

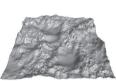
Donnees scalaires surfaciques
Donnees scalaires volumiques

Visualisation
Exemples de visualisations
Classification

Classification

On visualise $f:\left\{egin{array}{ll} \mathbb{R}^{v} &
ightarrow & \mathbb{R}^{d} ext{ plong\'e dans } \mathbb{R}^{n} \\ u & \mapsto & f(u) \end{array}
ight.$

d=1 champ scalaire d>1 champ vectoriel $d=(i\times j)$ champ matriciel


v = 1 champ linéique v = 2 champ surfacique v = 3 champ volumique

Cas particuliers fréquents

V	u	11	
2	1	2	Image n&b
2	3	2	Image couleur (texture)
2	1	3	Height-field (montagne
3	1	3	Densité volumique

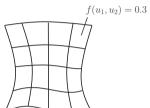
Rendu volumique

Donnees scalaires surfaciques

Introduction Marching-square

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Introduction
Donnees scalaires surfaciques


Introduction Marching-square

Notations

■ Dans le cas de densités, on a : $f(u_1, u_2) = I \in \mathbb{R}$.

■ Le plus généralement : f(x, y) = I.

■ En discret : $f(k_x \Delta x, k_y \Delta y) = I_{k_x,k_y}$.

0.5	-0.2	1.1
1.5	0.5	0.9
-0.1	0.0	0.7

Rendu volumique

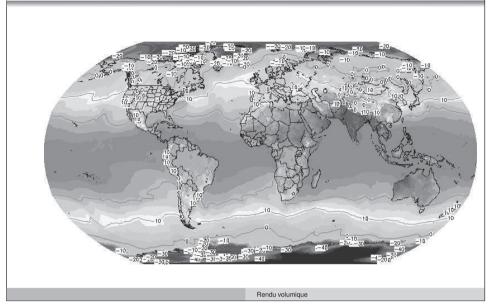
Introduction

Donnees scalaires surfaciques

Donnees scalaires volumiques

Introduction
Marching-square

Exemples



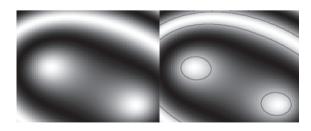
Rendu volumique

Introduction
Donnees scalaires surfaciques

Introduction Marching-square

Exemples

Introduction


Donnees scalaires surfaciques

Donnees scalaires volumiques

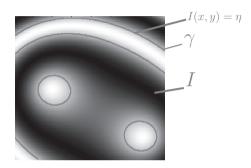
Introduction Marching-squa

But

- Visualiser les isolignes
- Tracer les courbes se placant sur une valeur donnée
- dénomination : isolignes, iso/equi-potentiel, courbe de niveau, . . .

Donnees scalaires surfaciques

Introduction Marching-square


Entré - sortie

 \blacksquare Entré : Densité / 2D sur une grille discrète + isovaleur η

■ Sortie : Ensemble de courbes

$$\{\gamma = (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 | I(\mathbf{x}, \mathbf{y}) = \eta \}$$

(cas dégénérés : points, régions)

Rendu volumique

Introduction Donnees scalaires surfaciques

Introduction Marching-square

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Rendu volumique

Introduction

Donnees scalaires surfaciques

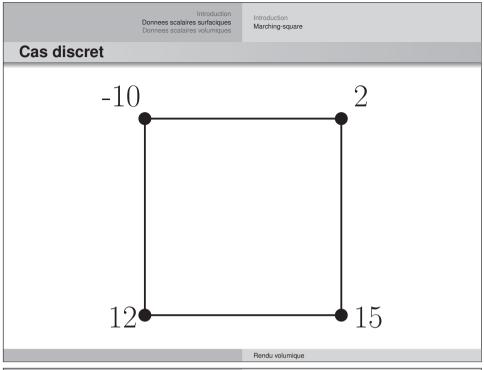
Donnees scalaires volumiques

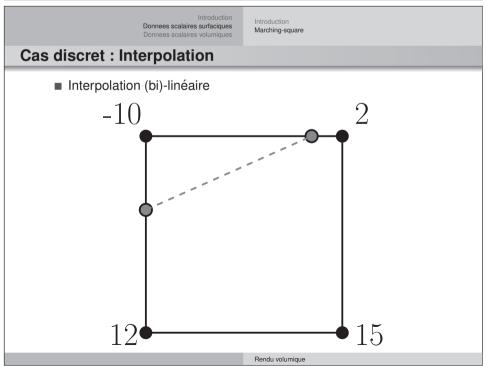
Introduction Marching-square

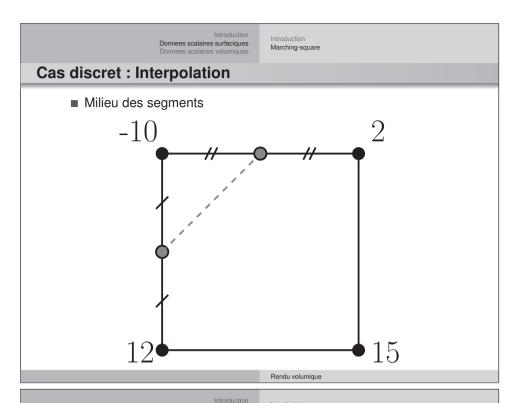
Exemples - cas continu

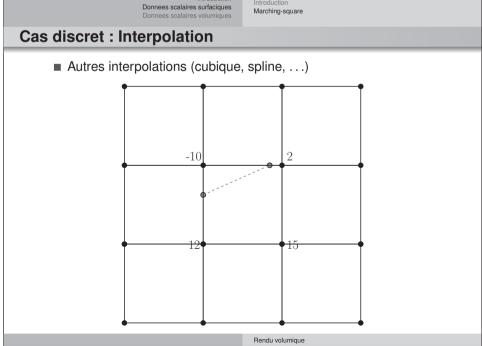
Pour $\eta = 0$:

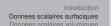
- $F_1 = 1$
- $F_2 = 0$
- $F_3 = (x x_0)^2 + (y y_0)^2 r_0^2$
- $\blacksquare F_4 = F_3(x_0, y_0, r_0) + F_3(x_1, y_1, r_1)$
- $F_5 = F_3(x_0, y_0, r_0) \times F_3(x_1, y_1, r_1)$
- On peut définir une courbe par son equation implicite.
- Avantage : Topologie quelconque


Rendu volumique


Introduction
Donnees scalaires surfaciques


Introduction Marching-square


Cas discret

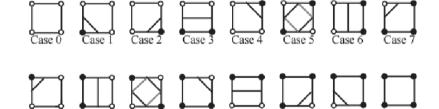

-61	-45	-42	-52	-72	-91	-99	-89
-17	8	13	-2	-34	-69	-94	-98
25	57	64	43	2	-45	-84	-99
51	87	94	71	25	-30	-76	-99
51	87	94	71	25	-30	-76	-99
25	57	64	43	2	-45	-84	-99
-17	7	13	-2	-34	-69	-94	-98
-61	-45	-42	-52	-72	-91	-99	-89

Introduction
Marching-square

Cas discret : résultat

■ Application au cas précédent

-61	-45	-42	-52	-72	-91	-99	-89
-17	8	13	-2	-34	-69	-94	-98
25	57	64	43,	2	-45	-84	-99
51	87	94	71	25	-30	-76	-99
51	87	94	71	25	-30	-76	-99
25	57	64	43	$\int 2$	-45	-84	-99
17	7	13,	2	-34	-69	-94	-98
-61	-45	-42	-52	-72	-91	-99	-89


Rendu volumique

Introduction Donnees scalaires surfaciques

Introduction
Marching-square

Cas possibles

■ Pour une cellule : 16 cas différents

Rendu volumique

Introduction

Donnees scalaires surfaciques

Donnees scalaires voluminues

Introduction Marching-square

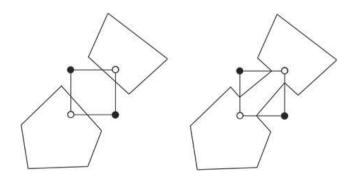
Rappel sur l'interpolation

■ Recherche de zéro par interpolation linéaire

$$I(X_0) I(X) = 0 I(X_1)$$

$$X0 X X1$$

$$X = \frac{I(X_1)X_0 - I(X_0)X_1}{I(X_1) - I(X_0)}$$


Rendu volumique

Introduction
Donnees scalaires surfaciques

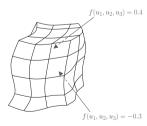
Introduction Marching-square

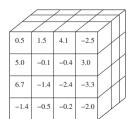
Cas possibles

■ Cas indéterminés

Introduction Slicing Marching-cube Ray-Casting

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting


Rendu volumique


Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube
Ray-Casting

Notations

- Dans le cas de densités, on a : $f(u_1, u_2, u_3) = I \in \mathbb{R}$.
- Le plus généralement : f(x, y, z) = I.
- En discret : $f(k_x \Delta x, k_y \Delta y, k_z \Delta z) = I_{k_x, k_y, k_z}$.

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube
Ray-Casting

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction Slicing Marching-cube Ray-Casting

Modalités d'imagerie médicale

- Rayons X (CT)
 - Anatomique
 - Mesure d'atténuation (problème inverse)

- Nucléaire (PET,SPECT)
 - Fonctionel
 - Mesure d'émission atténuée (problème inverse - complexe)

- IRM
 - Anatomique (IRM classique, Angiographie) ou Fonctionel
 - Mesure de densité (mesure directe)

Slicing
Marching-cube
Ray-Casting

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube
Ray-Casting

Rendu sur variété

- On peut considérer des surfaces quelconques
- Question : Comment choisir la surface

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Slicing
Marching-cube
Ray-Casting

Slicing

- Idée : On découpe des "tranches" de surfaces prédéfinies dans *V*.
- On colore la **densité** rencontrée (niveau de gris, texture, ...)
- On affiche $I(u_1 = \text{const}, u_2, u_3)$, $I(u_1, u_2 = \text{const}, u_3)$, $I(u_1, u_2, u_3 = \text{const})$.

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Slicing

Marching-cube

Ray-Casting

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

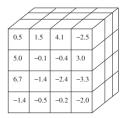
Introduction Slicing Marching-cube Ray-Casting

Isosurface

■ Une surface particulière souvent utilisée : l'**Isosurface** Isosurface d'isovaleur η de la fonction / est

$$\left\{ (x,y,z) \in \mathbb{R}^3 | I(x,y,z) = \eta \right\}$$

- \blacksquare On fait évoluer η pour obtenir différentes surfaces
- Comment construire une surface triangulé?


Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction Slicing Marching-cube Ray-Casting

Marching-Cube: Introduction

- But : Construire une surface triangulé à partir d'un champ volume discret donné par $I(x, y, z) \eta$.
- Premier brevet logiciel en inforgraphie en 1985 par Lorensen and Cline.
- Données d'entrées : Grille 3*D* suivant (x, y, z) de (N_i, N_j, N_k) sommets.

Rendu volumiqu

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube

Exemples

Pour $\eta = 0$:

- $F_1 = 1$
- $F_2 = 0$

$$F_3 = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 - r_0^2$$

$$\blacksquare F_4 = F_3(x_0, y_0, z_0, r_0) + F_3(x_1, y_1, z_1, r_1)$$

$$\blacksquare$$
 $F_5 = F_3(x_0, y_0, z_0, r_0) \times F_3(x_1, y_1, z_1, r_1)$

- On peut définir une surface par son equation implicite.
- Avantage : Topologie quelconque

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Slicing

Marching-cube

Ray-Casting

Marching-Cube: Principe

- On parcours cube à cube
- On calcule le signe de $I(x_i, y_j, z_k) \eta$
- On considère les différents cas possibles
- La valeur 0 est obtenue par interpolation

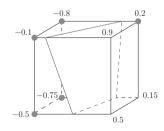


FIGURE: Exemple d'un cas

Introduction
Slicing
Marching-cube
Bay-Casting

Marching-Cube: Différents Cas

■ En tout : 256 cas possible

■ Se ramène à 15 cas de bases (on retrouve les 256 par rotation)

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube
Bay-Casting

Exemple d'isosurface : IRM

■ Données IRM (256 × 256 × 99)

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Slicing
Marching-cube

Marching-cube : Avantage-Inconvénients

- ⊕ Rapidité d'execution
- ⊖ Aspect cubique
 - Lissage du volume
 - Lissage de la surface finale
 - Adéquation médicale?
- ⊖ Cas litigieux

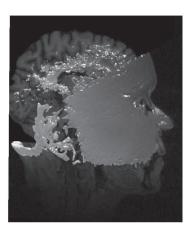
Rendu volumique

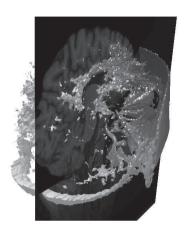
Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Slicing
Marching-cube
Ray-Casting

Exemple d'isosurface: IRM

- Structures interne observable en coupant la surface.
- Valeurs aux frontières donne l'aspect du maillage.





Introduction
Slicing
Marching-cube
Bay-Casting

Exemple d'isosurface: IRM

■ Combine slicing + isosurface

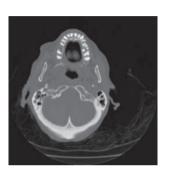
Rendu volumique

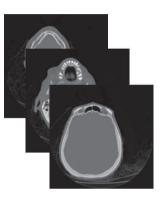
Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube
Bay-Casting

Exemple d'isosurface : CT

- 2 Informations majeurs de peau + os
- Intérêt de la combinaison coupe + isosurface


Rendu volumique


Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

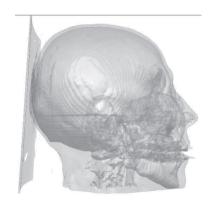
Slicing
Marching-cube

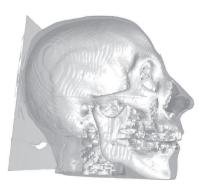
Exemple d'isosurface : CT

- Donnée CT (Rayons X)
- Information morphologique : peau/os
- **■** (256 × 256 × 99)

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

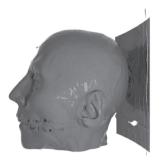

Slicing


Marching-cube

Ray-Casting

Exemple d'isosurface : CT

■ Possibilité de cumule d'informations surfacique par transparence

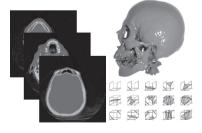


Introduction
Slicing
Marching-cube
Bay-Casting

Exemple d'isosurface : CT

■ Ajout d'un rendu, visualisation morphologique

Rendu volumique


Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction Slicing Marching-cube Ray-Casting

Rappels

Ce qu'on a vu :

- Coupe surfacique dans le volume.
- Extraction d'isosurface (marching cubes/tetraedres).

Ce que l'on va voir :

■ Rendu par transparence = Visu volumique

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube
Ray-Casting

- 1 Introduction
 - Visualisation
 - Exemples de visualisations
 - Classification
- 2 Donnees scalaires surfaciques
 - Introduction
 - Marching-square
- 3 Donnees scalaires volumiques
 - Introduction
 - Slicing
 - Marching-cube
 - Ray-Casting

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction Slicing Marching-cube Ray-Casting

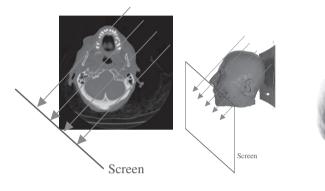
Avantage/Inconvenient

Approche surfacique

- ⊕ Précis
- $\oplus \ \ \text{Reduction des donnees}$
- Informations locales :
 Connaissance prealable des données

Approche volumique

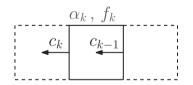
- Information globale, visualisation directe
- Peu precis, transparence trompeuse



Pipe-line classique : Volumique dans un premier temps pour guider une visu surfacique.

Marching-cube Ray-Casting

- But : Modeliser une aquisition par transparence.
- Probleme : Humains peu habitués à voir par transparence.
- **Principe géneral :** Ray-casting/tracing = On lance des *rayons* et on affecte une couleur en fonction du trajet parcouru et obstacles rencontrés.



Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction Slicing Marching-cube Bay-Casting

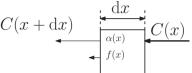
Version discrete

Equation itérative discrète

$$c_k = (1 - \alpha_k) c_{k-1} + f_k$$

- \blacksquare α_k , f_k sont fonctions de l'intensité I du voxel.
 - \blacksquare ex. $\alpha_k = A \Delta x I_k$, $f_k = B \Delta x I_k$.
 - Plus généralement, on définie des fonction de transferts \mathcal{F}, \mathcal{G} tels que $\alpha_k = \mathcal{F}(I_k)$, $f_k = \mathcal{G}(I_k)$.

Rendu volumique


Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube
Ray-Casting

Mise en equation

Cas d'émission atténuée

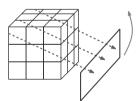
$$C(x + dx) = [1 - \alpha(x) dx] C(x) + f(x)$$

$$\Rightarrow C'(x) = -\alpha(x)C(x) + f(x)$$

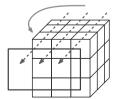
$$\Rightarrow C(x) = \left(\int_{x_0}^x f(u) e^{\int_{x_0}^u \alpha(t) dt} + C(x_0)\right) e^{-\int_{x_0}^x \alpha(t) dt}$$

- Trouver C pour α , f donné = Visu volumique
- Trouver α , f pour C donné = Tomographie

Rendu volumique


Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

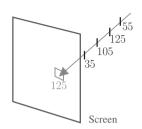
Introduction Slicing Marching-cube Ray-Casting

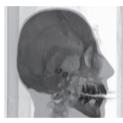

Implémentation

Deux approches:

■ Lancé de rayons obliques

 Rotation du volume puis intégration sur un axe (texture 3D)

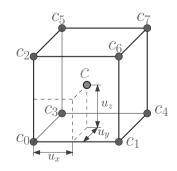

Facilement parallelisable.


Introduction Slicing Marching-cube Ray-Casting

Cas particulier: MIP

MIP=Maximum Intensity Projection : $c = \max_{k}(I_k)$.

- ⊕ Rapide, simple.
- Standard dans le monde médical.
- Absence totale d'information de profondeur en statique.

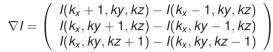

Rendu volumique

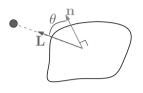
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction
Slicing
Marching-cube
Ray-Casting

Rappel: interpolation trilinéaire

$$c = (1 - u_x)(1 - u_y)(1 - u_z) c0 + u_x(1 - u_y)(1 - u_z) c1 + (1 - u_x)(1 - u_y)u_z c2 + (1 - u_x)u_y(1 - u_z) c3 + u_xu_y(1 - u_z) c4 + (1 - u_x)u_yu_z c5 + u_x(1 - u_y)u_z c6 + u_xu_yu_z c7$$


Rendu volumiqu


Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Slicing
Marching-cube
Ray-Casting

Eclairement

- Rappel : Éclairage diffus = $\cos(\theta)$, avec $\cos(\theta) = \langle \mathbf{L}, \mathbf{n} \rangle$.
- En un voxel donné, on approxime une surface de normale $\mathbf{n} = \frac{\nabla I}{||\nabla I||}$.
- En discret, une possibilité

Rendu volumique

Introduction
Donnees scalaires surfaciques
Donnees scalaires volumiques

Introduction Slicing Marching-cube Ray-Casting

Librairies

Il existe des librairies toutes faites :

- VTK (the Visualization ToolKit). Lourd mais complet et efficace. http://www.vtk.org/
- Volume rendering library (Stanford). Classique, Ancien. http://www-graphics.stanford.edu/software/volpack/
- ImageVis3D. (Utah) http://www.sci.utah.edu/cibc/software/41-imagevis3d.html
- V3. Rapide sur GPU : http ://www.stereofx.org/volume.html