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Course Abstract

Level set methods, an important class of partial differential equation
(PDE) methods, define dynamic surfaces implicitly as the level set (iso-
surface) of a sampled, evolving nD function. The course begins with
preparatory material that introduces the concept of using partial
differential equations to solve problems in computer graphics, geometric
modeling and computer vision.  This will include the structure and
behavior of several different types of differential equations, e.g. the level
set equation and the heat equation, as well as a general approach to
developing PDE-based applications.  The second stage of the course will
describe the numerical methods and algorithms needed to actually
implement the mathematics and methods presented in the first stage.
The course closes with detailed presentations on several level set/PDE
applications, including image/video inpainting, pattern formation,
image/volume processing, 3D shape reconstruction, image/volume
segmentation, image/shape morphing, geometric modeling, anisotropic
diffusion, and natural phenomena simulation.

Prerequisites

Knowledge of calculus, linear algebra, computer graphics, geometric
modeling, image processing and computer vision.  Some familiarity with
differential geometry, differential equations, numerical computing and
image processing is strongly recommended, but not required.
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Course Schedule

Session 1 - PDE and Level Set Fundamentals
  8:30   Welcome - Breen
  8:40   Introduction to PDEs and Their Application to Imaging - Sapiro
  9:40   Introduction to Level Set Methods - Osher

10:15  Break

Session 2 – Numerical Methods and Applications
  10:30  Dynamic Visibility in an Implicit Framework - Osher
  11:00  Level Set Numerical Methods - Whitaker
  11:25  Level Set Surface Reconstruction and Processing - Whitaker
  11:55  Level Set Methods on a Streaming Architecture - Whitaker

12:15  Lunch Break

Session 3 – PDE/Level Set Applications
  1:45   Image Inpainting - Sapiro
  2:15   Computing Generalized Geodesics for Computer Graphics - Sapiro
  2:45   Algorithms for Level Set Modeling - Museth
  3:10   Level Set Surface Editing Operators - Museth

3:30  Break

Session 4 - Level Set Segmentation and Simulation
  3:45   3D Volume Segmentation (framework, multiple non-uniform datasets,
       diffusion tensor MRI, sinograms) - Breen
  4:30   Simulation of Water, Fire and Smoke - Fedkiw

5:30  Course Ends



Web Sites

Osher Home Page
  http://www.math.ucla.edu/~sjo

UCLA CAM Technical Reports
  http://www.math.ucla.edu/applied/cam

Level Set Systems, Inc.
  http://www.levelset.com

Sapiro Home Page
  http://www.ece.umn.edu/users/guille

Whitaker Home Page
  http://www.cs.utah.edu/~whitaker

VISPack Web Site
  http://www.cs.utah.edu/~whitaker/vispack

Fedkiw Home Page
  http://www.graphics.stanford.edu/~fedkiw

Museth Home Page
  http://gg.itn.liu.se

Breen - Geometric Modeling and Deformable Models
  http://www.cs.drexel.edu/~david/geom_mod.html
  http://www.cs.drexel.edu/~david/deform_mod.html

Sethian Home Page
  http://www.math.berkeley.edu/~sethian
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http://www.math.berkeley.edu/~sethian
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Moving CurvesMoving Curves
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Basic curve evolution

Planar curve:

General flow:

General geometric flow:
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Mathematical morphology

Classical theory, based on Minkowsky addition.

The old and (probably wrong) way of doing geometric 
image analysis.

Has very important lessons to learn!!!!

Basic definitions:

A: Image in Euclidean space (R or Z)

B: Structuring element (symmetric)

Nothing else than Minkowsky addition
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Mathematical morphology: Definitions
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Mathematical morphology: Is it good or bad?

Advantages:

Nice mathematical properties (set theory)

Extension to Lattices

Disadvantages:

Discrete Minkowsky addition does not look good, has to be 
replaced by better ways of computing “discrete distances.”

Major important concept: Level-sets

Commutes with thresholding (level-sets): Do binary on each 
level sets or do gray-level on all the image => same result

It is in certain sense a particular case of curve evolution 
(before the lattices part)
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Mathematical morphology via curve evolution

Convex structuring elements B

A B C A B C

A rB A r B r B
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Huygens principle
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Mathematical morphology via curve evolution (cont.)

General velocity:

Examples:

Nothing else than changing the metric (distance). 

Can be explained also based on dynamic programming 
and time of arrival

See Sapiro et al., Brocket-Maragos, Alvarez et al., Evans, Falcone
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Planar differential geometry

Euclidean invariant 
parametrization

Affine invariant 
parametrization
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Planar differential geometry (cont.)

Curvature constant for circles 
or straight lines (=0)

Curvature defines curve up to 
Euclidean motion

At least 4 points with dk/ds=0

Defined for all curves

Curvature constant for 
ellipses (>0), hyperbolas (<0), 
and parabolas (=0)

Curvature defines curve up to 
affine motion

At least 6 points with dk/ds=0

Defined only for convex 
curves: segment at inflection 
points
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Planar differential geometry (cont.)
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3D Differential geometry

Remember mean and Gaussian curvatures?

Each regular surface has two principal curvatures. The 
average is the mean curvature, the product the Gaussian. 
These are also related to the tangential map, etc, etc. See 
DoCarmo for details.
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Riemannian geometry, Lie theory

What about other non-Euclidean metrics?

What about invariants to other (Lie) groups, e.g., 
projective?

What about differential invariants? Semi-differential 
invariants? Are there any general theories?
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Smoothing by classical heat flow

Linear

Equivalent to Gaussian filtering

Unique linear scale-space

Non geometric

Shrinks the shape

Implementation problems
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Invariant shape deformations

Formulate shape deformations

Geometric

Invariant to camera transform

The “best” possible

Change only the desired features

Motivation:

Mathematics:

From static differential geometry to dynamic

Beautiful

Computer vision and image processing:

Invariant shape  segmentation and analysis

Image processing via image deformations

Robotics:

Motion planning

Accurate geometric object detection and tracking

Robot manipulation and grasping
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Basic planar differential geometry

For every Lie group we will consider, exists and 
invariant parametrization s, the group arc-length

For every such a group exists and invariant 
signature, the group curvature, k

High curvature

Low curvature

Negative curvature
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What and why invariant

Camera

motion                                       Deformation

Camera/object movement in the space

Transformations description (for “flat” objects):

Euclidean

Motion parallel to the camera and planar projection

Affine

Planar projection

Projective
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Euclidean geometric heat flow

Use the Euclidean arc-length:
The deformation:

Smoothly deforms to a circle (Gage-Hamilton, Grayson)
Geometric smoothing
Reduces length as fast as possible

Cs  =  1

!

!

!

!
"

 

 
 =  

 

 
 =   

C

t

C

s
N

2

2



SIGGRAPH 2002
Guillermo Sapiro 19

Affine geometric heat flow (Sapiro-Tannenbaum)

Use the affine arc-length:

The flow:
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Affine geometric heat flow (cont.)

Geometric smoothing (preserving area if desired)

Total curvature decreases

Maxima of curvature decreases

Number of inflections decreases

Smoothly deforms a shape into an ellipse

Decreases area as fast as possible (in an affine form)

Existence also for non-smooth curves

Viscosity framework (Alvarez-Guichard-Morel-Lions)

Polygons (Angenent-Sapiro-Tannenbaum)

Applications:

Curvature computation for shape recognition: reduce noise 
(Morel et al.)

Simplify curvature computation (Faugeras ‘95)

Object recognition for robot manipulation (Cipolla ‘95)
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General invariant flows

Theorem: For every sub-group of the projective group the 
most general invariant curve deformation has the form

Theorem: In general dimensions, the most general 
invariant flow is given by

u: graph locally representing the surface

g: invariant metric

E(g): variational derivative of g 

See Olver et al., Alvarez et al., Caselles-Sbert

!

!

!

!
" " "

 

 
 =  

 

 
 

C

t

C

s
f s ss

2

2
( , , ,...)

u
E g

f curvaturest  =  
g

 
( )

( )

SIGGRAPH 2002
Guillermo Sapiro 22

General Geometric Framework For General Geometric Framework For 
Object SegmentationObject Segmentation
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Introduction

Goal: Object detection

Approach: Curve/surface deformation

Geometry dependent regularization

Image dependent velocity

Characteristics:

Unifies previously considered independent approaches

Relates segmentation with anisotropic diffusion

General:

Any topology

Any type of image data

Any dimension

Holds formal results
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Notation

Deforming curve:

Image: 
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Basic active contours approach

Terzopoulos et al., Cohen et al.

Drawbacks:

Too many parameters

Non-geometric

Handling topology changes

E C C p dp C p dp I C dp( ) '( ) ''( ) ( )                 = ! + ! " #!! "
2 2
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Geodesic active contours (Caselles-Kimmel-Sapiro)

Generalize image dependent energy

Eliminate high order smoothness term

Equal internal and external energies

Maupertuis and Fermat principles of dynamical systems

E C C p dp C p dp I C dp( ) '( ) ''( ) ( )                 = ! + ! " #!! "
2 2
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2
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Geodesic computation

Gradient-descent

Level-sets (Osher-Sethian)
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Further geometric interpretation

The geodesic flow
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Model correctness

Theorem: The deformation is independent of the level-sets 
embedding function

Theorem: There is a unique solution to the flow in the 
viscosity framework

Theorem: The curve converges to ideal objects when 
present in the image

Related work:

Kimia-Tannenbaum-Zucker

Caselles et al.
Malladi-Sethian-Vemuri

Kichenassamy at al.
Tek-Kimia, Whitacker

New work:

Chan-Vese

Paragios-Deriche

Yezzi et al.

Faugeras et al.
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Extensions

Gray-level values

ds - length element (geodesics)

Ordinary edge detector (gradient)

Surfaces

ds - area element (minimal surfaces)

3D edge detector

Vector-valued images (color, texture, medical, etc)

ds - length element

Vector-valued edge detector (vector geodesics)

Eigenvalues of the first fundamental form in Riemannian space

Invariant detection (affine area geodesics)

ds - affine length element (area related)

Affine invariant edge detector

Affine norm for “gradient descent”

E C g I C s ds( ) [| ( ( ))|]     = !"
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Why color edges?
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Notation

Image

Texture: Gabor decomposition

L a b* * *

X N N
N

    x: [ , ] [ , ]0 0 ! !
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Color edge computation

Given a metric (Euclidean)

Compute first fundamental form

Compute eigenvectors and eigenvalues

Edge: maximal eigenvalue and its eigenvector

Basic properties:

Eigenvectors are orthonormal

Minimal eigenvalue is not zero

[ ]g
ij

X

i

X

j
   

 

 

 
= !!

!
!
!

( , , , )" " # #
+ " + "

# = $% %X X
ii

2

SIGGRAPH 2002
Guillermo Sapiro 34

Moving ImagesMoving Images
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Anisotropic diffusion

Isotropic vs. Anisotropic Smoothing

Isotropic
smoothing

Anisotropic
smoothing
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Isotropic diffusion (Koenderink, Witkin)

All “equivalent:”

Gaussian filtering of the image 

Heat flow

Minimize the L2 norm
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Isotropic diffusion: Good things

Gaussian filtering if and only if

Linear

Shift-invariant

No creation of zero crossings 

Gaussian filtering if and only if

Linear

Shift-invariant

Semi-group property

Scale-invariant (dimensionless)

Unique linear filter that defines a scale-space: Do not 
creates information at coarser scales

Where everything started (Koenderink, Witkin)
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Isotropic diffusion: Bad things and possible solutions

Non-geometric

Problems with implementations

Who said linear? Replace heat flow by “parabolic” PDE’s
(Hummel’s original idea)

Why parabolic? Because of the maximum principle.
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Perona-Malik anisotropic diffusion

Replace the L2 by a different norm (e.g., L1, Rudin-Osher-
Fatemi; Lorentzian, Black et. al.; etc)
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Selection of “stopping term” h

How do we select h?

h=x*x   =>  L2   => linear  =>  Isotropic diffusion

h=x       =>  L1   (Rudin-Osher-Fatemi)
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Robust anisotropic diffusion

General theory for selection “h”, based on the theory of 
influence functions in robust statistics

Edges should be considered outliers: At certain point, h’, 
the influence, should be zero.

L
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Directional diffusion

Diffuse in the direction perpendicular to the edges (Avarez
et al.)
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From active contours to anisotropic diffusion

Replace embedding function in level-sets formulation 
by image itself
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(Alvarez et al.)

Shock-filters
(Osher-Rudin)
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Relation with Perona-Malik anisotropic diffusion
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Concluding remarks

Terzopoulos snakes

Geodesic active
contours

Curve evolution
active contours

Self-snakes

Perona-Malik flow

Geometric diffusion

Shock-filters

Total Variation Robust Estimation

Geometric interpretation
Dynamical systems
Level-setsTerms

elimination

Use image as embedding

Add
Divide by gradient

Variational interpretation

Mumford-Shah
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Anisotropic DiffusionAnisotropic Diffusion
of the Posteriorof the Posterior
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ADP in MRI

Review:  MAP Estimation

3 classes:  sulcus, gray matter, white matter

Prior probability:  Pr(class=C)

Posterior probability:  Pr(class=C |  data)

MAP:  Choose class C that maximizes posterior:

C* = arg max  Pr(class=C | data)

C

Bayes’ Rule:

Pr(class=C | data) =  Pr(data | class=C).Pr(class=C)

Pr(data)

What is our prior, Pr(class=C)?
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ADP: Common Techniques

MAP Estimation:  Uniform Prior

Classification
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ADP: Results

Anisotropic smoothing of posterior (Teo-Sapiro-Wandell)

Posterior
Smoothed 
Posterior

Classification
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ADP:  Comparisons

Comparison with manual segmentation

MR Image

Automatic
(2 min)

Manual
(18 hours)
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SAR segmentation via vector probability processing 

With A. Pardo (see also Haker-Sapiro-Tannenbaum)
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Anisotropic Diffusion in Vector SpaceAnisotropic Diffusion in Vector Space
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Goal and approach (Ringach-Sapiro)

Goal: 

Enhancement of vector valued data

Extend classical theories of scalar PDE’s in image 
processing

Approach:

Work in vector space

Compute vector edges

Anisotropic diffusion

Important: Works for any vector data

See also: Cumani, Di Zenzo, Chambolle
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Notation

Image

Texture: Gabor decomposition

L a b* * *

X N N
N

    x: [ , ] [ , ]0 0 ! !
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Color edge computation

Given a metric (Euclidean)

Compute first fundamental form

Compute eigenvectors and eigenvalues

Edge: maximal eigenvalue and its eigenvector

Basic properties:

Eigenvectors are orthonormal

Minimal eigenvalue is not zero

[ ]g
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j
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Color anisotropic diffusion

Direction: Minimal change  
Strength: 
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Level lines for vectorial images (Chung-Sapiro)

Vector and scalar representation 

sharing level-lines
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Contrast Enhancement (Sapiro-Caselles, and Caselles-Lisani-Morel-Sapiro)

Contrast enhancement via image deformations

Approach: Histogram modification

Characteristics:

Simultaneous contrast enhancement and denoising

First explanation of histogram modification in image domain

Extended to local

First semi-global partial differential equation in image processing

Formal existence results
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Beyond the flat manifolds
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The main problem and our goal (Tang-Sapiro-Caselles)

Goal: Enhancement and analysis of directional data (and 
data on non-flat manifolds)

Problem: Directions are unit vectors:

Regular images vs Directions 

Applications:

Optical flow, Gradients

Vector data (normalized)

Color image enhancement

Surface normals and principal directions

Flows in general manifolds

I R R I R S
N N

: :
2 2 1

! !
"

    vs         
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Average
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Most popular previous approaches

Work with angles: Operations on the sphere

Average, median, etc

Statistics of directional data, Mardia

“Orientation Diffusion,” Perona (1998)

Tensor diffusion

Weickert, Granlund-Knuttson

See also Chan-Shen
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Anisotropic Diffusion

Isotropic

(Heat equation) Anisotropic
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What have we learned from images?

min (| |)
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Robust Estimation:

Robust function

Gradient Descent: "
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Anisotropic Diffusion

Isotropic

(Heat equation) Anisotropic
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Back to Directions: Basic Idea

Use the theory of harmonic maps

Find a map I from two manifolds (M,g) and (N,h) such that

In particular, liquid crystals:
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The Gradient-Descent Equations
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A Few Theoretical Results (over hundreds relevant)

For 2D unit vectors (n=1), and p=2, a unique solution exists 
and singularities are isolated points (if they exists at all). 
For smooth data, singularities do not occur.

Singularities occur for 3D unit vectors (p=2).

Singularities well characterized for 1<p<=2.

Energy well characterized for 1<p<=2.

No singularities for manifolds with non-positive curvature. 
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Intermezzo: Visualizing Directions

Arrows

Color Map

Line Integral Convolution

! =

SIGGRAPH 2002
Guillermo Sapiro 70

Examples (Isotropic)
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3D vector (Isotropic)
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Denoising
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Optical flow
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Optical flow (cont.)
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Gradient
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Gradient (cont.)
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Color Image Enhancement
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Color image enhancement (cont.)
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Color image enhancement (cont.)
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Vector probability diffusion (with Alvaro Pardo)

Perform diffusion on the hyperplane representing 
probabilities

dydxI
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Vector probability diffusion (cont.)

The numerical implementation also stays on the 
hyperplane

The numerical implementation also holds a maximum and 
minimum principle
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Vector probability diffusion (cont.)

Diffuse posterior probabilities (following Teo-Sapiro-Wandell
and Haker-Sapiro-Tannenbaum)
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 WHY THE WORLD LOVES THE LEVEL SET
METHOD (AND RELATED) METHODS

Stan Osher

Mathematics Department
UCLA

sjo@math.ucla.edu

and

Level Set Systems, Inc.
1058 Embury St.

Pacific Palisades, CA 90272-2501
sjo@levelset.com

Google:  “Level Set Methods”

≈ 8200 responses

(September 17, 2003)

Osher-Sethian original paper (1988)

Now cited         720 times (web-of-science)≈

ICCV (2003) Nice

New Book

S. Osher & R.P. Fedkiw

Level Set Methods and Dynamic Implicit Surfaces.
Springer-Verlag

It’s out!!

Also

S. Osher & N. Paragios (Eds)

Geometric Level Set Methods in Imaging, Vision & Graphics

Springer-Verlag (2003)

Also
Course at SIGGRAPH (2002)
San Antonio, July 2002

Given an interface in  Rn,  call it  Γ,  of codimension one,

Move it normal to itself under velocity

v
r

v
r

vv
rr

=

                 (x, geometry, external physics)vv
rr

=

O & Sethian (1987)

Also: Unreferenced papers by

Dervieux, Thomassett, (1979, 1980).

Some of the key ideas in obscure proceedings.
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Trivial fact

Zero level contour

0
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vv
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n

nt

Merging is difficult

         3D is difficult

Reparametrization needed

Advect χ(x) ≡ 1 if  x ε Ω

                    ≡ 0 outside

                 +  Merging ok

-- Spurious discontinuity

-- Hard to compute curvature.

Phase field

e.g.

Mean Curvature

ut fuu
ε
1

−Δ=

get curvature

interface O(ε)

     width

But Δx < ε,  otherwise

(Thm: MBO, phase field gives the wrong answer)

Need adaptive grid,

NO ε in our approach.

(1) Reinitialize

       ϕ → signed distance to Γ  (SSO).

(2)  vn → extends smoothly off of Γ  (CMOS).

(3)  Local level set (near interface)  |ϕ| < ε.

Easy to implement

Near boundary singularities, 2 or 3D.
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Also

0
||

||

||
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∇
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∇

∇
==

ϕ
ϕ

γϕϕ

ϕ
ϕ

γ

t

nnn nvnvv
rr

High order accurate ENO schemes for HJ equations

(Kinks develop)

[OSe] [OSh]

Theoretical Justification

Viscosity solutions for scalar 2nd order (or 1st order)

Evolution eqns.

Motion by mean curvature e.g.

||
||

ϕ
ϕ

ϕϕ
∇

∇
⋅∇∇=t

ESS showed same as classical limit

ut fuu
ε
1

−Δ=

f =

as 0↓ε

Got e.g. motion of square by mean curvature.

Level Set Dictionary

1. { }

{ }0),(|)(

)(by)(

0),(|)(

<=Ω

ΓΩ

=Γ

txxt

tbddt

txxt

ϕ

ϕ

2. Unit normal

|| ϕ

ϕ

∇

∇
+= r

r
r
n

3. Mean curvature










∇

∇
⋅∇=

|| ϕ

ϕ
κ r

r

4.  Delta function on an interface

||)( ϕϕδ ∇

5.  Characteristic function χ of Ω(t)

0if0)(

0if1)(

)(

<≡

>≡

−=

xxH

xxH

H ϕχ

6.  Surface integral of p(x,t) over Γ

∫ ∇
nR

dxtxp ||)(),( ϕϕδ

7.  Volume integral of p(x,t) over Ω

∫ − dxHtxp )(),( ϕ

8. Distance reinitialization d(x,t) = signed distance to

      nearest point on Γ

0)1|(|sign

on0

in0,in01||

=−∇+
∂

∂

Γ=

Ω>Ω<=∇

ψϕ
τ
ψ

d

ddd c

as τ↑ ψ → d  very fast near d = 0.
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9. Smooth extension of a quantity e.g.  vn on Γ, off of Γ.

      Let  vn = p(x,t)

),()0,(

0
||

)sign(

txpxq

q
q

=

=







∇⋅

∇

∇
+

∂

∂

ϕ
ϕ

ϕ
τ

very fast near  d = 0.

10.  Local level set method.

Solve PDE within 6Δx  or so of  d = 0.

11.  Fast marching method:  Tsitsiklis (1993)

Rediscovered by (1995):  Helmsen P.C.D.,…, & Sethian

0

0||)(

>

=∇+

n

nt

v

xv ϕϕ
r

Use heap-sort, Godunov’s Hamiltonian (upwind,

viscosity soln)

Solve in  O(N log N)

(First order accurate), jazzed up hyperbolic space

Marching.

For this problem, probably fastest.

Although local level set more general & accurate.

For more complicated Hamiltonians

0)(),( >=∇ xcxH
rr

ϕ
H  convex in grad phi

Can do a simple local update                using a new

Formula of Tsai, et. al. (2001)

Sweep in pre-ordained directions.  Converges rapidly.  No

heap sort.  No large search and initialization regions.

Zhao: “convergence theorem” in special cases.

00
0

0
x

Now, with Kao, Jiang & O, can do a very simple sweeping

method in very general cases.



Level Set Methods:

An Overview and Some Recent Results ∗

Stanley Osher †

Ronald P. Fedkiw ‡

September 5, 2000

Abstract

The level set method was devised by Osher and Sethian in [64] as a
simple and versatile method for computing and analyzing the motion
of an interface Γ in two or three dimensions. Γ bounds a (possibly
multiply connected) region Ω. The goal is to compute and analyze
the subsequent motion of Γ under a velocity field �v. This velocity
can depend on position, time, the geometry of the interface and the
external physics. The interface is captured for later time as the zero
level set of a smooth (at least Lipschitz continuous) function ϕ(�x, t),
i.e., Γ(t) = {�x|ϕ(�x, t) = 0}. ϕ is positive inside Ω, negative outside Ω
and is zero on Γ(t). Topological merging and breaking are well defined
and easily performed.

In this review article we discuss recent variants and extensions,
including the motion of curves in three dimensions, the Dynamic Sur-
face Extension method, fast methods for steady state problems, diffu-
sion generated motion and the variational level set approach. We also
give a user’s guide to the level set dictionary and technology, couple
the method to a wide variety of problems involving external physics,
such as compressible and incompressible (possibly reacting) flow, Ste-
fan problems, kinetic crystal growth, epitaxial growth of thin films,

∗Research supported in part by ONR N00014-97-1-0027, DARPA/NSF VIP grant NSF
DMS9615854, AFOSR FQ8671-9801346, NSF DMS 9706827 and ARO DAAG 55-98-1-
0323.

†Department of Mathematics, University of California Los Angeles, Los Angeles, Cal-
ifornia 90095

‡Computer Science Department, Stanford University, Stanford, California 94305.
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vortex dominated flows and extensions to multiphase motion. We con-
clude with a discussion of applications to computer vision and image
processing.
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1 Introduction

The original idea behind the level set method was a simple one. Given
an interface Γ in Rn of codimension one, bounding a (perhaps multiply
connected) open region Ω, we wish to analyze and compute its subsequent
motion under a velocity field �v. This velocity can depend on position, time,
the geometry of the interface (e.g. its normal or its mean curvature) and
the external physics. The idea, as devised in 1987 by S. Osher and J.A.
Sethian [64] is merely to define a smooth (at least Lipschitz continuous)
function ϕ(x, t), that represents the interface as the set where ϕ(x, t) = 0.
Here x = x(x1, . . . , xn) ε Rn.

The level set function ϕ has the following properties

ϕ(x, t) > 0 for x ∈ Ω
ϕ(x, t) < 0 for x �∈ Ω̄
ϕ(x, t) = 0 for x ∈ ∂Ω = Γ(t)

Thus, the interface is to be captured for all later time, by merely locat-
ing the set Γ(t) for which ϕ vanishes. This deceptively trivial statement is
of great significance for numerical computation, primarily because topolog-
ical changes such as breaking and merging are well defined and performed
“without emotional involvement”.

The motion is analyzed by convecting the ϕ values (levels) with the
velocity field �v. This elementary equation is

∂ϕ

∂t
+ �v · ∇ϕ = 0. (1)

Here �v is the desired velocity on the interface, and is arbitrary elsewhere.
Actually, only the normal component of v is needed: vN = �v · ∇ϕ

|∇ϕ| , so
(1) becomes

∂ϕ

∂t
+ vN |∇ϕ| = 0. (2)

In section 3 we give simple and computationally fast prescriptions for
reinitializing the function ϕ to be signed distance to Γ, at least near the
boundary [84], smoothly extending the velocity field vN off of the front Γ
[24] and solving equation (2) only locally near the interface Γ, thus lowering
the complexity of this calculation by an order of magnitude [66]. This makes
the cost of level set methods competitive with boundary integral methods,
in cases when the latter are applicable, e.g. see [42].
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We emphasize that all this is easy to implement in the presence of bound-
ary singularities, topological changes, and in 2 or 3 dimensions. Moreover,
in the case which vN is a function of the direction of the unit normal (as in
kinetic crystal growth [62], and Uniform Density Island Dynamics [15], [36])
then equation (2) becomes the first order Hamilton-Jacobi equation

∂ϕ

∂t
+ |∇ϕ|γ

(
�N
)

= 0 (3)

where γ = γ( �N) a given function of the normal, �N = ∇ϕ
|∇ϕ| .

High order accurate, essentially non-oscillatory discretizations to general
Hamilton-Jacobi equations including (3) were obtained in [64], see also [65]
and [43].

Theoretical justification of this method for geometric based motion came
through the theory of viscosity solutions for scalar time dependent partial
differential equations [23], [30]. The notion of viscosity solution (see e.g. [8,
27]) – which applies to a very wide class of these equations, including those
derived from geometric based motions – enables users to have confidence that
their computer simulations give accurate, unique solutions. A particularly
interesting result is in [29] where motion by mean curvature, as defined by
Osher and Sethian in [64], is shown to be essentially the same motion as is
obtained from the asymptotics in the phase field reaction diffusion equation.
The motion in the level set method involves no superfluous stiffness as is
required in phase field models. As was proven in [53], this stiffness due to
a singular perturbation involving a small parameter ε will lead to incorrect
answers as in [48], without the use of adaptive grids [59]. This is not an
issue in the level set approach.

The outline of this paper is as follows: In section 2 we present recent vari-
ants, extensions and a rather interesting selection of related fast numerical
methods. This section might be skipped at first, especially by newcomers to
this subject. Section 3 contains the key definitions and basic level set tech-
nology, as well as a few words about the numerical implementation. Section
4 describes applications in which the moving interfaces are coupled to ex-
ternal physics. Section 5 concerns the variational level set approach with
applications to multiphase (as opposed to two phase) problems. Section 6
gives a very brief introduction to the ever-increasing use of level set method
and related methods in image analysis.

4



2 Recent Variants, Extensions and Related Fast
Methods

2.1 Motion of Curves in Three Spatial Dimensions

In this section we discuss several new and related techniques and fast nu-
merical methods for a class of Hamilton-Jacobi equations. These are all
relatively recent developments and less experienced readers might skip this
section at first.

As mentioned above, the level set method was originally developed for
curves in R2 and surfaces in R3. Attempts have been made to modify it to
handle objects of high codimension. Ambrosio and Soner [5] were interested
in moving a curve in R3 by curvature. They used the squared distance to
the curve as the level set function, thus fixing the curve as the zero level set,
and evolved the curve by solving a PDE for the level set function. The main
problem with this approach is that one of the most significant advantages
of level set method, the ability to easily handle merging and pinching, does
not carry over. A phenomenon called “thickening” emerges, where the curve
develops an interior.

Attempts have also been made in other directions, front tracking, e.g.
see [41]. This is where the curve is parameterized and then numerically rep-
resented by discrete points. The problem with this approach lies in finding
when merging and pinching will occur and in reparameterizing the curve
when it does. The representation we derived in [13] makes use of two level
set functions to model a curve in R3, an approach Ambrosio and Soner
also suggested but did not pursue because the theoretical aspects become
very difficult. In this formulation, a curve is represented by the intersection
between the zero level sets of two level set functions φ and ψ, i.e., where
φ = ψ = 0. From this, many properties of the curve can be derived such
as the tangent vectors, �T = ∇ψ×∇φ

|∇ψ×∇φ| , the curvature vectors, κ �N = ∇�T · �T ,

and even the torsion, τ �N = −∇ �B · �T , where �N and �B are the normal and
binormal respectively.

Motions of the curve can then be studied under the appropriate system
of PDE’s involving the two level set functions. The velocity can depend on
external physics, as well as on the geometry of the curve (as in the standard
level set approach). The resulting system of PDE’s for ψ and φ is

φt = −�v · ∇φ
ψt = −�v · ∇ψ
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A simple example involves moving the curve according to its curvature vec-
tors, for which �v = κ �N . We have shown that this system can also be
obtained by applying a gradient descent algorithm minimizing the length of
the curve,

L(φ,ψ) =
∫
R3

|∇ψ ×∇φ|δ(ψ)δ(φ)d�x.

This follows the general procedure derived in [88] for the variational level
set method for codimension one motion, also described in [90]. Numerical
simulations performed in [13] on this system of PDE’s, and shown in figures
1 and 2, show that merging and pinching off are handled automatically and
follow curve shortening principles.

We repeat the observation made above that makes this sort of motion
easily accessible to this vector valued level set method. Namely all geometric
properties of a curve Γ which is expressed as the zero level set of the vector
equation

φ(x, y, z, t) = 0
ψ(x, y, z, t) = 0

can easily be obtained numerically by computing discrete gradients and
higher derivatives of the functions φ and ψ restricted to their common zero
level set.

This method will be used to simulate the dynamics of defect lines as they
arise in heteroepitaxy of non-lattice notched materials, see [79] and [80] for
Lagrangian calculations.

An interesting variant of the level set method for geometry based mo-
tion was introduced in [53] as diffusion generated motion, and has now been
generalized to forms known as convolution generated motion or threshold dy-
namics. This method splits the reaction diffusion approach into two highly
simplified steps. Remarkably, a vector valued generalization of this ap-
proach, as in the vector valued level set method described above gives an
alternative approach [74] to easily compute the motion (and merging) of
curves moving normal to themselves in three dimensions with velocity equal
to their curvature.

2.2 Dynamic Surface Extension (DSE)

Another fixed grid method for capturing the motion of self-intersecting in-
terfaces was obtained in [73]. This is a fixed grid, interface capturing formu-
lation based on the Dynamic Surface Extension (DSE) method of Steinhoff
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et. al. [82]. The latter method was devised as an alternative to the level
set method of Osher and Sethian [64] which is needed to evolve wavefronts
according to geometric optics. The problem is that the wavefronts in this
case are supposed to pass through each other – not merge as in the viscos-
ity solution case. Ray-tracing can be used but the markers tend to diverge
which leads to loss of resolution and aliasing.

The original (ingenious) DSE method was not well suited to certain
fundamental self intersection problems such as formation of swallowtails. In
[73] we extended the basic DSE scheme to handle this fundamental problem,
as well as all other complex intersections.

The method is designed to track moving sets Γ of points of arbitrary
(perhaps changing) codimension, moreover there is no concept of “inside”
or “outside”. The method is, in some sense, dual to the level set method.
In the latter, the distance representation is constant tangential to a surface.
In the DSE method, the closest point to a surface is constant in directions
orthogonal to the surface.

The version of DSE presented in [73] can be described as follows:
For each point in Rn, set the tracked pointed TP (�x) equal to CP (�x) the

closest point (to �x) on the initial surface Γ0. Set �N equal to the surface
normal at the tracked point TP (�x). Let �v(TP (�x)) be the velocity of the
tracked point.

Repeat for all steps:

(1) Evolve the tracked point TP (�x) according to the local dynamics TP (�x)t =
�v(TP (�x)).

(2) Extend the surface representation by resetting each tracked point TP (�x)
equal to the true closest point CP (�x) on the updated surface Γ, where
Γ is defined to be the locus of all tracked points, i.e. Γ = {TP (�x)|�x ε Rn}.
Replace each �N(�x) by the normal at the updated TP (�x).

This method treats self intersection by letting moving sets pass through
each other. This is one of its main virtues in the ray tracing case. However,
it has other virtues – namely the generality of the moving set – curves can
end or change dimension.

An important extension is motivated by considering first arrival times.
This enables us to easily compute swallowtails, for example, and other sin-
gular points. We actually use a combination of distance and direction of
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motion. One interesting choice arises when nodal values of TP (�x) are set
equal to the “Minimizing Point”

MP (�x) = min
�y ε Interface

β|(�x− �y) · �N⊥(�y)|+ ‖�x− �y‖2

for β > 0 (rather than CP (�x)), since a good agreement with the minimal
arrival time representation is found near the surface. Recall that the minimal
arrival time at a point �x is the shortest time it takes a ray emanating from
the surface to reach �x. Using this idea gives a very uniform approximation
and naturally treats the prototype swallowtail problem.

For the special case of curvature dependent motion we may use an elegant
observation of DeGiorgi [28]. Namely the vector mean curvature for a surface
of arbitrary codimension is given by κ �N = −∆∇

(
d2

2

)
where κ is the local

mean curvature and d is the distance to the surface. Using the elementary,
but basic fact that

d∇d = �x−CP (�x)

where CP (�x) is the closest point to �x on the surface, we obtain a very simple
expression for vector mean curvature

κ �N = −∆(�x− CP (�x)) = ∆CP (�x).

Thus motion by a function F , of mean curvature for surfaces of arbitrary
codimension can be achieved by using �v(TP (�x)) = ∆CP (�x). Then curvature
dependent velocities are possible by using

�v = F (∆CP (�x)|TP (�x) · �N) �N.

where numerical experiments in [73] have validated these algorithms to some
degree.

A variety of interesting topics for future research is still open. In partic-
ular, adjustments need to be made if merging is desired. Moreover we can
move objects with more complex topology and geometry, such as surfaces
with boundaries (or curves with endpoints), objects of composite topology
(such as a filament attached to a sheet) and surfaces on curves with triple
point junctions (see [88], [53] and section 5 of this paper for successful level
set based and diffusion generated based approaches for the codimension one
case respectively).

Further work in the area of curvature dependent motions is also possible.
Computationally the construction of fast extension methods and localization
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as in [66] for the level set method would be of great practical importance.
It would be particularly interesting to determine if surfaces fatten (or de-
velop interiors) when mergers occur. See [9] for a detailed discussion of this
phenomenon.

Additionally in [73] we successfully calculated a geometric optics ex-
pansion by retaining the wave front curvature. Thus this method has the
possibility of being quite useful in electromagnetic calculations. We hope
to investigate its three dimensional performance and include the effects of
diffraction.

2.3 A Class of Fast Hamilton-Jacobi Solvers

Another important set of numerical algorithms involves the fast solution of
steady (time independent) Hamilton-Jacobi equations. We also seek meth-
ods which are faster than the globally defined schemes originally used to
solve equation 2. The level set method of Osher and Sethian [64] for time
dependent problems can be localized. This means that the problem

ϕt + �v · ∇ϕ = 0

with Γ(t) = {�x|ϕ(�x, t) = 0} as the evolving front, can be solved locally near
Γ(t). Several algorithms exist for doing this, see [66] and [2]. These both
report an O(N) algorithm where N is the total number of grid points on or
near the front. However, the algorithm in [66] has O(N log(N)) complexity
because a partial differential equation based reinitialization step requires
log( 1

�x) ≈ log(N) steps to converge (we are grateful to Bjorn Engquist for
pointing this out). The algorithm in [2] claims O(N) complexity, but this is
not borne out by the numerical evidence presented there.

However for some special Hamilton-Jacobi equations there is a fast method
whose formal complexity is O(N log(N)), but which, in our experience, is
around one order of magnitude faster than these general local methods.

The idea is as follows:
For an equation of the form

H̃(�x,∇ψ) = 0,

give ψ = 0 on a non characteristic set S:

∇ψ · H̃∇ψ �= 0
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then we proved in [63] that the t level set

{�x|ψ(�x) = t} = Γ′(t)

is the same as the zero level set Γ(t) of ϕ(�x, t), for t > 0 where ϕ satisfies

H̃

(
�x,−∇ϕ

ϕt

)
= 0.

This means that the viscosity solutions of either problem have level sets
which correspond to each other. (This was also suggested in the original
level set paper of Osher and Sethian [64]). Thus, one would like to find Γ(t),
the zero level set of ϕ(x, t), as Γ′(t), the t level set of ψ(x).

A canonical example is the eikonal equation

ϕt + c(�x)|∇ϕ| = 0, c(�x) < 0

which can be replaced by:

|∇ψ| = − 1
c(�x)

= a(�x) > 0.

So we find first arrival times instead of zero level sets.
In [86] J.N. Tsitsiklis devised a fast algorithm for the eikonal equation.

He obtained the viscosity solution using ideas involving Dijkstra’s algorithm,
adapted to the eikonal equation, heap sort and control theory. From a nu-
merical PDE point of view, however, Tsitsiklis had an apparently nonstan-
dard approximation to |∇ψ| on a uniform Cartesian grid.

In (1995) Sethian [76] and Helmsen et. al. [40] independently published
what appeared to be a simpler algorithm making use of the Rouy-Tourin al-
gorithm to approximate |∇ϕ|. This has become known as the “fast marching
method”. However, together with Helmsen [61] we have proven that Tsit-
siklis’ approximation is the usual Rouy-Tourin [69] version of Godunov’s
monotone upwind scheme. That is, the algorithm in [76] and [40] is simply
Tsitsiklis’ algorithm with a different (simpler) exposition.

Our goal here is to extend the applicability of this idea from the eikonal
equation to any geometrically based Hamiltonian. By this we mean a Hamil-
tonian satisfying the properties:

H(�x,∇ψ) > 0, if ∇ψ �= �0 (4)

and
H(�x,∇ψ) is homogeneous of degree one in ∇ψ (5)
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We wish to obtain a fast algorithm to approximate the viscosity solution
of

H̃(�x,∇ψ) = H(�x,∇ψ) − a(�x) = 0. (6)

The first step is to set up a monotone upwind scheme to approximate
this problem. Such a scheme is based on the idea of Godunov used in the
approximation of conservation laws. In Bardi and Osher [7], see also [65],
the following was obtained (for simplicity we exemplify using two space
dimensions and ignore the explicit �x dependence in the Hamiltonian)

H(ψx, ψy) ≈ HG(Dx
+ψ,D

x
−ψj ;D

y
+ψ,D

y
−ψ)

= extu ε I(u−,u+)
extv ε I(v−,v+)

H(u, v)

where

I(a, b) = [min(a, b),max(a, b)]

extuI(a, b) =

{
mina≤u≤b if a ≤ b
maxb≤u≤a if a > b

u± = Dx
±ψij = ±(ψi±1,j − ψij)

∆x
, v± = Dy

±ψij = ±(ψi,j±1 − ψij)
∆y

.

(Note, the order may be reversed in the ext operations above – we always
obtain a monotone upwind scheme which is often, but not always, order
invariant [65]).

This is a monotone upwind scheme which is obtained through the Go-
dunov procedure involving Riemann problems, extended to general Hamilton-
Jacobi equations [7], [65].

If we approximate
H(∇ϕ) = a(x, y)

by
HG(Dx

+ϕ,D
x
−ϕ;D

x
+ψ;Dy

+ψ,D
y
−ψ) (7)

for Hamiltonians satisfying (4), (5) above, then there exists a unique solution
for ψi,j in terms of ψi±1,j , ψi,j±1 and ψi,j. Furthermore ψi,j is a nondecreas-
ing function of all these variables.

However, the fast algorithm needs to have property F : The solution to
(7) depends on the neighboring ψµ,ν only for ψµ,ν < ψi,j . This gives us a
hint as to how to proceed.
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For special Hamiltonians of the form: H(u, v) = F (u2, v2), with F non-
decreasing in these variables, then we have the following result [61]

HG(u+, u−; v+, v−) = F (max((u−+)2, (u+
−)2);max((v−+)2, (v+

−)2)) (8)

where x+ = max(x, 0), x− = min(x, 0). It is easy to see that this numerical
Hamiltonian has property F described above. This formula, as well as the
one obtained in equation 10 below enables us to extend the fast marching
method algorithm to a much wider class than was done before. For example,
using this observation we were able to solve an etching problem, also consid-
ered in [3] where the authors did not use a fast marching method algorithm,
but instead used a local narrow band approach and schemes devised in [64].
The Hamiltonian was

H(ϕx, ϕy, ϕz) =
√
ϕ2
z

(
1 +

4(ϕ2
x + ϕ2

y)
ϕ2
x + ϕ2

y + ϕ2
z

)
.

We are able to use the same heap sort technology as for the eikonal
equation, for problems of this type. See figures 3 and 4. These figures
represent the level contours of an etching process whose normal velocity is
a function of the direction of the normal. The process moves down in figure
3 and up in figure 4.

More generally, for H(u, v) having the property

uH1 ≥ 0, vH2 ≥ 0 (9)

then we also proved [61]

HG(u+, u−; v+, v−) = max[H(u−+, v
−
+),H(u+

−, v
−
+),H(u−+, v

+
−),H(u+

−, v
+
−)]
(10)

and property F is again satisfied.
Again in [61], we were able to solve a somewhat interesting and very

anisotropic etching problem with this new fast algorithm. Here we took

H(ϕx, ϕy) = |ϕy|(1 − a(ϕy)ϕy/(ϕ2
x + ϕ2

y))

where

a = 0 if ϕy < 0
a = .8 if ϕy > 0
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and observed merging of two fronts. See figures 5 and 6. These figures show
a two dimensional etching process resulting in a merger.

The fast method originating in [86] is a variant of Dijkstra’s algorithm
and, as such involves the tree like heap sort algorithm in order to compute
the smallest of a set of numbers. Recently Boué and Dupuis [11] have pro-
posed an extremely simple fast algorithm for a class of convex Hamiltonians
including those which satisfy (4) and (5) above. Basically, their statement
is that the standard Gauss-Seidel algorithm, with a simple ordering, con-
verges in a finite number of iterations for equation (7). This would give
an O(N), not O(N logN) operations, with an extremely simple to program
algorithm – no heap sort is needed. Moreover, for the eikonal equation
with a(x, y) = 1, the algorithm would seem to converge in 2dN iterations
in Rd, d = 1, 2, 3, which is quite fast. This gives a very simple and fast re-
distancing algorithm. For more complicated problems we have found more
iterations to be necessary, but still obtained promising results, together with
some theoretical justification. See [85] for details, which also include results
for a number of nonconvex Hamiltonians. We call this technique the “fast
sweeping method” in [85]. We refer to it in section 3 when we discuss the
basic distance reinitialization algorithm.
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Figure 1: Merging and pinching of curves in R3 moving by mean curvature.
Reprinted from [13].
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Figure 2: Merging and pinching of curves in R3 moving by mean curvature.
Reprinted from [13].
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Figure 3: Three dimensional etching using a fast algorithm. Reprinted from
[61].
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Figure 4: Three dimensional etching using a fast algorithm. Reprinted from
[61].
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Figure 5: Two dimensional etching with merging using a fast algorithm.
Reprinted from [61].
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Figure 6: Two dimensional etching with merging using a fast algorithm.
Reprinted from [61].
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3 Level Set Dictionary, Technology and Numerical
Implementation

We list key terms and define them by their level set representation.

1. The interface boundary Γ(t) is defined by: {�x|ϕ(�x, t) = 0}. The region
Ω(t) is bounded by Γ(t) : {�x|ϕ(�x, t) > 0} and its exterior is defined
by: {�x|ϕ(�x, t) < 0}

2. The unit normal �N to Γ(t) is given by

�N = − ∇ϕ
|∇ϕ| .

3. The mean curvature κ of Γ(t) is defined by

κ = −∇ ·
( ∇ϕ
|∇ϕ|

)
.

4. The Dirac delta function concentrated on an interface is:

δ(ϕ)|∇ϕ|,

where δ(x) is a one dimensional delta function.

5. The characteristic function χ of a region Ω(t):

χ = H(ϕ)

where

H(x) ≡ 1 if x > 0
H(x) ≡ 0 if x < 0.

is a one dimensional Heaviside function.

6. The surface (or line) integral of a quantity p(�x, t) over Γ:∫
Rn
p(�x, t)δ(ϕ)|∇ϕ|d�x.

7. The volume (or area) integral of p(�x, t) over Ω∫
Rn
p(�x, t)H(ϕ)d�x.
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Next we describe three key technological advances which are important
in many, if not most, level set calculations.

8. The distance reinitialization procedure replaces a general level set func-
tion ϕ(�x, t) by d(�x, t) which is the value of the distance from �x to
Γ(t), positive outside and negative inside. This assures us that ϕ does
not become too flat or too steep near Γ(t). Let d(�x, t), be signed dis-
tance of �x to the closest point on Γ. The quantity d(�x, t) satisfies
|∇d| = 1, d > 0 in Ω, d < 0 in (Ω̄)c and is the steady state solution
(as τ → ∞) to

∂ψ

∂τ
+ sgn(ϕ)(|∇ψ| − 1) = 0 (11)

ψ(�x, 0) = ϕ(�x, t).

where sgn(x) = 2H(x)−1 is the one dimensional signum function. This
was designed in [84]. The key observation is that in order to define d
in a band of width ε around Γ, we need solve (11) only for τ = O(ε). It
can easily be shown that this can be used globally to construct distance
(with arbitrary accuracy) in O(N logN) iterations [66]. Alternatively,
we may use Tsitsiklis’ fast algorithm [86], which is also O(N logN),
with a much smaller constant, but which is only first order accurate.
A locally second order accurate (in the high resolution sense) fast
marching method was proposed in [77]. While this method has a much
lower local truncation error than a purely first order accurate method,
it is still globally first order accurate except for special cases. Finally,
we might also use the fast sweeping method from [11] and [85] as
described in the last section, which appears to have O(N) complexity
and which is also only first order accurate, although this complexity
estimate has not been rigorously justified.

9. Smooth extension of a quantity, e.g. vn on Γ to a neighborhood of Γ.
Let the quantity be p(�x, t). Solve to steady state (τ → ∞)

∂q

∂τ
+ sgn(ϕ)

( ∇ϕ
|∇ϕ| · ∇q

)
= 0

q(�x, 0) = p(�x, t).

Again, we need only solve this for τ = O(ε) in order to extend p to be
constant in the direction normal to the interface in a tube of width ε.
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This was first suggested and implemented in [24], analyzed carefully in
[88], and further discussed and implemented in both [32] and [66]. A
computationally efficient algorithm based on heap sort technology and
fast marching methods was devised in [1]. There are many reasons to
extend a quantity off of Γ, one of which is to obtain a well conditioned
normal velocity for level contours of ϕ close to ϕ = 0 [24]. Others
involve implementation of the Ghost Fluid Method of [32] discussed
in the next section.

10. The basic level set method concerns a function ϕ(�x, t) which is defined
throughout space. Clearly this is wasteful if one only cares about
information near the zero level set. The local level set method defines
ϕ only near the zero level set. We may solve (2) in a neighborhood of
Γ of width m∆x, where m is typically 5 or 6. Points outside of this
neighborhood need not be updated by this motion. This algorithm
works in “ϕ” space – so not too much intricate computer science is
used. For details see [66]. Thus this local method works easily in the
presence of topological changes and for multiphase flow. An earlier
local level set approach called “narrow banding” was devised in [2].

Finally, we repeat that, in the important special case where vN in equa-
tion 2 is a function only of �x, t and ∇ϕ (e.g. vN = 1), then equation
2 becomes a Hamilton-Jacobi equation whose solutions generally develop
kinks (jumps in derivatives). We seek the unique viscosity solution. Many
good references exist for this important subject, see e.g. [8, 27]. The appear-
ance of these singularities in the solution means that special, but not terribly
complicated, numerical methods have to be used, usually on uniform Carte-
sian grids. This was first discussed in [64] and numerical schemes developed
there were generalized in [65] and [43]. The key ideas involve monotonicity,
upwind differencing, essentially nonoscillatory (ENO) schemes and weighted
essentially nonoscillatory (WENO) schemes. See [64], [65] amd [43] for more
details.
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4 Coupling of the Level Set Method with External
Physics

Interface problems involving external physics arise in various areas of science.
The computation of such problems has a very long history. Methods of choice
include front tracking, see e.g. [87] and [41], phase-field methods, see e.g.
[48] and [59], and the volume of fluid (VOF) approach, see e.g. [60] and
[12]. The level set method has had major successes in this area. Much of
the level set technology discussed in the previous two sections was developed
with such applications in mind.

Here, we shall describe level set approaches to problems in compressible
flow, incompressible flow, flows having singular vorticity, Stefan problems,
kinetic crystal growth and a relatively new island dynamics model for epitax-
ial growth of thin films. We shall also discuss a recently developed technique,
the ghost fluid method (GFM), which can be used (1) to remove numerical
smearing and nonphysical oscillations in flow variables near the interface and
(2) to simplify the numerical linear algebra arising in some of the problems
in this section and elsewhere.

4.1 Compressible Flow

Chronologically, the first attempt to use the level set method in this area
came in two phase inviscid compressible flow, [55]. There, to the equations
of conservation of mass, momentum and energy, we appended equation (1),
which we rewrote in conservation form as

(ρϕ)t +∇ · (ρϕ�v) = 0 (12)

using the density of the fluid ρ.
The sign of ϕ is used to identify which gas occupied which region, so it

determines the local equation of state. This (naive) method suffered from
spurious pressure oscillations at the interface, as shown in [46] and [45].
These papers proposed a new method which reduced these errors by using a
nonconservative formulation near the interface. However, [46] and [45] still
smear out the density across the interface, leading to terminal oscillations
for many equations of state.

A major breakthrough in this area came in the development of the ghost
fluid method (GFM) in [32]. This enables us to couple the level set repre-
sentation of discontinuities to finite difference calculations of compressible
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flows. The approach was based on using the jump relations for discontinu-
ities which are tracked using equation (1) (for two phase compressible flow).
What the method amounts to (in any number of space dimensions) is to pop-
ulate cells next to the interface with “ghost values”, which, for two phase
compressible flow retain their usual values of pressure and normal veloc-
ity (quantities which are continuous across the interface), with extrapolated
values of entropy and tangential velocity (which jump across the interface).
These quantities are used in the numerical flux when “crossing” an interface.

An important aspect of the method is its simplicity. There is no need
to solve a Riemann problem normal to the interface, consider the Rankine-
Hugoniot jump conditions, or solve an initial-boundary value problem. An-
other important aspect is its generality. The philosophy appears to be: at
a phase boundary, use a finite difference scheme which takes only values
which are continuous across the interface, using the natural values when-
ever possible. Of course, this implies that the tangential velocity is treated
in the same fashion as the normal velocity and the pressure when viscosity is
present. The same holds true for the temperature in the presence of thermal
conductivity.

Figure 7 shows results obtained for two phase compressible flow using
the GFM together with the level set method. Air with density around
1 kg
m3 is to the left of the interface and water with density around 1000 kg

m3

is to the right of the interface. Note that there is no numerical smearing
of the density at the interface itself which is fortunate as water cavitates
at a density above 999 kg

m3 leading to host of nonphysical problems near the
interface. Note too, that the pressure and velocity are continuous across
the interface, although there are kinks in both of these quantities. A more
complicated multidimensional calculation is shown in figure 8 where a shock
wave in air impinges upon a helium droplet. See [32] for more details.

While the GFM was originally designed for multiphase compressible flow,
it can be generalized to treat a large number of flow discontinuities. In [33],
we generalized this method to treat shocks, detonations and deflagrations in
a fashion that removes the numerical smearing of the discontinuity. Figure
9 shows the computed solution for a detonation wave. Note that there is no
numerical smearing of the leading wave front which is extremely important
when trying to eliminate spurious wave speeds for stiff source terms on
coarse grids as first pointed out by [26]. While shocks and detonations
have associated Riemann problems, the Riemann problem for a compressible
flow deflagration discontinuity is not well posed unless the speed of the
deflagration is given. Luckily, there is a large amount of literature on the

24



G-equation for flame discontinuities which was originally proposed in [50].
The G-equation represents the flame front as a discontinuity in the same
fashion as the level set method so that one can easily consult the abundant
literature on the G-equation to obtain deflagration speeds for the Ghost
Fluid Method. Figure 10 shows two initially circular deflagration fronts
that have just recently merged together. Note that the light colored region
surrounding the deflagration fronts is a precursor shock wave that causes
the initially circular deflagration waves to deform as they attempt to merge.

The GFM was extended in [34] in order to treat the two phase compress-
ible viscous Navier Stokes equations in a manner that allows for a large jump
in viscosity across the interface. This paper spawned the technology needed
to extend the GFM to multiphase incompressible flow including the effects
of viscosity, surface tension and gravity as discussed in the next subsection.

4.2 Incompressible Flow

The earliest real success in the coupling of the level set method to prob-
lems involving external physics came in computing two-phase Navier-Stokes
incompressible flow [84], [22]. The equations can be written as:

�ut + �u · ∇�u+
∇p
ρ

= �g +
∇ · (2µD)

ρ
+
δ(ϕ)σκ �N

ρ

∇ · �u = 0

where �u = (u, v,w) is the fluid velocity, p is the pressure, ρ = ρ(ϕ) and
µ = µ(ϕ) are the piecewise constant fluid densities and viscosities, g is the
gravitational force, D is the viscous stress tensor, σ is the surface tension
coefficient, κ is the curvature of the interface, �N is the unit normal and
δ(ϕ) is a delta function. See [87] and [12] for earlier front tracking and VOF
methods (respectively) using a similar formulation. This equation is coupled
to the front motion through the level set evolution equation (1) with �v = �u.
This involves defining the interface numerically as having a finite width of
approximately 3 to 5 grid cells. Within this smeared out band, the density,
viscosity and pressure are modeled as continuous functions. Then the σκ �N

ρ
term is used to approximate the surface tension forces which are lost when
using a continuous pressure [84]. Successful computations using this model
were performed in [84] and elsewhere [22]. Problems involving area loss were
observed and significant improvements were made in [83].

As mentioned above, the technology from [34] motivated the extension
of the Ghost Fluid Method to this two phase incompressible flow problem.
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First, a new boundary condition capturing approach was devised and applied
to the variable coefficient Poisson equation to solve problems of the form

∇
(

1
ρ
∇p
)

= f

where the jump conditions [p] = g and [1ρ∇p · �N ] = h are given and ρ is
discontinuous across the interface. This was accomplished in [49]. A sample
calculation from [49] is shown in figure 11 where one can see that both the
solution, p, and its first derivatives are sharp across the interface without
numerical smearing. Next, this new technique was applied to multiphase
incompressible flow in [44]. Here, since one can model the jumps in pressure
directly, there is no need to add the σκ �N

ρ source term to the right hand side
of the momentum equation in order to capture the surface tension forces.
Instead surface tension is modeled directly by imposing a pressure jump
across the interface. In addition, [44] allows for exact jumps in both ρ and
µ so that the nonphysical finite width smeared out interface in [84] can
be replaced by a sharp interface. A three dimensional calculation of an
(invisible) solid sphere impacting water causing a splash is shown in figure
12. Here the air has density near 1 kg

m3 while the water has density near
1000 kg

m3 .
Recently, in [57], this boundary condition capturing technology was ex-

tended to treat two phase incompressible flames where the normal velocity is
discontinuous across the interface as well. Figure 13 shows an example cal-
culation where two flames have just merged. Note that the velocity vectors
in figure 13 clearly indicate that the velocity is kept discontinuous across
the flame front. [39] considered two phase incompressible flames as well,
proposing a method that keeps the interface sharp and removes numerical
smearing. Unfortunately, the method proposed in [39] cannot treat topo-
logical changes in the flame front. Our method improves upon [39] allowing
flame front discontinuities to merge, as in figure 13, or pinch off. Figure 14
shows two flame fronts shortly after merging in three spatial dimensions.

4.3 Topological Regularization

In [37] and [38], it is shown that the level set formulation provides a new
and novel way to regularize certain ill-posed equations of interface motion,
by blocking interface self-intersection. We computed two and three dimen-
sional unstable vortex motion without regularization other than that in the
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discrete approximation to δ(ϕ) – this is done over a few grid points. The key
observation is that viewing a curve or surface as the level set of a function,
and then evolving it with a perhaps unstable velocity field, prevents certain
types of blow up from occuring. This is denoted “topological regulariza-
tion”. For example a tracked curve can develop a figure eight pattern, but a
level set captured curve will pinch off and stabilize before this happens. For
the set up (involving two functions), see [37], where we perform calculations
involving the Cauchy-Riemann equations. The motions agree until pinch
off, when the topological stabilization develops.

As an example, we considered the two dimensional incompressible Euler
equations, which may be written as

ωt + �u · ∇ω = 0
∇× �u = ω

∇ · �u = 0

We are interested in situations in which the vorticity is initially concentrated
on a set characterized by the level set function ϕ as follows

Vortex patch: ω = H(ϕ)

Vortex sheet: ω = δ(ϕ), (strength of sheet is
1

|∇ϕ|)

Vortex sheet dipole: ω =
d

dϕ
δ(ϕ) = δ′(ϕ).

The key observation is that ϕ also satisfies a simple advection equation and
�u and ω can be easily recovered. For example, for the vortex sheet case we
solve

ϕt + �u · ∇ϕ = 0

�u =

(
−∂y
∂x

)
∆−1δ(ϕ).

Standard Laplace solvers may be used. See [38] for results involving two and
three dimensional flows. In [66] we added reinitialization and extension to
this procedure and obtained improved results in the two dimensional case.
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4.4 Stefan Problem

Another classical field concerns Stefan problems [24], see also [78] for an
earlier, but much more involved level set based approach. Here we wish
to simulate melting ice or freezing water, or more complicated crystalline
growth, as in the island dynamics model discussed below.

We begin with a simplified, nondimensionalized model (see [47] for an
extension as mentioned below),

∂T

∂t
= ∇2T, �x � ε ∂Ω = Γ(t)

vN = [∇T ·N ] , �x ε Γ(t)

where [·] denotes the jump across the boundary, and

T = −ε̄cκ(1 −Acos(kAθ + θ0)) + ε̄vvn(1 −A cos(kAθ + θ0))

on Γ(t), and where κ is the curvature, θ = cos−1 ϕx

|∇ϕ| , and the constants
A, kA, θ0, ε̄c, and ε̄v depend on the material being modeled.

We directly discretize the boundary conditions at Γ: To update T at
grid nodes near the boundary, if the stencil for the heat equation would
cross Γ (as indicated by nodal sign change in ϕ), we merely use dimension
by dimension one sided interpolation and the given boundary T value at an
imaginary node placed at ϕ = 0 (found by interpolation on ϕ) to compute
Txx and or Tyy, (never interpolating across the interface) rather than the
usual three point central stencils. The level set function ϕ is updated and
then reinitialized to be equal to the signed distance to Γ. Note that the
level set update uses vN that has been extended off the interface. See [24]
for details.

We note that one can easily extend this to

∂T

∂t
= ∇ · (k∇T )

where k is a different positive constant inside and outside of Ω and

vN =
[
k∇T · �N

]
, �x ε Γ(t).

as was recently done in [47].
An important observation is that our finite differencing at the interface

leads to a nonsymmetric matrix inversion when applying implicit discretiza-
tion in time, although the method does have nice properties such as second
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order accuracy and a maximum principle. This lack of symmetry is a bit
problematic for a fast implementation, especially for very large values of k.
Fortunately, an extension of GFM can be used to derive a different spatial
discretization producing a symmetric matrix that can be inverted rather
easily using fast methods. This was originally proposed by Fedkiw [31] and
is described below.

It is sufficient to explain how the spatial derivatives are derived with
respect to one variable, since there are no mixed partial derivative terms.
Suppose the interface point, xf , falls in between two grid points xi and xi+1.
From φ, the distances between xi, xi+1 and xf can be estimated by

xf − xi ≈ −φi ∆x
(φi+1 − φi)

= θ1∆x (13)

xi+1 − xf ≈ φi+1 ∆x
(φi+1 − φi)

= θ2∆x (14)

To avoid numerical errors caused by division by 0, θ1 or θ2 are not used if
either is less than ∆x2. If θ1 < ∆x2, then xf is assumed equal to xi. If
θ2 < ∆x2, then xf is assumed equal to xi+1. Either assumption is effectively
a second order perturbation of the interface location leading to second order
accurate spatial discretization. The nonsymmetric second order accurate
discretization for Txx given in [24] is

(Txx)i ≈

(
Tf−Ti

θ1∆x

)
−
(
Ti−Ti−1

∆x

)
1
2(θ1∆x+ ∆x)

(15)

(Txx)i+1 ≈

(
Ti+2−Ti+1

∆x

)
−
(
Ti+1−Tf

θ2∆x

)
1
2(∆x+ θ2∆x)

(16)

where Tf denotes the value of T at xf and is determined from the bound-
ary condition. Instead of using the nonsymmetric equations (15) and (16),
Fedkiw [31] proposed using

(Txx)i ≈

(
Tf−Ti

θ1∆x

)
−
(
Ti−Ti−1

∆x

)
∆x

(17)

(Txx)i+1 ≈

(
Ti+2−Ti+1

∆x

)
−
(
Ti+1−Tf

θ2∆x

)
∆x

(18)

which leads to a symmetric linear system when using implicit time discretiza-
tion. Equation (17) is derived using linear extrapolation of T from one side
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of the interface to the other, obtaining

TG = Tf + (1 − θ1)
(
Tf − Ti
θ1

)
(19)

as a ghost cell value for T at xi+1. The standard second order discretization
of ∂2T

∂x2 at xi using TG at xi+1 is

(Txx)i ≈

(
TG−Ti

∆x

)
−
(
Ti−Ti−1

∆x

)
∆x

(20)

and the substitution of equation (19) into equation (20) leads directly to
(17). Equation (18) is derived similarly.

Formulas (17) and (18) have O(1) errors using formal truncation error
analysis. However, they are second order accurate on a problem where the
interface has been perturbed byO(∆x2), making them second order accurate
in the interface location. Assume that the standard second order accurate
discretization is used to obtain the standard linear system of equations for
T at every grid point except for those adjacent to the interface, that is
except for xi and xi+1. Since the linear system of equations for the nodes
to the left and including xi is independent of the system for the nodes
to the right including xi+1, only the linear system to the left is discussed
here. Equation (20) is used to write a linear equation for Ti introducing a
new unknown TG, and the system is closed with equation (19) for TG. In
practice, equations (19) and (20) are combined to obtain equation (17) and a
symmetric linear system of equations. This linear system of equations results
in well determined values (up to some prescribed tolerance near roundoff
error levels) of T at each grid node as well as a well determined value of
TG (from equation (19)). For the sake of reference, designate �T as the
solution vector containing the values of T at each grid point to the left
and including xi as well as the value of TG at xi+1 which are obtained by
solving this symmetric linear system. Below, �T is shown to be a second
order accurate solution to our problem by showing that it is the second
order accurate solution to a modified problem where the interface location
has been perturbed by O(∆x2).

Consider the modified problem where a Dirichlet boundary condition of
T = TG is specified at xi+1 where TG is chosen to be the value of TG from �T
defined above. This modified problem can be exactly discretized to second
order accuracy everywhere using the standard discretization at every node
except xi where equation (20) is used. We note that equation (20) is the
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standard second order accurate discretization when a Dirichlet boundary
condition of T = TG is applied at xi+1. This new linear system can be dis-
cretized and solved in a standard fashion to obtain a second order accurate
solution at each grid node. Then the realization that �T is an exact solu-
tion to this linear system implies that �T is a second order accurate solution
to this modified problem. Next consider the interface location dictated by
the modified problem. Since �T is a second order accurate solution to the
modified problem, �T can be used to obtain the interface location to second
order accuracy. The linear interpolant that uses Ti at xi and TG at xi+1

predicts an interface location of exactly xf which is the true interface loca-
tion. Since higher order interpolants (higher than linear) can contribute at
most an O(∆x2) perturbation of the interface location, the interface loca-
tion dictated by the modified problem is at most an O(∆x2) perturbation
of the true interface location, xf .

In [25], we used this strategy to obtain a second order accurate symmetric
discretization of the variable coefficient Poisson equation

∇ (k∇T ) = f

on irregular domains in as many as three spatial dimensions. Then, in
a straightforward way, we obtained second order accurate symmetric dis-
cretizations of the heat equation on irregular domains using backward Euler
time stepping with �t = (�x)2 and Crank-Nicolson time stepping with
�t = �x.

4.5 Kinetic Crystal Growth

For an initial state consisting of any number of growing crystals in Rd, d
arbitrary, moving outward with given normal growth velocity �v( �N) > 0
which depends on the angle of the unit surface normal �N , the asymptotic
growth shape is a single (kinetic) Wulff-construct crystal. This result was
first conjectured by Gross in (1918) [35]. This shape is also known to min-
imize the surface integral of �v( �N) for a given volume. We gave a proof
of this result [62], see also [81], using the level set formulation and the
Hopf-Bellman formulas [6] for the solution of a Hamilton-Jacobi equation.
Additionally, with the help of the Brunn-Minkowski inequality, we showed
that if we evolve a convex surface under the motion described in (3), then
the ratio to be minimized monotonically decreases to its minimum as time
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increases, which provides a new proof that the Wulff construction solves
the generalized isoperimetric problem as well. Thus there is a new link
between this hyperbolic surface evolution and this (generally nonconvex)
energy minimization. This also provides a convenient framework for numer-
ically computing anisotropic kinetic crystal growth [67]. The theoretical and
numerical results of this work are illustrated in the Uniform Density Island
Dynamics models of [15] and [36]. That model describes crystals growing in
two dimensions with an anisotropic velocity.

An interesting spinoff of this work came in [67] in which we proved that
any two dimensional Wulff shape can be interpreted precisely as the solution
of a Riemann problem for a scalar conservation law – contact discontinu-
ities correspond to jumps in the angle of the normal to the shape, smoothly
varying non flat faces correspond to rarefaction waves and planar facets
correspond to constant states, which develop because of kinks in the con-
servation law’s flux function. These kinks are also seen in the convexified
Wulff energy.

4.6 Epitaxial Growth of Thin Films

A new continuum model for the epitaxial growth of thin films has been de-
veloped. Molecular Beam Epitaxy (MBE) is a method for growing extremely
thin films of material. The essential aspects of this growth process are as
follows: under vacuum conditions a flux of atoms is deposited on a substrate
material, typically at a rate that grows one atomic monolayer every several
seconds. When deposition flux atoms hit the surface, they bond weakly
rather than bounce off. These surface “adatoms” are relatively free to hop
from lattice site to site on a flat (atomic) planar surface. However, when
they hop to a site at which there are neighbors at the same level, they form
additional bonds which hold them in place. This bonding could occur at the
“step edge” of a partially formed atomic monolayer, which contributes the
growth of that monolayer. Or, it could occur when two adatoms collide with
each other. If the critical cluster size is one, the colliding adatoms nucleate
a new partial monolayer “island” that will grow by trapping other adatoms
at its step edges.

By these means, the deposited atoms become incorporated into the grow-
ing thin film. Each atomic layer is formed by the nucleation of many isolated
monolayer islands, which then grow in area, merge with nearby islands, and
ultimately fill in to complete the layer. Because the deposition flux is con-
tinually raining down on the entire surface, including the tops of the islands,
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a new monolayer can start growing before the previous layer is completely
filled. Thus islands can form on top of islands in a “wedding cake” fashion,
and the surface morphology during growth can become quite complicated.

The Island Dynamics model is a continuum model designed to capture
the longer length scale features that are likely to be important for the anal-
ysis and control of monolayer thin film growth. It is also intended to model
the physics relevant to studying basic issues of surface morphology, such as
the effects of noise on growth, the long time evolution of islands, and the
scaling relationships between surface features (mean island area, step edge
length, etc) in various growth regimes (precoalescence, coalescence). Refer
to the classic work of [14] for useful background on the modeling of the
growth of material surfaces. Our present discussion of the Island Dynamics
Model is an abridged version of what was discussed in [54]. We shall present
this new model in some detail because, although it has many of the fea-
tures of the Stefan problem, it also requires some new level set technology.
This includes a “wedding cake” formulation involving several level sets of
the same function, nucleation of new islands, and nontrivial numerical treat-
ment of the interface to obtain rapid convergence of implicit time marching
schemes.

In the Island Dynamics model, we treat each of the islands present as
having a unit height, but a continuous (step edge) boundary on the surface.
This represents the idea that the films are atomic monolayers, so that height
is discrete, but they cover relatively large regions on the substrate, so x and
y are continuum dimensions. The adatoms are modeled by a continuous
adatom density function on the surface. This represents the idea that they
are very mobile, and so they effectively occupy a given site for some fraction
of the time, with statistical continuity, rather than discretely.

Thus, the domain for the model is the x− y region originally defined by
the substrate, and the fundamental dynamical variables for this model are:

• The island boundary curves Γi(t), i = 1, 2, . . . ,N

• The adatom density on the surface ρ(x, y, t)

The adatom density ρ obeys a surface diffusive transport equation, with
a source term for the deposition flux

∂ρ

∂t
= ∇ · (D∇ρ) + F,

where F = F (x, y, t) is specified. During most phases of the growth, it is
simply a constant. This equation may also include additional small loss
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terms reflecting adatoms lost to the nucleation of new islands, or lost to
de-absorption off the surface. This equation must be supplemented with
boundary conditions at the island boundaries. In the simplest model of
Irreversible Aggregation, the binding of adatoms to step edges leaves the
adatom population totally depleted near island boundaries, and the bound-
ary condition is

ρ|Γ = 0.

More generally, the effects of adatom detachment from boundaries, as well
as the energy barriers present at the boundary, lead to boundary conditions
of the form [

Aρ+B
∂ρ

∂n

]
= C

where C is given and [·] denotes the local jump across the boundary. In par-
ticular, note that ρ itself can have a jump across the boundary, even though
it satisfies a diffusive transport equation. This simply reflects that fact that
the adatoms on top of the island are much more likely to incorporate into
the step edge than to hop across it and mix with the adatoms on the lower
terrace, and vice versa.

The island boundaries Γi move with velocities �v = vN �N , where the
normal velocity vn reflects the island growth. This is determined simply by
local conservation of atoms: the total flux of atoms to the boundary from
both sides times the effective area per atom, a2, must equal the local rate
of growth of the boundary, vN :

vN = −a2[�q · �N ]

(this assumes there is no particle transport along the boundary; more gen-
erally, there is a contribution from this as well) where �q is the surface flux
of adatoms to the island boundary and �N is the local outward normal. In
general, the net atom flux �q can be expressed in terms of the diffusive trans-
port, as well as attachment and detachment probabilities, all of which can
be directly related to the parameters of Kinetic Monte Carlo models. In the
special case of Irreversible Aggregation, �q is simply the surface diffusive flux
of adatoms

�q = −D∇ρ.

To complete the model we include a mechanism for the nucleation of new
islands. If islands nucleate by random binary collisions between adatoms
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(and if the critical cluster size is one), we expect the probability that an
island is nucleated at a time t, at a site (x, y), scales like

P [dx, dy, dt] = ερ(x, y, t)2dt dx dy.

This model describes nucleation as a site-by-site, timestep-by-timestep ran-
dom process. A simplifying alternative is to assume the nucleation occurs at
the continuous rate obtained by averaging together the probabilistic rates
at each site. In this case, if we let n(t) denote the total number of islands
nucleated prior to time t, we have the deterministic equation

dn

dt
= 〈ερ2〉

where 〈·〉 denotes the spatial average. In this formulation, at each time
when n(t) reaches a new integer value, we nucleate a new island in space.
This is carried out by placing it randomly on the surface with a probability
weighted by ρ2, so that the effect of random binary collisions is retained.

This basic model also has natural extensions to handle more complex thin
film models. For example, additional continuum equations can be added to
model the dynamics of the density of kink sites on the island boundaries,
which is a microstructural property that significantly influences the local
adatom attachment rates (see [15]). Also, we can couple this model to
equations for the elastic stress that results from the “lattice mismatch”
between the size of the atoms in the growing layers and the size of the
atoms in the substrate.

Conversely, the above model has a particular interesting extreme simpli-
fication. We can go to the limit where the adatoms are so mobile on the sur-
face (D → ∞) that the adatom density is spatially uniform, ρ(x, y, t) = ρ(t).
In this case, the loss of adatoms due to the absorbing boundaries is assumed
to take on a limiting form proportional to the adatom density and the total
length L of all the island boundaries, which can be written as a simple sink
term

dρ

dt
= F − λLρ.

(This equation can be derived systematically from the conservation law for
the total number of adatoms,

∫
ρ, that follows from the adatom diffusion

equation. The above loss term is just a simplified model for the net loss of
adatoms to the island boundaries.) Further, it is assumed the velocity takes
on a given normal dependent limiting form, vN = vN ( �N) (which implies
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that growing islands will rapidly assume the associated “Wulff shape” for
this function vN ( �N ) (as in [62])). We have used this “Uniform Density”
model to prototype the numerical methods, and to develop an understand-
ing of how the island dynamics models are related to the continuum “rate
equation” models that describe island size distribution evolution while using
no information at all about the spatial interactions of the islands.

Much of the above model is formally a Stefan problem and many of the
level set techniques required for this were developed in [24] and can similarly
be applied here. In addition, the internal boundary condition discretization
of the adatom diffusion equation can be implemented using the symmetric
matrix version of the discretization proposed by Fedkiw [31] and discussed
earlier in this paper.
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Figure 7: Two phase compressible flow calculated with the Ghost Fluid
Method. Air on the left and water on the right. Reprinted from [32].
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Figure 8: Mach 1.22 air shock collapse of a helium bubble. Reprinted from
[32].
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Figure 9: Nonsmeared detonation wave traveling away from a solid wall.
Reprinted from [33].
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Figure 10: Two deflagration fronts depicted shortly after merging.
Reprinted from [33].
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Figure 12: Water waves generated by the impact of an (invisible) solid
object. Reprinted from [44].
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Figure 13: Two phase incompressible flames depicted shortly after merging
(2 spatial dimensions). Reprinted from [57].
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Figure 14: Two phase incompressible flames depicted shortly after merging
(3 spatial dimensions). Reprinted from [57].
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5 A Variational Approach with Applications to
Multiphase Motion

In many situations, e.g., crystal growth, a material is composed of three or
more phases. The interfaces between the phases move according to some
law. If the material is a metal and its grain orientation is different in each
region, then an isotropic surface energy means that the velocity is the mean
curvature of the interface. Or the velocities of the interfaces may depend
on the pair of phases in contact; e.g. a different constant velocity on each
interface.

Several fixed grid approaches to this problem have been used. Merriman,
Bence and Osher [53] have extended the level set method to compute the
motion of multiple junctions. Also in that paper, and in [51] and [52], a
simple method based on the diffusion of characteristic functions of each set
Ωi, followed by a certain reassignment step, was shown to be appropriate
for the motion of multiple junctions in which the bulk energies are zero (and
hence, the constants ei = 0, i = 1, . . . , n) and the fi,j are all equal to the
same positive constant, i.e., pure mean curvature flow. See equations (21)
below.

Another method using an “influence matrix” was designed in [75]. How-
ever, as cautioned by the author, the method is expensive and complex.

More general motion involving somewhat arbitrary functions of curva-
ture, perhaps different for each interface, was proposed in [53] as well. This
was implemented basically by decoupling the motions, and then using a re-
assignment step. Again each region has its own private level set function.
This function moves each level set with a normal velocity depending on
the proximity to the nearest interface, thus vacuum and overlapping regions
generally develop. Then a simple reassignment step is used, removing all
the spurious regions. For details see [53]. In that paper there was no restric-
tion to gradient flows. However, the general method in [53] lacks (so far) a
clean theoretical basis to guide the design of numerical algorithms. These
difficulties were rectified by the following method.

In [88] we developed the variational level set approach inspired by [68].
Given a disjoint family Ωi of regions in R2 with the common boundary
between Ωi and Ωj denoted by Γi,j, we associate to this geometry an energy
function of the form

E = E1 +E2
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E1 =
∑

1≤i≤j≤n
fi,j length (Γi,j) (21)

E2 =
∑

1≤i≤n
ei area (Ωi)

where E1 is the energy of the interface (surface tension). E2 is bulk en-
ergy, and n is the number of phases. The gradient flow induces motion
such that the normal velocity of each interface is defined in (22). At triple
points (which can be seen geometrically by the triangle inequality to be the
only stable junctions if all the fi,j > 0), the angles are determined by (23)
throughout the motion.

Normal velocity of Γi,j = (vN )i,j = fi,jκi,j + (ei − ej). (22)

sin θ1
f2,3

=
sin θ2
f3,1

=
sin θ3
f1,2

. (23)

This could be rewritten as:

E = E1 +E2

E1 =
n∑
i=1

γi

∫ ∫
δ(ϕi(x, y, t))|∇ϕi(x, y, t)|dxdy (24)

E2 =
n∑
i=1

ei

∫ ∫
H(ϕi(x, y, t))dxdy,

where

fi,j = γi + γj , 1 ≤ i < j ≤ n.

In the (most interesting) case when n = 3 we can solve uniquely for the γi.
Now our problem becomes:
Minimize E subject to the constraint that

n∑
i=1

H(ϕi(x, y)) − 1 ≡ 0. (25)

This infinite set of constraints prevents the development of overlapping re-
gions and/or vacuum. It requires that the level curves {(x, y)|ϕi(x, y, t) = 0}
match perfectly.

46



The implementation of (24) with the infinite set of constraints (25) is
computationally demanding. Instead we try to replace the constraint (25)
by a single constraint

∫ ∫ (
∑
H(ϕi(x, y, t)) − 1)2

2
dxdy = ε (26)

where ε > 0 is as small as we can manage numerically.
The gradient projection method leads us to an interesting coupled system

which involves motion of level contours of each ϕ with normal velocity a+bκ
together with a term enforcing the no overlap/vacuum constraint. We find
that ε ≈ ∆x in real calculations. See [88] for details.

We have used this technique to reproduce the general behavior of com-
plicated bubble and droplet motions in two and three dimensions [90]. The
problems included soap bubble colliding and merging, drops falling or re-
maining attached to a generally irregular ceiling (see figure 15), liquid pene-
trating through an asymmetric funnel opening (see figure 16), and mercury
sitting on the floor (see figure 17).

This variational approach has also been found to have many applications
in computer vision – this will be discussed in the next section.
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Figure 15: Three dimensional drop falling from ceiling. Reprinted from [90].
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Figure 16: Liquid falling through funnel opening. Reprinted from [90].
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6 Applications to Computer Vision and Image Pro-
cessing

The use of PDE’s and level set motion in image analysis and computer vision
has exploded in recent years. Good references include [18] and [58].

One basic idea is to view an image as u0(x, y), a function defined on a
square, and obtain a (usually second order) flow equation of the form

ut = F (u,Du,D2u, x, t) (27)
u(x, y, 0) = u0(x, y)

which, for positive t, processes the image.
For example, if one solves the heat equation with F (u,Du,D2u, x, t) =

∆u, then u(x, y, t) is the same as convolution of u0 with a Gaussian of
variance t.

L.I. Rudin, in his Ph.D. thesis [70], made the point that images are
largely characterized by singularities, edges, boundaries, etc, and thus non-
linearity, especially ideas related to shock propagation, should play a role.
This led to the very successful total variation based image restoration al-
gorithms of [72] and [71]. Briefly, if we are presented with a noisy blurred
image

u0 = j ∗ u+ n (28)

where j is a given convolution kernel, and the mean and variance of the
noise are given, we wish to obtain the “best” restored image. This leads us
(see [72] and [71]) to the evolution equation

ut = ∇ · ∇u
|∇u| − λj ∗ (j ∗ u− u0) (29)

to be solved for t > 0, where u(x, y, 0) is given, and λ(t) > 0 is obtained
as a Lagrange multiplier, or is set to be a fixed constant. If j ∗ u = u,
this becomes a pure denoising problem. The (very interesting) geometric
interpretation of this procedure is that each level contour of u is moved
normal to itself with velocity equal to its curvature, divided by the norm
of the gradient of u, then “pulled back” in an attempt to deconvolve (28).
The results are state-of-the-art for many problems. Noisy regions can be
thought of as corresponding to contours having very high curvature, while
edges have finite curvature and infinite gradients.

Here the motion of level sets is just used to interpret the dynamics. In
[4], it was shown that reasonable axioms of image processing lead to the
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remarkable fact that motion of level contours by a function of curvature
is fundamental to the subject. The artificial time t is actually the scale
parameter [4].

We would like to describe a few new applications of this set of ideas.
In [10], we have considered the problem of processing of images defined on
manifolds. The technique actually can be used to solve a wide class of elliptic
equations on manifolds, without triangulation, using only a local Cartesian
grid, for very general situations.

Given a manifold in R3, defined by ψ(x, y, z) = 0, we can define the
projection matrix

P∇ψ = I − ∇ψ
|∇ψ| ⊗

∇ψ
|∇ψ| . (30)

If u is an image defined on ψ = 0 we can use our level set calculus to
extend it constant normal to the manifold, in some neighborhood of the
manifold.

If u0 is the original noisy image, the energy to be minimized is

E(u) =
∫
R3

|P∇ψ∇u|δ(ψ)|∇ψ|d�x +
λ

2

∫
(u− u0)2δ(ψ)|∇ψ|d�x.

Using the gradient descent algorithm, i.e. following the general procedure
of [72] and [88] leads us to

ut =
1

|∇ψ|∇ ·
(
P∇ψ∇u
|P∇ψ∇u|

|∇ψ|
)
− λ(u− u0).

This corresponds to total variation denoising. This is done using the
local level set method [66] which allows great flexibility in geometry, while
always using a Cartesian grid. See [10] for denoising and deblurring results.

The technique is quite general – both variational problems and PDE’s
defined on manifolds can be solved in a reasonably straightforward fashion,
without restrictions on the manifold and without complicated triangulation
– just by using a fixed Cartesian grid.

Another basic image processing task is to detect objects hidden in an
image u0. A popular technique is called active contours or snakes, in which
one evolves a curve, subject to constraints until the curve surrounds the
image.

The level set method was first used in [16] as a very convenient tool to
follow the motion of active contours in order to surround hidden objects.
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This was an important step since topological changes could easily be han-
dled, a variational approach could be easily used [17] and stable, easy to
program algorithms resulted.

The curve is moved with a velocity which vanishes when the object is
surrounded. Thus edge detectors are traditionally used to stop the evolving
curve. For example, one might use

g(|∇u0|) =
(

1
1 + |∇jσ ∗ u0|

)2

where jσ is a Gaussian of variance σ.
In [20] the authors developed a model which was not based on edges,

using a scale parameter, based on a simplification of the Mumford-Shah [56]
energy based segmentation. The implementation is done through the vari-
ational level set approach [88] and the results are remarkable. The method
has a denoising capability as well as the ability to perform a multiscale seg-
mentation. See [21] and [20] for details. Here we just present the evolution
equation for the level set function ϕ:

ϕt = |∇ϕ|
[
µ∇ · ∇ϕ

|∇ϕ| − ν − λ(u0 − c1)2 + λ(u0 − c2)2
]

for parameters µ, ν, λ ≥ 0, where c1 and c2 are the averages of u0 over the
region for which ϕ ≥ 0 and ϕ ≤ 0 respectively. ν corresponds to the bulk
energy of the area for which ϕ ≥ 0, µ corresponds to the surface tension of
the interface, and λ is the penalty for the L2 error between u0 and its mean
over each region. Figure 18 shows an active contour segmenting a MRI brain
image from its backgound.

A somewhat related problem as discussed in [89] is the following. Given
a collection of unorganized points, and/or curves, and/or surface patches,
find a surface which can be regarded as its shape. This is a fundamental
visualization problem which arises in computer graphics, visualization and
simulation. No assumptions about the ordering, connectivity or topology
of the data sets or of the true shape is given. The input is the general
distance to the data set which is given on a (usually logically rectangular)
grid. Additionally, we may also input the values of the normal to the surface
at the same or different data points.

The key idea is to find a function ϕ whose zero level set is the interpo-
lating surface, ϕ changes sign as one goes from inside to outside the surface.
The output is the discrete values of ϕ, which can be reinitialized to be signed
distance to this surface.
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We set up a variational problem, which basically minimizes the integral
over the unknown surface, of the pth power of distance to the data set. We
may include information about the normals in analogous fashion.

Gradient descent (as in the image restoration and active contour prob-
lems) gives us a weighted motion by curvature plus convection algorithm.
The results are very promising as shown figure 19. For more details, see
[89].
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Figure 18: Active contour segmentation of an MRI brain image from its
backgound. Reprinted from [19].
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Interpolation of Two Linked Tori, R = 0:24; r = 0:05                        

initial data 1000 iterations                        

2000 iterations 2500 iterations                        

3000 iterations 3500 iterations

number of data points = 25� 10� 2; dx = 0:02; dt= 0:0002

Figure 19: Interpolation of two linked tori. Reprinted from [89].
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7 Conclusion

The idea of using a level set to represent an interface is a very old one.
The level set method itself has antecedents, for example, in the G equation
approach of Markstein [50]. What is new is the level set method technol-
ogy, theoretical justification through viscosity solutions, and the enormous
number of wide ranging applications that are now available, with new ap-
plications developing quite frequently.
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ABSTRACT

In this paper we review the algorithm development and applications in high resolution

shock capturing methods, level set methods and PDE based methods in computer vision

and image processing. The emphasis is on Stanley Osher's contribution in these areas and

in the impact of his work. We will �rst review the linear stability results for hyperbolic

systems. This will be followed by shock capturing methods and we will review the Engquist-

Osher scheme, TVD schemes, entropy conditions, ENO and WENO schemes and numerical

schemes for Hamilton-Jacobi type equations. Among level set methods we will review im-

plicit surfaces, the setup of level set methods, numerical techniques, uids and materials,

variational approach, high codimension motion, geometric optics, and the computation of

discontinuous solutions to Hamilton-Jacobi equations. Among computer vision and image

processing we will review the total variation model for image denoising, images on implicit

surfaces, and the level set method in image processing and computer vision.
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1 Introduction

This paper is written on the occasion of Stanley Osher's 60th birthday and serves as a review

article on a few selected areas in linear stability, high resolution shock capturing schemes,

level set methods, and PDE based methods in computer vision and image processing. The

emphasis is on Stanley Osher's contribution in these areas and in the impact of his work.

The study of linear stability for �nite di�erence and other numerical methods for hyper-

bolic, parabolic, and other types of PDEs is very important. Many important results related

to linear stability, especially those for initial-boundary value problems, were obtained in the

60s and 70s. Even today, linear stability results are still crucial for linear and nonlinear

problems, for they provide a necessary condition for any scheme to perform nicely.

Shock capturing numerical methods have seen revolutionary developments over the past

20 years. These are methods which deal with the numerical solutions of PDEs with discon-

tinuous solutions. Such PDEs include nonlinear hyperbolic systems such as Euler equations

of compressible gas dynamics. The problems are diÆcult because traditional linear numer-

ical methods are either too di�usive, or give unphysical oscillations near the discontinuities

which can lead to nonlinear instabilities. The class of high resolution numerical methods

overcomes this diÆculty to a large extent.

Level set methods have seen tremendously expanded applications in many areas over the

past 15 years. This has been made possible by the exibility of the level set formulation in

dealing with dynamic evolutions and topological changes of curves and surfaces, and by the

mathematical theory and numerical tools developed in the past 15 years in studying these

methods.

PDE based methods in computer vision and image processing have been actively studied

in the past few years. Again, the rapid development of mathematical models, solution tools

such as level set methods, and high resolution numerical schemes has made PDE based

method one of the major tools in computer vision and image processing.

Stanley Osher has made inuential contributions to all these �elds. A distinctive feature
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of his research is that he emphasizes both fundamental problems in algorithm design and

analysis, and practical considerations for the applications of the algorithms. This seems

also to be the objective of the Journal of Computational Physics. It is thus not a surprise

that a signi�cant portion of Osher's journal publications have appeared in the Journal of

Computational Physics. This is particularly the case for Osher's work over the past 15

years. Osher's work has been highly inuential according to citation statistics. For example,

according to the ISI database, which lists papers in selected journals of high impact since

1975, the 82 papers of Osher listed there have been collectively cited 2,386 times (as of

November 20, 2001, the same below). Among these, 11 papers have been cited over 100

times each. The top �ve highly cited papers are: the paper of Osher and Sethian [147] on

level set methods, cited 472 times; the paper of Harten, Engquist, Osher and Chakravarthy

[76] on ENO schemes, cited 314 times; the two papers of Shu and Osher [171, 172] on ENO

schemes, cited 235 and 231 times respectively; and the paper of Harten and Osher [75] on

UNO schemes, cited 189 times. We remark that the top four among these �ve most highly

cited papers of Osher were published in the Journal of Computational Physics. The other

papers of Osher having a citation over 100 include: the paper of Osher and Solomon on

upwind schemes [149], cited 180 times; the paper of Sussman, Smereka and Osher on level

set methods for incompressible two phase ows [177], cited 137 times; the paper of Osher on

Riemann solvers and entropy conditions [135], cited 131 times; the paper of Rudin, Osher

and Fatemi on total variation based denoising in image processing [159], cited 126 times;

the paper of Osher and Chakravarthy on high resolution schemes and the entropy condition

[139], cited 108 times, and the paper of Engquist and Osher on a monotone scheme (later

referred to as the Engquist-Osher, or EO, scheme in the literature) [42], cited 107 times.

The organization of this paper is as follows. In section 2 we review the earlier work of

Osher related to linear stability results. Section 3 is devoted to high resolution shock cap-

turing methods for problems with discontinuous or otherwise nonsmooth solutions. Section

4 contains a review of the very popular level set methods, and �nally in section 5 we address
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PDE based methods in computer vision and image processing.

2 Linear stability results

The study of linear stability for �nite di�erence and other numerical methods for hyperbolic,

parabolic and other types of PDEs is very important. For linear methods approximating

smooth solutions, a linear stability analysis (plus some dissipation) is usually enough to

guarantee convergence, following the Lax equivalence theorem and Strang's result. Even for

nonlinear methods and for methods approximating nonsmooth solutions, linear stability is

often an important necessary condition for the algorithms to be useful.

For initial value problems, a von Neumann analysis (via Fourier transform) can be easily

performed on a �nite di�erence approximation as a necessary and often also suÆcient con-

dition for stability. However, stability for initial-boundary value problems is more diÆcult

to analyze.

Osher's work on linear stability and linear methods was mainly done in the early dates.

In [126], following up on a seminal paper of Kreiss [99], Osher used Toeplitz matrices in

an elegant way to derive what was later called the GKS condition, i.e., the normal mode

condition guaranteeing stability of approximations to initial-boundary value problems for

linear hyperbolic equations. This line of work was initiated by Godunov and Ryabenkii

[64]. It was made uniform by Kreiss [99], followed up by Osher [126], and generalized by

Gustafsson, Kreiss and Sundstrom [70]. In [127] Osher provided more general conditions

using similar Toeplitz matrix ideas.

In [128], Osher obtained stability conditions for initial-boundary value problems for

parabolic equations, generalizing the work of Varah [190]. References [101, 129, 131] were

an attempt to analyze and obtain conditions guaranteeing well posedness of initial boundary

value problems for linear hyperbolic equations in regions with corners in the boundaries.

Reference [130] showed that the Green's function for the biharmonic equation corresponding

to a clamped plate near a right angle corner changes sign an in�nite number of times.
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In [112], Majda and Osher extended Kreiss' well posedness condition for initial-boundary

value problems for hyperbolic equations to those with uniformly characteristic boundaries.

In [111], Majda and Osher analyzed the reection of singularities at the boundary for non-

grazing reection for hyperbolic equations. In [113], Majda and Osher showed how error

propagates globally within the domain of dependence for numerical approximations to cou-

pled hyperbolic systems. The paper [110] by Majda, McDonough and Osher was the �rst to

recommend the use of smooth cuto� functions on the frequency domain for spectral methods

to con�ne errors to local regions near propagating discontinuities and for stability. Sharp

estimates on the region of propagation were obtained. These cuto�s are now widely used in

the literature and the paper is still frequently cited, 45 times total, including many in recent

years.

Osher in [132] obtained well-posedness results for linear boundary value problems of

mixed elliptic-hyperbolic type; in [33], Deacon and Osher made the method into a �nite

element approximation for such equations.

In [44], Engquist, Osher and Zhong obtained wavelet based fast algorithms for linear

hyperbolic and parabolic equations. Finally, in [41, 50, 49], Engquist, Fatemi and Osher

considered numerical methods for high frequency asymptotics for geometric optics. These

might be considered nonlinear, since the eikonal equation is.

3 High resolution shock capturing methods

Shock capturing methods refer to a class of numerical methods for solving problems con-

taining discontinuities (shocks, contact discontinuities or other discontinuities), which can

automatically \capture" these discontinuities without special e�ort to track them. A typical

situation would be the solution of a hyperbolic conservation law, either a scalar equation or

a system, either in one spatial dimension

ut + f(u)x = 0 (3.1)
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or in multiple (say, three) spatial dimensions:

ut + f(u)x + g(u)y + h(u)z = 0: (3.2)

A main ingredient of shock capturing methods is the conservation form of a scheme, namely,

a scheme approximating (3.1) is in the form

duj
dt

+
1

�x

�
f̂j+ 1

2

� f̂j� 1

2

�
= 0 (3.3)

where uj is an approximation to either the point value u(xj; t) or the cell average �u(xj; t) =

1

�x

R xj+
�x
2

xj�
�x
2

u(x; t)dx of the exact solution of (3.1), and f̂j+ 1

2

is a numerical ux which typically

depends on a few neighboring points

f̂j+ 1

2

= f̂(uj�k; uj�k+1; :::; uj+m)

and satis�es the following two conditions: it is consistent with the physical ux f(u) in

the sense f̂(u; u; :::; u) = f(u), and it is at least Lipschitz continuous with respect to all its

arguments. Notice that (3.3) is written in a semi-discrete method of lines form, while in

practice the time variable t must also be discretized. Conservative schemes in the form of

(3.3) are especially suitable for computing solutions with shocks, because of the important

Lax-Wendro� theorem, which states that solutions to such schemes, if convergent, would

converge to a weak solution of (3.1). In particular, this means that the computed shocks

will propagate with the correct speed. Almost all shock capturing schemes, including those

developed by Osher and his collaborators, are of the conservation form (3.3). However, there

are certain situations where a relaxation on the strict conservation would be bene�cial and

would not hurt the convergence to weak solutions under suitable additional assumptions.

The work of Osher and Chakravarthy [138] on the \weak conservation form" for schemes on

general curvilinear coordinates, and the work of Fedkiw et al. on \ghost uid" method [56],

which treats the uid interface in a non-conservative fashion, are such examples.
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3.1 First Order Monotone Schemes

In the late 70s and early 80s, designing good �rst order monotone schemes for (3.1) and

(3.2), which give monotone shock transitions and can be proven to converge to the physically

relevant weak solutions (e.g. Crandall and Majda [32]), was an active research area. The

Godunov scheme is a scheme with the least numerical dissipation among �rst order monotone

schemes, however it is costly to evaluate for complex ux functions f(u), and its ux is only

Lipschitz continuous but not smoother. The Lax-Friedrichs scheme is easy to evaluate and

very smooth but is excessive dissipative.

In [42] and [43], Engquist and Osher designed monotone schemes for the transonic poten-

tial equations and for general scalar conservation laws, which are relatively easy to evaluate,

are C1 smooth, and have a small dissipation almost comparable with Gudonov schemes. The

main idea is to approximate everything by rarefaction waves (multi-valued solutions suitably

integrated over for shocks). These Engquist-Osher schemes soon became very popular, espe-

cially for implicit type methods and steady state calculations, for which the extra smoothness

of the numerical uxes helped a lot. Similar schemes for Hamilton-Jacobi equations were

given by Osher and Sethian [147].

Later, Osher [133] and Osher and Solomon [149] generalized it to systems of conservation

laws, obtaining what was later referred to as Osher scheme in the literature. The Osher

scheme for systems has a closed form formula (for Euler equations of gas dynamics and

many other systems), hence no iterations are needed, unlike the Godunov scheme. It is

smoother (C1) than the Godunov scheme and also has smaller dissipation than the simpler

Lax-Friedrichs scheme. Applications of Osher schemes to the Euler equations can be found

in Chakravarthy and Osher [21].

In [145], Osher and Sanders designed a conservative procedure to handle locally varying

time and space grids for �rst order monotone schemes, and proved convergence to entropy

solutions for such schemes. These ideas have been used later by Berger and Colella on their

adaptive methods.
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3.2 High Resolution TVD Schemes

First order monotone schemes are certainly nice in their stability and convergence to the

correct entropy solutions, however they are too di�usive for most applications. One would

need to use many grid points to get a reasonable resolution, which seriously restricts their

usefulness for multidimensional simulations.

In the 70s and early and mid 80s, the so-called \high resolution" schemes, i.e. those

schemes which are at least second order accurate and are stable when shocks appear, were

developed. These started with the earlier work of, e.g., the FCT methods of Boris and

Book [10], and the MUSCL schemes of van Leer [189], and moved to Harten's TVD schemes

[74]. Osher and his collaborators did extensive research on TVD schemes, and contributed

signi�cantly towards the analysis of such methods, during this period. These include the

schemes developed and analyzed in [135], [139], [136], and the very high order (measured by

truncation errors in smooth, monotone regions) TVD schemes in [140].

3.3 Entropy Conditions

The entropy condition is an important feature for conservation laws. Because weak solutions

are not unique, entropy conditions are needed to single out a unique, physically relevant

solution. Osher and his collaborators did extensive research on designing and analyzing

entropy condition satisfying numerical methods for conservation laws.

In [114], Majda and Osher proved that the traditional second order Lax-Wendro� scheme,

although linearly stable, is not L2 stable when solving nonlinear conservation laws with

discontinuous solutions. They then provided a recipe of adding arti�cial viscosities, such

that the scheme maintained second order accuracy yet could be proven convergent to the

entropy solution. This scheme is however oscillatory, hence not very practical in applications.

In [135], Osher provided a general framework to study systematically entropy conditions

for numerical schemes. This was followed by the work of Osher and Chakravarthy [139] in

the study of high resolution schemes and entropy conditions, the work of Osher [136] on
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generalized MUSCL schemes, the work of Osher and Tadmor [150] on entropy condition

and convergence of high resolution schemes, and the work of Brenier and Osher [11] on

entropy condition satisfying \maxmod" second order schemes. Entropy condition satisfying

approximations for the full potential equation of transonic ow were given in [142].

3.4 ENO Schemes

In the mid 80s it was realized that TVD schemes, despite their excellent stability and high

resolution properties, have serious de�ciency in that they degenerate to �rst order at smooth

extrema of the solution [139]. Thus, even though TVD schemes can be designed to any

order of accuracy, see for example the schemes up to 13th order accurate in [140], practical

TVD schemes are referred to as second order schemes since the global L1 errors of any TVD

scheme can only be second order, even for smooth, non-monotone solutions.

In [75], Harten and Osher relaxed the TVD restriction, and replaced it by a UNO restric-

tion, in that the total number of numerical extrema does not increase and their amplitudes

could be allowed to increase slightly. The UNO scheme in [75] is uniformly second order ac-

curate including at smooth extrema. However, it was soon realized that the UNO restriction

was still too strong and excluded schemes of higher than second order. Thus, the concept of

ENO, or essentially non-oscillatory, schemes was �rst given by Harten, Engquist, Osher and

Chakravarthy [76] in 1987. The clever idea is that of an adaptive stencil, which is chosen

based on the local smoothness of the solution, measured by the Newton divided di�erences

of the numerical solution. Thus the order of scheme is never reduced, however the local

stencil automatically avoids crossing discontinuities. Such schemes allow both the number of

numerical extrema and their amplitudes to increase, however such additional oscillations are

controlled on the level of truncation errors even if the solution is not smooth. ENO schemes

have been extremely successful in applications, because they are simple in concept, allow

arbitrary orders of accuracy, and generate sharp, monotone (to the eye) shock transitions

together with high order accuracy in smooth regions of the solution including at the extrema.
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The original ENO schemes in [76] are in the cell averaged form, namely they are �nite

volume schemes approximating an integrated version of (3.1). Finite volume schemes have

the advantage of easy handling of non-uniform meshes and general geometry in multi-space

dimensions, however they are extremely costly in multi-space dimensions, when the order of

accuracy is higher than two, because then one cannot confuse cell averages with point values,

as they only agree up to second order accuracy, and a complex reconstruction procedure is

needed to obtain point values from cell averages for evaluating the numerical uxes. The

cost is also associated with the high order numerical quadratures needed for evaluating the

integration of the numerical uxes along cell boundaries in multi-dimensions. Later, Shu

and Osher [171], [172] developed ENO schemes in �nite di�erence using point values of the

numerical solution, but still in conservation form (3.3). An important observation made in

[171] and [172] is that the numerical ux f̂j+ 1

2

in (3.3) is not a high order approximation to

the physical ux at xj+ 1

2

: the di�erence between the numerical ux f̂j+ 1

2

and the physical

ux f(uj+ 1

2

) is O(�x2). This is a common mistake among practitioners of �nite di�erence

schemes. If a high order interpolation on the point values uj is performed to obtain a high

order approximation to uj+ 1

2

, and a numerical ux is chosen to approximate f(uj+ 1

2

) to

a high order accuracy, then the scheme is only second order accurate. Correct choice of

the numerical uxes to obtain arbitrarily high order accuracy is given in [171] and [172].

The approach in [172] is especially simple. A detailed description of the construction and

comparison of �nite volume and �nite di�erence ENO schemes can be found in the lecture

notes [170].

Also in [171], a class of nonlinearly stable high order Runge-Kutta time discretization

methods is developed. Termed TVD time discretizations, these Runge-Kutta methods have

become very popular and have been used in many schemes. See, e.g. [65] for a review of

such methods.

Analysis of ENO schemes was given in Harten et al. [77]. Applications of ENO schemes

to two and three dimensional compressible ows, including turbulence and shear ow calcu-
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lations, were given in Shu et al. [173]. Triangle based second order non-oscillatory schemes

were given in Durlofsky et al. [37]. Non-oscillatory self-similar maximum principle satisfying

high order shock capturing schemes were given in Liu and Osher [106]. EÆcient character-

istic projection in upwind di�erence schemes was given in Fedkiw et al. [59]. Convex ENO

schemes without using �eld-by-�eld projection were given in Liu and Osher [107]. Chemically

reactive ows were simulated in Ton et al. [182] and in Fedkiw et al. [58].

The popularity of ENO schemes is demonstrated by the citation statistics: among Osher's

�ve mostly highly cited papers mentioned in the introduction, four of them are about ENO

schemes, i.e. [76] (cited 314 times); [171] (cited 235 times); [172] (cited 231 times); and

[75] (cited 189 times). The top cited paper of Osher, [147] (cited 472 times) is on level set

methods but also uses second order ENO schemes for the numerical solutions and is where

the construction of ENO schemes for general Hamilton-Jacobi equations began.

3.5 WENO Schemes

An improvement of ENO scheme is the WENO (weighted ENO) scheme, which was �rst

developed by Liu, Osher and Chan [108]. Both ENO and WENO use the idea of adaptive

stencils in the reconstruction procedure based on the local smoothness of the numerical

solution to automatically achieve high order accuracy and non-oscillatory property near

discontinuities. ENO uses just one (optimal in some sense) out of many candidate stencils

when doing the reconstruction; while WENO uses a convex combination of all the candidate

stencils, each being assigned a nonlinear weight which depends on the local smoothness of

the numerical solution based on that stencil. WENO improves upon ENO in robustness,

better smoothness of uxes, better steady state convergence, better provable convergence

properties, and more eÆciency.

WENO schemes have been further developed later by Jiang and Shu [88] for �fth order

accurate �nite di�erence schemes in one and several space dimensions, by Hu and Shu [80]

and Shi et al. [168] for third and fourth order accurate �nite volume schemes in two space
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dimensions using arbitrary triangulations, and by Balsara and Shu [5] on very high order

WENO schemes. A detailed description can again be found in the lecture notes [170].

3.6 Hamilton-Jacobi Equations

We will now move to the description of Osher's work in designing schemes for solving

Hamilton-Jacobi equations. Further discussions on this topic will also be given in the next

section on level set methods.

In [134], Osher gave explicit formulas for solutions to the Riemann problems for non-

convex conservation laws and Hamilton-Jacobi equations. These are important for numerical

schemes such as Godunov schemes using such Riemann solvers as building blocks.

In [147], Osher and Sethian, in the context of discussing level set methods, provided

a �rst order monotone scheme (an adaptation of the Engquist-Osher scheme [43]) and a

second order ENO scheme based on the framework of [171] and [172]. In [148], Osher

and Shu developed high order ENO schemes for solving Hamilton-Jacobi equations, using

various building blocks including Lax-Friedrichs, local Lax-Friedrichs, and Roe with an en-

tropy �x. In [102], Lafon and Osher developed high order two dimensional triangle based

non-oscillatory schemes for solving Hamilton-Jacobi equations. Later, Jiang and Peng [87]

designed WENO schemes for solving Hamilton-Jacobi equations on rectangular meshes and

Zhang and Shu [200] designed WENO schemes for solving Hamilton-Jacobi equations on

arbitrary triangular meshes.

3.7 Additional Topics

Even though it does not exactly �t the title of this section, the work of Lagnado and Os-

her [103], [104] is worth mentioning. These papers concern solving an inverse problem to

compute the volatility in the European options Black-Scholes model, and they were the �rst

to use PDE techniques to solve this inverse problem, via gradient descent and Tychono�

regularization, allowing the volatility, a coeÆcient in a parabolic equation to be a function

of the independent variables, stock price and time. These papers have attracted a lot of
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attention after their publication.

Also worth mentioning is the work of Fatemi, Jerome and Osher [51] on using ENO

schemes to solve the hydrodynamic models of semiconductor device simulations. This was the

�rst work of using high order shock capturing methods in semiconductor device simulations,

and has led to many further developments, e.g. [86] and [20].

4 Level set methods

4.1 Implicit Surfaces

In n dimensions, consider a surface that separates Rn into separate subdomains with nonzero

volumes. For n = 3 an explicit representation can be quite diÆcult to discretize. One needs

to choose a number of points on the two dimensional surface and record their connectivity.

If the surface and its connectivity is known, it is simple to tile the surface with triangles

whose vertices lie on the interface and edges indicate connectivity. On the other hand if

connectivity is not known, it can be quite diÆcult to determine, and even some of the

most popular algorithms can produce surprisingly inaccurate surface representations, e.g.

surfaces with holes. Connectivity can change for dynamic implicit surfaces, i.e. pinching

and merging. Here, connectivity is not a one time issue dealt with when constructing an

explicit representation of the surface. Instead, it must be resolved over and over again

every time pieces of the surface merge together or pinch apart. The \interface surgery"

needed for merging and pinching is complex leading to a number of diÆculties. One of the

nicest properties of implicit surfaces is that connectivity does not need to be determined

for the discretization. A uniform Cartesian grid can be used along with straightforward

generalizations of the technology from two spatial dimensions. Possibly the most powerful

aspect of implicit surfaces is that it is straightforward to go from two spatial dimensions to

three (or even more) spatial dimensions.

Implicit surfaces are de�ned as the zero isocontour of a function �(~x). Consequently

implicit interface representations include some powerful geometric tools. For example, we
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can determine which side of the interface a point is on simply by looking at the local sign of

�. That is, ~xo is inside the interface when �(~xo) < 0, outside the interface when �(~xo) > 0

and on the interface when �(~xo) = 0.

Implicit functions make simple Boolean operations easy to apply. If �1 and �2 are two

di�erent implicit functions, then �(~x) = min(�1(~x); �2(~x)) is the implicit function represent-

ing the union of their interior regions. Similarly, �(~x) = max(�1(~x); �2(~x)) represents the

intersection of the interior regions. The complement of �1(~x) is �(~x) = ��1(~x). Etc.
The gradient of the implicit function is de�ned as

r� =

�
@�

@x
;
@�

@y
;
@�

@z

�
: (4.1)

r� is perpendicular to the isocontours of � pointing in the direction of increasing �. There-

fore, if ~xo is a point on the zero isocontour of �, i.e. a point on the interface, then r�
evaluated at ~xo is a vector that points in same direction as the local unit (outward) normal

~N to the interface. Thus, the unit (outward) normal is

~N =
r�
jr�j (4.2)

for points on the interface. Equation (4.2) can be used to de�ne a function ~N everywhere on

the domain embedding the normal in a function ~N that agrees with the normal for points

on the interface. The mean curvature of the interface is de�ned as the divergence of the

normal,

� = r � ~N (4.3)

so that � > 0 for convex regions, � < 0 for concave regions and � = 0 for a plane.

The characteristic function �� of the interior region 
� is de�ned as

��(~x) =

�
1 if �(~x) � 0
0 if �(~x) > 0

(4.4)

where we arbitrarily include the boundary with the interior region. The characteristic func-

tion, �+ of the exterior region 
+ is de�ned similarly as

�+(~x) =

�
0 if �(~x) � 0
1 if �(~x) > 0

(4.5)
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again including the boundary with the interior region. �� are functions of a multidimensional

variable ~x. It is often more convenient to work with functions of the scalar variable �. Thus

we de�ne the one dimensional Heaviside function

H(�) =

�
0 if � � 0
1 if � > 0

(4.6)

where � depends on ~x, although it is not necessary to specify this dependence when working

with H. Note that �+(~x) = H(�(~x)) and ��(~x) = 1�H(�(~x)).

The volume integral (area integral in R2) of a function f over the interior region 
� is

de�ned as Z



f(~x)��(~x)d~x (4.7)

where the region of integration is all of 
 since �� prunes out the exterior region 
+ au-

tomatically. The one dimensional Heaviside function can be used to rewrite this volume

integral as Z



f(~x) (1�H(�(~x))) d~x (4.8)

representing the integral of f over the interior region 
�. Similarly,

Z



f(~x)H(�(~x))d~x (4.9)

is the integral of f over the exterior region 
+.

By de�nition, the directional derivative of the Heaviside function H in the normal direc-

tion ~N is the Dirac delta function

Æ̂(~x) = rH(�(~x)) � ~N (4.10)

which is a function of the multidimensional variable ~x. Note that this distribution is only

nonzero on the interface @
 where � = 0. We can rewrite equation (4.10) as

Æ̂(~x) = H 0(�(~x))r�(~x) � r�(~x)jr�(~x)j = H 0(�(~x))jr�(~x)j (4.11)

using the chain rule to take the gradient of H and the de�nition of the normal from equation

(4.2). In one spatial dimension, the delta function is de�ned as the derivative of the Heaviside
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function

Æ(�) = H 0(�) (4.12)

with H(�) de�ned in equation (4.6) above. Æ(�) is identically zero everywhere except where

� = 0. This allows us to rewrite equation (4.11) as

Æ̂(~x) = Æ(�(~x))jr�(~x)j (4.13)

using the one dimensional delta function Æ(�).

The surface integral (line integral in R2) of a function f over the boundary @
 is de�ned

as Z



f(~x)Æ̂(~x)d~x (4.14)

where the region of integration is all of 
 since Æ̂ prunes out everything except @
 auto-

matically. The one dimensional delta function can be used to rewrite this surface integral

as Z



f(~x)Æ(�(~x))jr�(~x)jd~x: (4.15)

Typically, volume integrals are computed by dividing up the interior region, and surface

integrals are computed by dividing up the boundary @
. This requires treating a complex

two dimensional surface in three spatial dimensions. By embedding the volume and surface

integrals in higher dimensions, equations (4.8), (4.9) and (4.15) avoid the need for identifying

inside, outside or boundary regions. Instead the integrals are taken over the entire region 
.

Consider the surface integral in equation (4.15) where the one dimensional delta func-

tion needs to be evaluated. Since Æ(�) = 0 almost everywhere, i.e. except on the lower

dimensional interface which has measure zero, it seems unlikely that any standard numerical

approximation based on sampling will give a good approximation to this integral. Thus, we

use a �rst order accurate smeared out approximation of Æ(�). First, we de�ne the smeared

out Heaviside function

H(�) =

8<
:

0 � < ��
1

2
+ �

2�
+ 1

2�
sin
�
��

�

� �� � � � �
1 � < �

(4.16)
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where � is a tunable parameter that determines the size of the bandwidth of numerical

smearing. A typically good value is � = 1:54x making the interface width equal to three

grid cells when � is normalized to a signed distance function with jr�j = 1. Then the delta

function is de�ned according to equation (4.12) as the derivative of the Heaviside function

Æ(�) =

8<
:

0 � < ��
1

2�
+ 1

2�
cos
�
��

�

� �� � � � �
0 � < �

(4.17)

where � is determined as above. This delta function allows us to evaluate the surface integral

in equation (4.15) using a standard sampling technique such as the midpoint rule. Similarly,

the smeared out Heaviside function in equation (4.16) aids in the evaluation of the integrals

in equations (4.8) and (4.9).

A distance function d(~x) is de�ned as

d(~x) = min j~x� ~xI j over all ~xI 2 @
 (4.18)

implying that d(~x) = 0 on the boundary where ~x 2 @
. For a given point ~x, suppose that

~xC is the point on the interface closest to ~x. The line segment from ~x to ~xC is the shortest

path from ~x to the interface. In other words, the path from ~x to ~xC is the path of steepest

descent for the function d. Evaluating �rd at any point on the line segment from ~x to ~xC

gives a vector that points from ~x to ~xC . Furthermore, since d is Euclidean distance,

jrdj = 1: (4.19)

A signed distance function is an implicit function � with �(~x) = d(~x) = 0 for all ~x 2 @
,

�(~x) = �d(~x) for all ~x 2 
�, and �(~x) = d(~x) for all ~x 2 
+. Given a point ~x, and using

the fact that �(~x) is the signed distance to the closest point on the interface, we can write

~xC = ~x� �(~x) ~N (4.20)

to calculate the closest point on the interface where ~N is the local unit normal at ~x.
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4.2 Level Set Methods

Level set methods add dynamics to implicit surfaces. The key idea that started the level

set fanfare was the Hamilton-Jacobi approach to numerical solutions of a time dependent

equation for a moving implicit surface. This was �rst done in the seminal work of Osher and

Sethian [147].

Suppose that the velocity of each point on the implicit surface is given as ~V (~x). Given

this velocity �eld, ~V = hu; v; wi, we wish to move all the points on the surface with this

velocity. The simplest way to do this is to solve the ordinary di�erential equation

d~x

dt
= ~V (~x) (4.21)

for every point ~x on the front, i.e. for all ~x with �(~x) = 0. This is the Lagrangian formulation

of the interface evolution equation. Since there is generally an in�nite number of points on

the front, this means discretizing the front into a �nite number of pieces. For example, one

could use segments in two spatial dimensions or triangles in three spatial dimensions. This

is not so hard to accomplish if the connectivity does not change and the surface elements

do not distort too much. Unfortunately, even the most trivial velocity �elds can cause large

distortion of boundary elements and the accuracy of the method can deteriorate quickly if

one does not periodically modify the discretization in order to account for these deformations

by smoothing and regularizing inaccurate surface elements.

In order to avoid problems with instabilities, deformation of surface elements and com-

plicated surgical procedures for topological repair of interfaces, Osher and Sethian [147]

proposed using the implicit function � both to represent the interface and to evolve the

interface. The evolution of the implicit function � is governed by the simple convection

equation

�t + ~V � r� = 0: (4.22)

This is an Eulerian formulation of the interface evolution since the interface is captured by

the implicit function � as opposed to being tracked by interface elements as is done in a
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Lagrangian formulation. Equation (4.22) is sometimes referred to as the level set equation.

The velocity �eld given in equation (4.22) can come from a number of external sources. For

example, when the �(~x) = 0 isocontour represents the interface between two di�erent uids,

the interface velocity is calculated using the two-phase Navier-Stokes equations.

In general, one does not need to specify tangential components when devising a velocity

�eld. Since ~N and r� point in the same direction, ~T � r� = 0 for any tangent vector

~T implying that the tangential velocity components vanish when plugged into the level set

equation. For example, in two spatial dimensions with ~V = Vn ~N+Vt ~T , the level set equation

�t +
�
Vn ~N + Vt ~T

�
� r� = 0 (4.23)

is equivalent to

�t + Vn ~N � r� = 0: (4.24)

Furthermore, since

~N � r� =
r�
jr�j � r� =

jr�j2
jr�j = jr�j (4.25)

we can rewrite equation (4.24) as

�t + Vnjr�j = 0 (4.26)

where Vn is the component of velocity in the normal direction (the normal velocity). Equation

(4.26) is also known as the level set equation. Equation (4.22) tends to be used for externally

generated velocity �elds while equation (4.26) tends to be used for (internally) self-generated

velocity �elds.

4.3 Numerical Techniques

This subsection is a natural continuation of the discussion of numerical methods in section

3.

Consider the one dimensional scalar conservation law

ut + f(u)x = 0 (4.27)
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where u is the conserved quantity and f(u) is the ux function. A well known system

of conservation laws are the Euler equations for inviscid uid ow dynamics. The Euler

equations are rather interesting because the presence of discontinuities forces one to consider

weak solutions where the derivatives of solution variables can fail to exist. While a contact

discontinuity is essentially linear, the nonlinear nature of a shock wave discontinuity allows

it to develop as the solution progresses forward in time even if the data is initially smooth.

Another interesting aspect of the Euler equations concerns the uniqueness of the solution.

When more than one solution exists, an entropy condition is needed to pick out the physically

correct solution. It turns out that the vanishing viscosity solution is the desired physically

correct solution. For example, this vanishing viscosity solution admits a physically consistent

rarefaction wave as opposed to a physically inadmissible expansion shock.

Now consider the one dimensional Hamilton-Jacobi equation

�t +H(�x) = 0 (4.28)

which becomes

(�x)t +H(�x)x = 0 (4.29)

after taking a spatial derivative of the entire equation. Setting u = �x in equation (4.28)

results in

ut +H(u)x = 0 (4.30)

which is a scalar conservation law. Thus in one spatial dimension, we can draw a direct

correspondence between Hamilton-Jacobi equations and conservation laws. The solution u to

conservation law is the derivative of a solution � to a Hamilton-Jacobi equation. Conversely,

the solution � to a Hamilton-Jacobi equation is the integral of a solution u to a conservation

law. This allows us to point out a number of useful facts. For example, since the integral

of a discontinuity is a kink (discontinuity in �rst derivative), solutions to Hamilton-Jacobi

equations can develop kinks in the solution even if the data is initially smooth. In addition,

solutions to Hamilton-Jacobi equations cannot generally develop a discontinuity (unless the
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corresponding conservation law solution develops a delta function). Thus, solutions � to

equation (4.28) are typically continuous. Furthermore, since conservation laws can have

nonunique solutions, one needs to apply an entropy condition to pick out the \physically"

relevant solution to equation (4.28).

Viscosity solutions for Hamilton-Jacobi equations were �rst proposed by Crandall and

Lions [30] in order to pick out the physically relevant solution. In addition, monotone �rst

order accurate numerical methods were �rst proven to converge by Crandall and Lions in

[31]. Later, in [147], Osher and Sethian used the connection between conservation laws

and Hamilton-Jacobi equations to construct higher order accurate artifact free numerical

methods based in part on new upwind di�erence schemes. Even though the analogy between

conservation laws and Hamilton-Jacobi equations fails in multidimensions, many Hamilton-

Jacobi equations can be discretized in a dimension by dimension fashion. This cumulated

in [148] where Osher and Shu proposed a general framework for the numerical solution

of Hamilton-Jacobi equations using modern methods from the theory of conservation laws

and the multidimensional Riemann solver of Bardi and Osher [6]. The framework in [148]

allowed one to use Lax-Friedrichs, Roe-Fix or Godunov building blocks to create higher

order accurate spatial discretizations using an essentially non-oscillatory (ENO) polynomial

reconstruction introduced in [76] by Harten et al. for the numerical solution of conservation

laws. The basic idea is to compute numerical ux functions using the smoothest possible

polynomial interpolants. The actual numerical implementation of this idea was improved

considerably by Shu and Osher in [171] and [172] where the numerical ux functions were

constructed directly from a divided di�erence table of the pointwise data. [171] and [172]

addressed higher order accurate Runge-Kutta discretization in time as well.

In [108], Liu et al. pointed out that the ENO philosophy of picking out exactly one of

three candidate stencils is overkill in smooth regions where the data is well behaved. They

proposed a Weighted ENO (WENO) method that takes a convex combination of the three

ENO approximations. Of course, if any of the three approximations interpolate across a
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discontinuity, it is given minimal weight in the convex combination in order to minimize its

contribution and the resulting errors. Otherwise, in smooth regions of the ow, all three

approximations are allowed to make a signi�cant contribution in a way that improves the

local accuracy from third order to fourth order accuracy. Later, Jiang and Shu [88] improved

the WENO method by choosing the convex combination weights in order to obtain the

optimal �fth order accuracy in smooth regions of the ow. In [87], following the work on HJ

ENO in [148], Jiang and Peng extended WENO to the Hamilton-Jacobi framework. This

Hamilton-Jacobi WENO or HJ WENO scheme turns out to be very useful as it reduces the

numerical errors by more than an order of magnitude over the third order accurate HJ ENO

scheme for typical applications.

Even with these high order accurate approaches to solving the Hamilton-Jacobi equations,

one can obtain surprisingly inaccurate results when the level set function solution becomes

too steep or too at, i.e. discontinuous or poorly conditioned. In [29], Chopp considered an

application where certain regions of the ow had level sets piling up on each other increasing

the local gradient, and other regions of the ow had level sets that separated from each other

attening out �. In order to reduce the numerical errors caused by both the steeping and

attening e�ects, [29] introduced the notion that one should reinitialize the level set function

periodically throughout the calculation. In [158], Rouy and Tourin proposed a numerical

method for the shape from shading problem that was later generalized into the modern day

reinitialization equation of Sussman, Smereka and Osher [177], using the fact that jrdj = 1,

for d the signed or unsigned distance to a given set.

Unfortunately, this straightforward reinitialization routine can be slow, especially if it

needs to be done every time step although [177] noted that just a few time iterations are

usually needed. In order to obtain reasonable run times, [29] restricted the calculations of the

interface motion and the reinitialization to a small band of points near the � = 0 isocontour.

This idea of computing solutions to Hamilton-Jacobi equations local to the interface has

been studied further in the more recent work of Adalsteinsson and Sethian [1] and Peng et
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al. [153].

Local methods are important for both solving the Hamilton-Jacobi equation and for

reinitializing the level sets so that they do not become discontinuous or poorly conditioned.

However, at least in the reinitialization case, it is possible to construct an even faster method

that only treats each grid point once while sweeping out from the zero isocontour creating a

signed distance function. This algorithm was invented by Tsitsiklis in a pair of papers, [185]

and [186]. The most novel part of this algorithm is the extension of Dijkstra's algorithm for

computing the taxicab metric to an algorithm for computing Euclidean distance. Although

this method was originally proposed by Tsitsiklis, it was later rediscovered by the level set

community, see for example Sethian [166] and Helmsen et al. [78].

The great success of level set methods can in part be attributed to the role of curvature

in regularizing the level set function such that the proper vanishing viscosity solution is

obtained. It is much more diÆcult to obtain vanishing viscosity solutions with Lagrangian

methods that faithfully follow the characteristics. For these methods, one usually has to

delete (or add) characteristic information by hand when a shock (or rarefaction) is detected.

This ability of level set methods to identify and delete merging characteristics is clearly seen

in a purely geometrically driven ow where a square is advected inward normal to itself at

constant speed. In the corners of the square, the ow �eld has merging characteristics that

are appropriately deleted by the level set method. On the other hand, repeating the same

calculation with a Lagrangian numerical method is diÆcult since characteristics will merge

in the corners of the square but not be automatically deleted. One does not easily obtain

the correct viscosity solution. Level set methods are not perfect however, since they tend to

incorrectly delete characteristics in under resolved regions of the ow { a behavior frequently

called \loss of mass" (or volume) in reference to the error it represents when level sets are

used to model incompressible uid ow. In contrast, despite a lack of explicit enforcement of

mass (or volume) conservation, Lagrangian schemes are quite successful in conserving mass

since they preserve material characteristics for all time, i.e. characteristics are never deleted.
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The diÆculty stems from the fact that the level set method cannot accurately tell if

characteristics merge, separate, or run parallel in under-resolved regions of the ow. This

indeterminacy leads to vanishing viscosity solutions that can incorrectly delete characteristics

when they appear to be merging. In [46], Enright et al. designed a hybrid particle level set

method to alleviate the mass loss issues associated with level set methods. In the case of

uid ows, knowing a priori that there are no shocks present in the uid velocity �eld, one

can assert that characteristic information associated with that characteristic �eld should

never be deleted. Particles are randomly seeded near the interface and passively advected

with the ow. When marker particles cross over the interface, it indicates that characteristic

information has been incorrectly deleted, and these errors are �xed by locally rebuilding

the level set function using the characteristic information present in these escaped marker

particles.

4.4 Fluids and Materials

Chronologically, the �rst attempt to use the level set method for ows involving external

physics was in the area of two phase inviscid compressible ow. Mulder et al. [122] appended

the level set equation to the standard equations for one phase compressible ow. The level

set was advected using the velocity of the compressible ow �eld so that the zero level set

of � corresponds to particle velocities and can be used to track an interface separating two

di�erent compressible uids. Later, Karni [90] pointed out that such method su�ered from

spurious oscillations at the interface. This was later �xed by Fedkiw et al. [56] by creating a

set of �ctitious ghost cells on each side of the interface, and populating these ghost cells with

a specially chosen ghost uid that implicitly captures the Rankine-Hugoniot jump conditions

across the interface. This method was referred to as the ghost uid method. Later, Fedkiw

et al. [57] extended the level set method and ghost uid method to treat shock, detonation

and deagration waves as sharp discontinuities. Caiden et al. [15] extended these methods

to couple incompressible ows to compressible ows in order to study liquid/gas interac-
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tions. Fedkiw [55] extended these methods to couple Lagrangian calculations to Eulerian

calculations in order to study solid/uid interactions.

The earliest real success in the coupling of the level set method to problems involving

external physics came in computing two-phase incompressible ow, in particular see Sussman

et al. [177] and Chang et al. [24]. The Navier-Stokes equations were used to model the uids

on both sides of the interface. Generally, the uids will have di�erent densities and viscosities

and the presence of surface tension forces cause the pressure to be discontinuous across the

interface as well. Although these early papers smeared out these discontinuous quantities

across the interface, this was later remedied by Kang et al. [89] using the methods developed

by Liu et al. [109]. More recently, Nguyen et al. [124] extended these techniques to treat

low speed ames.

A level set regularization procedure was proposed in Harabetian and Osher [72] for ill-

posed problems such as vortex motion in incompressible ows. This regularization, coupled

with non-oscillatory numerical methods for the resulting level set equations, provides a reg-

ularization which is topological and is automatically accomplished through the use of nu-

merical schemes whose viscosity shrinks to zero with grid size. There is no need for explicit

�ltering, even when singularities appear in the solution. The method also has the advantage

of automatically allowing topological changes such as merging of surfaces.

An application of this procedure for incompressible vortex motion was given in Hara-

betian, Osher and Shu [73]. An Eulerian, �xed grid, approach to solve the motion of an

incompressible uid, in two and three dimensions, in which the vorticity is concentrated on

a lower dimensional set, is provided. The numerical variables for the level sets are actually

smooth, thus allowing for accurate numerical simulations. Numerical examples including

two and three dimensional vortex sheets, two dimensional vortex dipole sheets and point

vortices, are given. This was the �rst three dimensional vortex sheet calculation in which

the sheet evolution feeds back to the calculation of the uid velocity, although vortex in cell

calculations for three dimensional vortex sheets were done earlier by Trygvasson et al. in
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Figure 4.1: A splash is generated as a sphere is thrown into the water.

[183].

Level set methods have been applied to a variety of other problems as well. They have

been used to compute solutions to Stefan problems to study crystal growth [26, 94], to

simulate water for computer graphics applications [60] as shown in Figures 4.1 and 4.2, and

to reconstruct three dimensional models from arbitrary unorganized data points [202] as

shown in Figures 4.3 (before) and 4.4 (after).

Level set type analysis was also used to obtain rigorous results identifying the Wul�

minimizing shape and the evolution of growing crystals moving with normal velocity de�ned

as a given positive function of the normal direction, thus verifying a conjecture of Gross.

Moreover it was also shown that the Wul� energy decreases monotonically under such an

evolution to its minimum [143]. A spino� came in [152] where it was proven that any two

dimensional Wul� shape can be interpreted as the solution a corresponding Riemann problem

for a scalar conservation law { jumps in the direction of the normal correspond to contact

discontinuities, smoothly varying thin at faces correspond to rarefaction curves and planar

facets correspond to constant states. The work in [143] also motivated the derivation of a
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Figure 4.2: An interesting spray e�ect is generated as a slightly submerged ellipse slips
through the water.

new class of isoperimetric inequalities for convex plane curves [67].

Molecular beam epitaxy (MBE) is a method for growing extremely thin �lms of material.

A new continuum model for the epitaxial growth of thin �lms has been developed. This new

island dynamics model has been designed to capture the larger length scale features. The key

idea involves the level set based motion of islands of various integer levels { see for example

[121, 25, 71].

4.5 A Variational Approach

In [201] a variational level set approach was developed. Key ideas were the use of a single

level set function for each phase, the gradient projection method of [159] to prevent overlap

and / or vacuum, and the liberal use of the level set calculus as described earlier. This

general variational approach has many applications. The �rst was to study the behavior

of bubbles and droplets in two and three dimensions [203], for example drops falling or

remaining attached to a generally irregular ceiling, and mercury sitting on the oor.

Many problems in engineering design involve optimizing the geometry to maximize a
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Figure 4.3: Arbitrary data points measured from a rat brain.
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Figure 4.4: A three dimensional geometric reconstruction of the rat brain using the level set
method.
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certain design objective. In [146] the variational level set method was used to analyze a

vibrating system whose resonant frequency or whose spectral gap is to be optimized subject

to constraints on the geometry.

This variational approach has applications in computer vision as well, e.g. snakes and

active contours [22]. This will be discussed further in section 5.

4.6 High Codimension Motion

Typically level set methods are used to model codimension one objects, e.g. curves in R2

or surfaces in R3. In [13], this technology was extended to treat codimension two objects,

e.g. curves in R3, using the intersection of the zero level sets of two functions. This means

a curve is determined by

�(t) = f~xj�1(~x; t) = �2(~x; t) = 0g:

The geometry of the curve can be derived from �1 and �2. For example, the tangent to the

curve is de�ned by

~T =
r�1 �r�2
jr�1 �r�2j :

The curvature times the normal is the derivative of the tangent vector along the curve,

� ~N = r~T � ~T : (4.31)

The normal vectors can be de�ned by normalizing this quantity,

~N =
� ~N

j� ~N j : (4.32)

The binormal is

~B =
~T � ~N

j~T � ~N j :

The torsion times the normal vector is � ~N = �r ~B � ~T .
These geometric quantities are all de�ned numerically just as in the standard codimension

one level set method. Geometric motion of a curve in R3 is thus obtained by solving coupled
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systems of two evolution equations. This is done locally near �(t), saving on storage and

complexity. See [13] for results involving merging and breaking which appear to agree with

the reaction-di�usion limit when appropriate.

Another application of this idea comes from the following observation. If we freeze one of

the functions, say �1, we can generate the motion of curves on a surface. Here the surface is

de�ned by f~xj�1(~x) = 0g and the evolving curve is de�ned by the intersection of that �xed

surface with f~xj�2(~x; t) = 0g. This is useful for path planning on terrain data, see [28].

4.7 Geometric Optics

In [141] a level set based approach for ray tracing and for the construction of wavefronts in

geometric optics was introduced. The approach automatically handles the multivalued solu-

tions that appear and automatically resolves the wavefronts. The key idea, �rst introduced

in [45] in a \segment projection" (rather than a level set) approach, is to use the linear Li-

ouville equation in twice as many independent variables and solve in this higher dimensional

space via the idea introduced in [13].

In two dimensional ray tracing, this involves solving for an evolving curve in x; y; � space,

where � is the angle of the normal to the curve. This uses two level set functions and gives

codimension 2 motion in 3 space dimension plus time. A local level set method can be used

to make the complexity tractable { O(n2 log(n)) { for n the number of points on the curve

for every time iteration. The memory requirement is O(n2).

In three dimensional ray tracing, this involves solving for an evolving two dimensional

surface in x; y; z; �;  space, where � and  give the angle of the normal, and results in

codimension 3 motion in 5 space dimension plus time. The complexity goes up by a power

of n over the two dimensional case, as does the memory requirement. Again, this involves

a local level set method, this time using three level set functions. The interested reader is

referred to [175] and [162] for a di�erent Eulerian approach.
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4.8 Computing Discontinuous Solutions to Hamilton-Jacobi Equa-

tions

Hamilton-Jacobi equations of the form

�t +H(~x; t; �;r�) = 0 (4.33)

have uniformly continuous solutions if H is non-decreasing in �. However, there are interest-

ing cases in which this hypothesis fails. Moreover, discontinuous initial data is appropriate

for some problems in control theory and di�erential games. The solution devised in [63] uses

the evolution of the level set of an auxiliary level set equation. The idea has antecedents

in [137] where it was proven that, under reasonable circumstances, the zero level set of the

viscosity solution of

�t +H(~x;r�) = 0

for H homogeneous of degree one in r� is the same as the t level set of the viscosity solution

of

H(~x;r ) = 1

i.e.

f~xj�(~x; t) = 0g = f~xj (~x) = tg: (4.34)

This idea was used in [63] to go one dimension higher in equation (4.33). This leads to new

and successful numerical methods for a wide class of initial value problems for Hamilton-

Jacobi equations with discontinuous solutions, see [184].

5 Image processing and computer vision

The use of partial di�erential equations (PDE's) and curvature driven ows in image process-

ing and computer vision has become an active research topic in the past few years. The basic

idea is to deform a given curve, surface, or image with a PDE, and obtain the desired result

as the solution of this PDE. Sometimes, as in the case of color images, a system of coupled
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PDE's is used. The art behind this technique is in the design, analysis, and implementation

of these PDE's.

Partial di�erential equations can be obtained from variational problems. Assume a vari-

ational approach to an image processing problem formulated as

arg fMinuU(u)g ;

where U is a given energy computed over the image (or surface) u. Let F(�) denote the Euler
derivative (�rst variation) of U . Since under general assumptions, a necessary condition for

u to be a minimizer of U is that F(u) = 0, the (local) minima may be computed via the

steady state solution of the equation

@u

@t
= �F(u);

where t is an `arti�cial' time marching parameter. PDE's obtained in this way have been

used already for quite some time in computer vision and image processing, and the literature

is large. The most classical example is the Dirichlet integral,

U(u) =
Z
jruj2(x)dx;

which is associated with the linear heat equation

@u

@t
(x; t) = �u(x):

Extensive research is also being done on the direct derivation of evolution equations which

are not necessarily obtained from the energy approaches. The attributes of PDE's in image

processing are discussed for example in [19, 163]. In the pioneering paper [2] the authors

prove that a few basic image processing principles naturally lead to PDE's.

Note that when considering PDE's for image processing and numerical implementations,

we are dealing with derivatives of non-smooth signals, and the right framework must be

de�ned. As introduced by the image processing group formerly at CEREMADE [2, 3],

the theory of viscosity solutions provides a framework for rigorously employing a partial
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di�erential formalism, in spite of the fact that the image may not be smooth enough to give

a classical sense to derivatives involved in the PDE. These works also showed with a very

elegant axiomatic approach the importance of PDE's in image processing.

Ideas on the use of PDE's in image processing go back at least to Gabor [62] and to Jain

[85]. The �eld took o� thanks to the independent works of Koenderink [98] and Witkin [195].

These researchers rigorously introduced the notion of scale-space, that is, the representation

of images simultaneously at multiple scales. In their work, the multi-scale image representa-

tion is obtained by Gaussian �ltering, see below. This is equivalent to deforming the original

image via the classical heat equation, obtaining in this way an isotropic di�usion ow. In the

late 80's, R. Hummel [82] noted that the heat ow is not the only parabolic PDE that can

be used to create a scale-space, and indeed argued that an evolution equation which satis�es

the maximum principle will de�ne a scale-space as well. The maximum principle appears to

be a natural mathematical translation of causality. Koenderink once again made a major

contribution into the PDE's arena (this time probably involuntarily, since the consequences

were not clear at all in his original formulation), when he suggested to add a thresholding

operation to the process of Gaussian �ltering. As later suggested in [119, 120, 161], and

proved by a number of groups [4, 47, 83, 84], this leads to a geometric PDE, actually, one of

the most famous ones, curvature motion. In [160] this was extended to di�usion generated

motion of curves in IR3. Solving a vector heat equation and thresholding leads to moving

the curve in the direction of the normal with velocity equal to its curvature.

Perona and Malik's work [154] on anisotropic di�usion, together with the work by Rudin-

Osher-Fatemi on Total Variation [159] (and Osher-Rudin on shock �lters [144]), have been

among the most inuential papers in the area, explicitly showing the importance of under-

standing non-linear PDE's theory to deal with images. They proposed to replace the linear

Gaussian smoothing, equivalent to isotropic di�usion via the heat ow, by a selective non-

linear di�usion that preserves edges, see below. Their work opened a number of theoretical

and practical questions that continue to occupy the PDE image processing community, e.g.,
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[3, 157]. We should also point out that about at the same time, Price et al. published a very

interesting paper on the use of Turing's reaction-di�usion theory for a number of image pro-

cessing problems [156]. Reaction di�usion equations were also suggested to create arti�cial

texture [188, 197].

Many of the PDE's used in image processing and computer vision are based on moving

curves and surfaces with curvature based velocities. In this area, the level-set numerical

method developed by Osher and Sethian [147] is very inuential and examples will be pro-

vided later in this section. The representation of static objects as level-sets (zero-sets) is of

course not completely new to the computer vision and image processing communities, since

it is one of the fundamental techniques in mathematical morphology [164]. Considering the

image itself as a collection of its level-sets, and not just as the level-set of a higher dimen-

sional function, is a key concept in the PDE's community [2]. Implicit surfaces and level-set

representations appear in computer graphics as well [9, 196].

Other works, like the segmentation approach of Mumford and Shah [123] and the snakes

of Kass, Witkin, and Terzopoulos [91] have been very inuential in the PDE's community

as well. More on this will be mentioned below.

It should be noted that a number of the above approaches rely quite heavily on a large

number of mathematical advances in di�erential geometry for curve evolution [66] and in

viscosity solutions theory for curvature motion (see e.g., [27, 48].)

The frameworks of PDE's and geometry driven di�usion have been applied to many prob-

lems in image processing and computer vision, since the seminal works mentioned above.

Examples include continuous mathematical morphology, invariant shape analysis, shape from

shading, segmentation, tracking, object detection, optical ow, stereo, image denoising, im-

age sharpening, contrast enhancement, and image quantization. In this section we provide a

few examples of these. Since this is a paper in honor of Stan Osher, the presentation of the

examples is of course biased by his involvement and contributions in the area. Important

sources of literature in the area are the excellent collection of papers in the book edited

35



by Bart Romeny [157], the book by Guichard and Morel [69] that contains an outstand-

ing description of the topic from the point of view of iterated in�nitesimal �lters, Sethian's

book on level-sets [165], Osher-Fedkiw's long expected book, Lindeberg's book, a classic in

Scale-Space theory [105], Weickert's book on anisotropic di�usion in image processing [192],

Kimmel's lecture notes [97], Sapiro's recent book [163], Toga's book on Brain Warping that

includes a number of PDE's based algorithms for this [181], the special issue on the March

1998 issue of the IEEE Transactions on Image Processing, the special issues in the Jour-

nal of Visual Communication and Image Representation, a series of Special Sessions at a

number of IEEE International Conference on Image Processing (ICIP), the Proceedings of

the Scale Space Workshops, and the 2001 Workshop on Level-Set and Variational Methods.

The interested reader will �nd in these publications some fascinating contributions in the

area of PDE's in image processing and computer vision, much beyond the few introductory

examples provided below.

5.1 The Total Variation Model for Image Denoising

As mentioned above, the use of PDE's for image enhancement has become one of the most

active research areas in image processing [19]. In particular, di�usion equations are com-

monly used for image regularization, denoising, and multiscale representations (representing

the image simultaneously at several scales or levels of resolution). This started with the

pioneering works in [98, 195], where the authors suggested the use of the linear heat ow for

this task, given by

@u

@t
= �u; (5.1)

where u : 
 � IR2 ! IR represents the image gray values (the original noisy image is used

as initial condition). As it is well known, this equation is the gradient-descent of

Z



k ru k2 d
; (5.2)

An example of the e�ect of the linear heat ow or Laplace equation (5.1) is presented in

Figure 5.1. It is clear that although this technique can be used to denoise images, it is also
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blurring them. That is, not only the noise is being removed, but the edges and the relevant

information is getting destroyed as well. Moreover, it can be shown that edges are destroyed

faster than the actual noise is removed [8].

Figure 5.1: Example of the heat ow (isotropic di�usion). On the left we have the original
image and on the right two di�erent time steps of the di�usion ow, showing how the image
is getting blurred.

Two directions were taken to address this problem. On one hand, Perona and Malik [154]

suggested to replace the linear heat ow by a PDE that preserves edges. Simultaneously,

Rudin, Osher, and Fatemi [159] started to look at the modi�cation of the variational problem

(5.2). In certain cases, the two directions can be shown to be equivalent, the PDE being

the gradient descent of the proposed variational formulation. Rudin, Osher and Fatemi

suggested to replace the linear L2 norm in (5.2) by the edge oriented Total Variation (TV)

norm in the energy, thereby obtaining

Z



k ru k d
; (5.3)

whose gradient descent ow is given by

@u

@t
= div

� ru
k ru k

�
: (5.4)

We notice that in comparison with the linear heat ow, the TV one has a stopping term

of the form 1

kruk
. This helps to preserve edges, as can be seen in Figure 5.2. Rudin et al

also suggested to add constraints to this minimization, in order to avoid reaching the trivial

(at) steady state, thereby improving the results in Figure 5.2. In this case the corresponding
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Lagrange multiplier is evaluated via a projection method that was found to be useful in other

applications as well, e.g., [146].

Figure 5.2: Example of the TV ow for anisotropic di�usion. On the left we have the
original image and on the right the result of the ow, showing how the edges are much
better preserved than with the isotropic ow.

From the point of view of edge preservation, the TV ow is optimal if we limit ourselves

to convex functionals [8]. Motivated by the seminal work of Perona and Malik and Rudin-

Osher-Fatemi, signi�cant theoretical and practical studies have been conducted in this kind

of anisotropic di�usion ows in general and the TV ow in particular. People have studied

their numerics (e.g., Mulet-Chan-Golub, Weickert, Marquina-Osher) as well as their formal

mathematical properties (e.g., Alvarez-Morel-Lions, Weickert, to name just a few, and more

recently Caselles et al. with a full study of the TV ow in general dimensions). This work

has also in part motivated Cohen, DeVore, and others to connect wavelets with the TV

space.

5.2 Images on Implicit Surfaces

In the last section we dealt with images on the plane. There is of course more than that, and

data can be de�ned on surfaces. In [7] the authors dealt with this issue. A framework for

solving variational problems and partial di�erential equations for scalar and vector-valued

data de�ned on surfaces was introduced. The key idea is to implicitly represent the static

surface as the level set of a higher dimensional static function, and solve the surface equations
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in a �xed Cartesian coordinate system using this new embedding function. Implicit surfaces

can be obtained for example from the algorithms in [39, 61, 100, 117, 179, 186, 199, 202].

Applications of PDE's on surfaces include computer graphics [187, 188, 197], visualization

[35], weathering simulation [36], vector �eld computation or interpolation process [155, 194],

inverse problems [53], and surface parameterization [38].

We assume then that the three dimensional surface S of interest is given in implicit form,

as the zero level set of a given function � : IR3 ! IR. This function is negative inside

the closed bounded region de�ned by S, positive outside, Lipschitz continuous a.e., with

S � fx 2 IR3 : �(x) = 0g. To ensure that the data, which needs not to be de�ned outside of

the surface originally, is now de�ned in the whole band, one simple possibility is to extend

this data u de�ned on S (i.e the zero level set of �) in such a form that it is constant normal

to each level set of �. This, which is easily realizable [26], is only done if the data is not

already de�ned in the whole embedding space.

We will exemplify the framework with the simplest case, the heat ow or Laplace equation

for scalar data de�ned on a surface. For scalar data u de�ned on the plane, that is, u(x; y) :


 � IR2 ! IR, as we saw before, the heat ow is given by (5.1), and its corresponding

energy by (5.2). If we now want to smooth scalar data u de�ned on a surface S, that is,
u(x; y) : S ! IR, we must �nd the minimizer of the energy given by

1

2

Z
S

k rSu k2 dS: (5.5)

The equation that minimizes this energy is its gradient descent ow (e.g., [176]):

@u

@t
= �Su: (5.6)

HererS is the intrinsic gradient and �S the intrinsic Laplacian or Laplace-Beltrami operator.

Classically, eq. (5.6) would be implemented in a triangulated surface, giving place to

sophisticated and elaborated algorithms even for such simple ows. We now show how to

simplify this when considering implicit representations.
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Let ~v be a generic three dimensional vector, and P~v the operator that projects a given

three dimensional vector onto the plane orthogonal to ~v. It is then easy to show that the

harmonic energy (5.5) ([40]) is equivalent to (see for example [174])

1

2

Z
S

k P ~Nru k2 dS; (5.7)

where ~N is the normal to the surface S. In other words, rSu = P ~Nru. That is, the gradient
intrinsic to the surface (rS) is just the projection onto the surface of the 3D Cartesian

(classical) gradient r. We now embed this in the function �:

1

2

Z
S

k rSu k2 dS =
1

2

Z

2IR3

k Pr�ru k2 Æ(�) k r� k dx;

where Æ(�) stands for the delta of Dirac, and all the expressions above are considered in the

sense of distributions. Note that �rst we got rid of intrinsic derivatives by replacing rS by

P ~Nru (or Pr�ru) and then replaced the intrinsic integration (
R
S
dS) by the explicit one

(
R

2IR3

dx) using the delta function. Intuitively, although the energy lives in the full space,

the delta function forces the penalty to be e�ective only on the level set of interest. The

gradient descent of this energy is given by

@u

@t
=

1

k r� kr � (Pr�ru k r� k): (5.8)

In other words, this equation corresponds to the intrinsic heat ow for data on an implicit

surface. But all the gradients in this PDE are de�ned in the three dimensional Cartesian

space, not in the surface S (this is why we need the data to be de�ned at least on a band

around the surface). The numerical implementation is then straightforward. Once again, due

to the implicit representation, classic numerics are used, avoiding elaborate projections onto

discrete surfaces and discretization on general meshes, e.g., [34, 81]. The same framework

can be applied to other variational formulations as well as to PDE's de�ned on surfaces, e.g.,

the ones exempli�ed below [7].

A particularly interesting example is obtained when we have unit vectors de�ned on

the surface. That is, we have data of the form u : S ! Sn�1. When n = 3 our unit
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vectors lie on the sphere. Following the work [178] for color images de�ned on the plane,

we show in Figure 5.3 how to denoise a color image painted on an implicit surface. The

basic idea is to normalize the RGB vector (a three dimensional vector) to a unit vector

representing the chroma, and di�use this unit vector with the harmonic maps ow embedded

on the implicit surface extending the intrinsic heat ow example presented above. The

corresponding magnitude, representing the brightness, is smoothed separately via scalar

di�usion ows as those presented before for images on the plane (e.g., an intrinsic TV

anisotropic heat ow). That is, we have to regularize a map from the zero level-set onto S2

(the chroma) and another one onto IR (the brightness).

Following the same framework and the work in [187, 188, 197], we show in Figure 5.4

the result of reaction di�usion ows solved on implicit surfaces in order to generate intrinsic

patterns.

Finally, inspired by the work on line integral convolution [14] and that on anisotropic

di�usion [154], the authors of [35] suggested to use anisotropic di�usion to visualize ows

in 2D and 3D. The basic idea is, starting from a random image, anisotropically di�use it

in the directions dictated by the ow �eld. The authors presented very nice results both

in 2D (ows on the plane) and 3D (ows on a surface), but once again using triangulated

surfaces which introduce many computational diÆculties. In a straightforward fashion we

can compute these anisotropic di�usion equations on the implicit surfaces with the framework

here introduced, and some results are presented in Figure 5.5.

Figure 5.3: Intrinsic vector �eld regularization. Left: original color image. Middle: heavy
noise has been added to the 3 color channels. Right: color image reconstructed after 20 steps
of anisotropic di�usion of the chroma vectors.
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Figure 5.4: Texture synthesis via intrinsic reaction-di�usion ows on implicit surfaces. Left:
isotropic. Right: anisotropic.

Figure 5.5: Flow visualization on implicit 3D surfaces via intrinsic anisotropic di�usion ows.
Left: ow aligned with the major principal direction of the surface. Right: ow aligned with
the minor principal direction of the surface. Pseudo-color representation of scalar data is
used.

5.3 The Level-Set Method in Image Processing and Computer

Vision

We now present a number of examples on the use of the level-set method described above

for problems in image processing and computer vision.
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5.3.1 Image Segmentation

One of the most popular applications of level-set methods in image processing and computer

vision is for image segmentation. The contributions in this area started shortly after the work

in [95] (which is one of the �rst papers in computer vision using the level-set method) by

the works in [16, 115, 116]. These authors showed how to embed in the level-set framework

the pioneering work on snakes and active contours by Terzopoulos and colleagues [91].

Consider the image on the left of Figure 5.6. Terzopoulos and colleagues suggested to

detect the objects in this image (segment the image) starting with a curve that surrounds

the object/s, and letting the curve deform (active-contour/snake) toward the boundary of

the objects. The deformation is driven by the minimization of a given energy that penalizes

non-smooth curves that do not sit at the objects boundaries. The authors of [91] proposed

a Lagrangian implementation of the curve deformation process, while Caselles et al. and

Malladi et al. pioneered the use of the level-set method for this approach. This added

the classical topological freedom, thereby allowing the detection of multiple objects without

prior knowledge of their number (later on Terzopoulos and colleagues showed a technique

based on Lagrangian implementation to achieve this [118]). Following this work, in [17] (see

also [18, 92, 93, 167, 180, 193] and [151] for pioneering extensions of this to object tracking),

the authors showed that both approaches can be formally uni�ed if one considers an energy

given by

E(C) =
Z
C

g(C)ds; (5.9)

where ds is the Euclidean arc-length over the deforming curve C : [a; b] ! IR2 and g(�) is a
function that penalizes curves that do not sit on the objects boundaries (a function of the

image gradient for example). That is, image segmentation has been translated into �nding

a curve minimizing (5.9), thereby a geodesic in a space with metric g(�). The geodesic was
computed using the level-set method. Examples are provided in Figure 5.6.

When describing image segmentation, variational problems, and PDE's, we can not avoid

but think about the famous Mumford-Shah work [123], and ask ourself the relationship
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Figure 5.6: Level-set based object segmentation. The �rst �gure on the left shows the original
image and original contour, surrounding an un-known number of objects. The results of the
geodesic active contours is given in the middle image. The image in the right is a result of
the geodesic active contours framework implemented following Cohen and Kimmel.

between these techniques. Some of this relationship is described in [163], while additional

one comes to light from recent works connecting the Mumford-Shah model and level-set

techniques (see for example works by Paragios-Deriche, Yezzi et al., and Chan-Vese). One

of the works in this direction is presented in [23, 191]. This work is inspired in part by

Zhao et al. [201]. In their work, multiple phases and their boundaries, represented via the

level set method, evolve and interact in time, to minimize a bulk-surface energy. Combining

several level set functions together, triple junctions were also represented and evolved in

time. Inspired by this, Chan and Vese presented a multi-phase level set model for image

segmentation. Triple junctions and complex topologies are segmented using more than one

level set function. An example is provided in Figure 5.7. In this example, a multi-phase

model with four phases is used, obtained by combining two level set functions. Here, the

phases and their boundaries evolve in time, by minimizing an energy related to the Mumford

and Shah piecewise-constant model for segmentation. We show the evolution of the curves

and of the four phases, in a level set framework.

5.3.2 Stereo and 3D Reconstruction from Multiple Views

The problem of stereo is as follows: Recover the geometry of the scene when two or more

images from the world are taken simultaneously. Since the internal parameters of the camera

are unknown, the problem is essentially one of establishing correspondence between the
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Figure 5.7: Evolution of the four-phase segmentation model from [23], using two level set
functions: evolving curves (top) and phases (bottom).

views. The correspondence problem is usually addressed setting up a functional and looking

for its extrema. Once the correspondence has been achieved, the 3D point is reconstructed by

intersecting the corresponding optical rays. See for example [52, 68, 79] for further geometric

details on the old problem of stereo.

Faugeras and Keriven pioneered the use of level-sets and the geodesic framework for this

problem. They proposed to start from some initial 3D surface S0 and deform it toward the

minimization of a given geometric functional. One of the functionals proposed in [54] reads

as follows:

E(S; ~N ) =

Z Z
	(S; ~N )da = �

nX
i;j=1;i6=j

hIi; Iji
hIi; IiihIj; Iji ; (5.10)

where i; j run over all the n available images Ii, and h�; �i is the cross correlation between

the images, which includes the geometry of the perspective projection and the assumption

of Lambertian surfaces [54]. Note that this approach consists basically on replacing the edge

dependent `metric' g we used for the segmentation approach by a new `metric' 	 that favors

correlation between the collection of images. The authors work out the Euler-Lagrange

equations for this formulation and embed it in the level-set framework. The example in

Figure 5.8 was provided by Ronny Kimmel, and it corresponds to a simpli�cation of the

model by Faugeras-Keriven that he has recently proposed (additional examples can be found
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in the home pages of Faugeras and Keriven). This work was also extended by [198], where

the authors explicitly combine multi-view reconstruction with segmentation ideas as those

described before. The authors suggest to �nd a surface whose projection properly segments

the multiple given images, and an example from their work is given in Figure 5.9.

Figure 5.8: 3D reconstruction from a stereo pair using the geodesic stereo approach. First,
the stereo pair is shown, followed by the reconstructed 3D shape.

Figure 5.9: Surface reconstruction from multiple-views. The �rst row shows four di�erent
views. The second row shows four steps of the evolution, while the last row shows four
di�erent 3D views of the reconstructed surface.
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5.4 Shape from Shading

According to the so called Lambertian shading rule, the 2D array of pixel gray levels, corre-

sponding to the shading of a 3D object, is proportional to the cosine of the angle between

the light source direction and the surface normal. The shape from shading problem is the

inverse problem of reconstructing the 3D surface from this shading data. The history of

this problem is extensive. We here described a basic technique, developed by Kimmel and

Bruckstein [96] to address this problem. An outstanding contribution to the problem was

done in [158], based on the theory of viscosity solutions (this is currently being extended at

INRIA by Faugeras and his collaborators; see also [125].) See these references for details and

an extensive literature.

Consider a smooth surface, actually a graph, given by z(x; y). According to the Lamber-

tian shading rule, the shading image I(x; y) is equal (or proportional) to the inner product

between the light direction l̂ = (0; 0; 1) and the normal ~N (x; y) to the parameterized surface.

This gives the so called irradiance equation:

I(x; y) = l̂ � ~N =
1p

1 + p2 + q2
;

where p := @z=@x and q := @z=@y. Starting from a small circle around a singular point,

Bruckstein [12] observed that equal height contours C(p; t) : S ! IR2 of the surface z (t

stands for the height) hold

@C
@t

=
Ip

1� I2
~n;

where now ~n is the 2D unit normal to the equal height contour (or level-set of z). This

means that the classical shape from shading problem is simply a curve evolution problem,

and as so, we can use all the curve evolution machinery to solve it. In particular, we can use

both the level-set and the fast marching numerical techniques (the weight for the distance

is always positive and given by
p
1=I2 � 1). An example, courtesy of the authors of [96], is

presented in Figure 5.10.
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We conclude by mentioning that this work by Kimmel and Bruckstein on shape from

shading using curve evolution and level-sets inspired in part the work in [137]. This presents

the general connection between the unsteady and steady approaches to curve and surface

evolution.

Figure 5.10: Example of shape from shading via curve evolution. The �gure shows the
original surface, the simulated shading, the reconstructed surface, and the reconstruction
error.
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The Problem

Surfaces (occluders) in space.

The vantage point

Find portions of space and surfaces that are visible/invisible from a

given view point.

* Find ψxo such that {ψxo < 0} describes the invisible regions

1

Applications: ray tracing, navigation problems, shape reconstruction,

and etching.

I will discuss:

• Basic algorithms for stationary vantage points

• Visibility interpolation

• Variational problems

2

Our solution

Again: Find ψxo such that {ψxo < 0} describes the invisible regions

3

Basic algorithm: ψxo(y) := minξ∈L(x0,y) φ(ξ)

KEY: “propagate” the visibility incrementally in radial direction, starting
from the vantage point, using

ψ(x) = min(φ(x),ψ(x̃)),

where x̃ a point “before” x, depending on the grid geometry.

φ

ψ

4

What we do:

Visit the grid points in the grid either by sweeping or by a “star-shaped”

updating sequence (independent of the occluders): e.g.

y+x+ sweep

y+x- sweep

X0

For each grid point x:

1. Solve ∇ψ · r = 0 at x;

2. Update: ψ(x) = min(φ(x),ψ(x)).

5



Multi-level algorithm

6

Xiφ(   )Xcφ(   ) Xi Xc| − |C<−

Xiφ(   ) Xi Xc| − |C

XcXi Xi+1

−| |

> 0−

line with slope = C

Skipping through large regions on which ψ does not change signs!
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Visibility in bending ray fields
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Solved by the fast sweeping algorithm as described in [Tsai-Cheng-

Osher-Zhao 2002, to appear in SINUM].

8

Benefits

! Algorithm independent of the topology and geometry of the occluders

! Algorithm extendable to more compicated scenarios

! Solution is Lipschitz continuous

Shaper description of the shadow boundary using grids

Suitable for PDE methods on the grid

! Build-in stability of the algorithm

! Reciprocity of Solution. ψxo(y) := minξ∈L(x0,y) φ(ξ), where L(x0, y) is
the line segment connecting x0 and y:

ψx(y) = ψy(x)

9

Dynamic visibility

What determines the visibility when the observer is moving?

How does the shadow move?

terminator

horizon

vantage point

10

Characterizing the horizons and terminators

We characterize the horizon and its terminator by the intersections of

level set functions.

φ=0

ψ=0

11
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Motion laws

Horizon motion: {
φ(x(t)) = 0
(x− xo) ·∇φ(x) = 0 (1)

ẋ =
(

ẋ
ẏ

)
=

1
κ

ẋo · n(x)
|x− xo| ν(x). (2)

ẋ =
II(x− x0)

|II(x− x0)|2
(

ẋ0 · ∇φ

|∇φ|
)

, (3)

where II is the second fundamental form, II = 1
|∇φ|P∇φ∇2φP∇φ.

13

Motion laws

Cast horizon motion: (Let y be the cast of the horizon point x){
φ(y) = 0,
y−xo
|y−xo| = x−xo

|x−xo|.
(4)

ẏ =
1

ν · n(y)
(
|r|
|r∗|ṙ

∗ · (ν∗)⊥ + ẋo · ν⊥)n⊥(y), (5)

where r = y − xo, and r∗ = x− xo, ν = r/|r|.

14

Hidden objects may emerge:

15

! These motion laws can be used also by the Lagrangian tracking for-

mulations

! Prediction of objects appearance and disappearance

! Can easily be extended to morphing surfaces

! Important for illumination type problems; i.e. etching, melting ice,

shape-from-shading

16

Result — Terrain fly-through

17



18 19

20 21
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Accumulative result: invisible regions

23



Surface Interpolation of Point Clouds

Given {zi} sampled from the occluders. What is visible?

Vantage point

A piecewise constant approximation to:

ρ(p) =
{

minx∈Rd{|x− xo| : ν(xo,x) = p,φ(x) ≤ 0} if exists

∞ otherwise
(6)

24

Reconstruction

• Filter the “occluded” points:

ρ̃xo(z) = min (ρxo(z), |xo − yi|) , for every z ∈ πxoB(yi, ε).

• Use higher order reconstruction (e.g. ENO)

• Obtain other geometrical quantities; such as k

25
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Variational problems

1. Variational energy depends on a fixed visibility function

• Certain scattering problems: e.g. etching, melting-ice problems
• Shape reconstruction from gray scale images

2. Finding the location of vantage point(s) maximizing visibility

• The “I want to see everything” problem (complete visibility)

3. Path planning under visibility constraints: H(∇u) = r(x,φ,ψ). (with
time dependence.)

• The “I don’t want to be seen” problem.
Working with: ψx(y) = ψ(x, y), where x is the vantage point location.

27

Steoreoscopic shape reconstruction

[Jin et al.]

28

I want to see every thing!

29



Surveillance: a fly-through over DC area

(see movies)

30

Lets try to see as much as possible.
Seeing everything translates into:⋂

α∈A

{ψ(xα, ·) ≤ 0} = {φ ≤ 0}⇐⇒ Πα∈AH(ψ) = H(φ)

Find x minimizing the area of invisible region outside of the occluders:

min
x

A(x) = min
x

∫
Ω

H(−ψ(x, y))H(φ)dy

31

Gradient descent:

dx

dt
= −∇xA(x) =

∫
Ω

H(φ)
∇xψ(x, y)
|∇yψ(x, y)|δ(−ψ(x, y))|∇yψ(x, y)|dy.

Can be used to grow a path maximizing visibility.

Generalization:

min
x

A(x) = min
x

∫
Ω

w(φ,ψ,Ψ, y)H(−ψ(x, y))dy,

w(φ,ψ,Ψ, y) is a weight function; e.g. near sighted — w(d), where
d =distance to the occluder.

32

Coupled system of vantage points

Vantage points {xn}:

min
x={xn}

A(x) = min
x

∫
Ω

ω(x,φ, · · · ) ΠnH(−ψ(xn, y))H(φ)dy.

Can be used to generate a visibility maximizing path.

33

Example: extra weight on the region [50,100]x[50,100]
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Same configuration with equal weights
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Collective visibility of several vantage points
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Collective visibility of several vantage points (2)
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Dynamic Visibility in an Implicit Framework
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Abstract

We investigate the problem of determining visible regions in two or three
dimensional space given a set of obstacles and a moving vantage point. This
is of importance in several fields of study including rendering in computer
graphics, etching in materials construction, and navigation. Our approach
to this problem is through an implicit framework, where the obstacles are
represented by a level set function. An efficient generic multiscale level set
method is developed to generate the visible and invisible regions in space.
Furthermore, we study the dynamics of shadow boundaries on the surfaces
of the obstacles using special level set techniques when the vantage point
moves with a given trajectory. In all of these situations, topological changes
such as merging and breaking occur in the regions of interest. These are
automatically handled by the level set framework here proposed. Finally, we
obtain additional useful information through simple operations in the level
set framework.
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1 Introduction

In this paper, we consider the visibility problem described as follows: given a col-
lection of hypersurfaces representing the surfaces of objects, called the occluders,
in two or three dimensional space, determine the regions of space or on the sur-
faces visible to a given observer. In real world applications, this problem must be
solved quickly and efficiently, preferably in real time. Generalizations of the vis-
ibility problem are just as, if not more, important, such as the case of a moving
rather than static observer and the determination of regions visible for all time or
invisible for all time in this situation. However, we begin with the basic visibility
problem for simplicity, and address parts of the dynamic problem later on. Inci-
dentally, the visibility problem can be reformulated into a problem of determining
light and dark regions given a point light source. We occasionally consider this
point of view for clarification.

Under this point of view, a more precise set of assumptions we make in the
visibility problem includes a space composed of a homogeneous medium and ob-
jects with nonreflecting and nondiffracting surfaces. Furthermore, we disregard
interference, assuming that the distances between objects are large compared to
the wavelength of light. Under these conditions, light rays travel in straight lines
and are obliterated upon contact with the surface of an object. Thus a point is called
visible with respect to a vantage point, the observer, if the line segment between
the point and the vantage point does not intersect any of the obstructing objects or
their surfaces in space.

The need for visibility information

Even under these simplifying assumptions, the visibility problem arises as a cru-
cial part of numerous applications in different scientific fields, including rendering,
visualization [16], etching [1], the modeling of melting ice [7], surveillance, nav-
igation, and inverse problems, to name a few. In the case of computer graphics
and rendering, for example, determination of the visible portions of object sur-
faces allows for those portions alone to be rendered, thus saving a lot of costly
computation. Additionally, there are recent variational formulations for surface
reconstructions that require the solution of the visibility problem [17].

While explicit surfaces, for example triangulated surfaces, are used in a major-
ity of computer graphics and vision applications, implicitly represented surfaces
are gaining more attention. The advantages can be seen in the automatic resolution
of surfaces as well as the incorporation of geometric information and the handling
of various surface topologies afforded, for example, by a level set framework (see,
e.g., [6, 9, 15, 16, 17, 26]). Currently there are numerous algorithms for solving
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the visibility problem using explicit surface representations. For example, the work
of [12] and [14] uses linearity to process triangulated surfaces. A detailed review
of related work on the visibility problem, especially concerning explicit surfaces,
can be found in [13]. Furthermore, there are a variety of visibility algorithms
from computational geometry (see, e.g., [2, 3]). Visibility algorithms for implicit
surfaces mostly consist of sending rays out from the point source and testing for
intersections with the surfaces of the objects using information arising from the
implicit formulation. Our proposed method for ray tracing is different. In essence,
we send out rays in an implicit manner so as to propagate the causality relation of
visibility. We describe this approach in more detail below.

Level set approach

We propose to solve the static and dynamic visibility problems in an implicit man-
ner using a level set formulation. The level set method was first proposed by Osher
and Sethian [20] as a PDE (Partial Differential Equation) based numerical device to
capture moving interfaces. Over the years, a level set calculus has been developed
that allows for the application of the level set method to a multitude of problems
and situations. See, for example, the review paper [19] for an overview on the
basics as well as recent advances in level set methods. We only recapitulate here
that implicit PDE approaches such as the level set approach retain the important
self interpolating property when propagating interfaces, thus obtaining good reso-
lution of the interfaces. Furthermore, Boolean operations on sets, including finding
curves of intersections and the trimming commonly required in CAD (Computer
Aided Design) are easy to implement in a level set framework.

In our case of visibility, a real valued two or three dimensional function �,
called the level set function, is introduced. The zero level set of this function
represents the surfaces of the occluding objects. Furthermore, we require that the
points where � is negative represent the interior of the objects. Several algorithms
have been developed in the literature to efficiently obtain this representation. A
level set method for visibility will use this function � whenever the objects are
considered.

One idea in determining whether a point is visible to a given observer is to
compare the geodesic and Euclidean distances between the observer and that point.
See [24] for an example of this approach. The geodesic distance between two
points is the distance in the space in the presence of obstacles, namely the objects.
Let x represent the point of interest and xo represent the observer point. The
geodesic distance can thus be calculated by solving the Eikonal equation

H(�)jruj = 1;
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where H is the one dimensional Heaviside function, with condition u(xo) = 0.
Thus the point x is occluded if and only if

u(x) > jx� xoj:

However, this algorithm is at best O(N logN), where N is the number of grid
points (see, e.g., [25]). This may not be optimal, making it too slow for applications
requiring real time computations. Furthermore, numerical implementation of the
Heaviside function may cause problems for accuracy.

Our level set approach

We present here a few level set based algorithms for determining various types
of visibility information in any dimension, though three dimensions is probably
the one of interest. We first introduce a multiresolution algorithm for solving the
visibility problem for a given fixed vantage point. This algorithm constructs the
occlusion boundary, the interface separating visible from invisible. At each reso-
lution level, we solve a radially defined causality relation on a given grid in one
pass, obtaining not only a conservative estimate of the visible and invisible regions
but a locally second order approximation of the occlusion boundary. In addition,
our algorithm is independent of both the convexity of the occluders and the grid
geometry, and its parallelization is straightforward.

The level set framework is especially important as it handles occluder fusion,
where the occlusion boundary merges during the construction process. Further-
more, the implicit representation, though not as effective on occluders which are
open surfaces, can still handle this case by considering them as very thin hypersur-
faces.

Dynamic visibility

In the second part of the paper, we extend our study to the dynamic visibility prob-
lem. In this case, we consider a moving vantage point. Obviously the static visi-
bility problem can be applied at each time to solve this problem, and our algorithm
can be used to solve it efficiently enough. However, this static approach does not
give us other useful information about the dynamics; for instace, how fast a point
in space will become visible or invisible. In many cases, the problem can be solved
even faster if the visibility at a previous time is used effectively to produce visibility
at future time.

Thus we study the dynamics of curves on the occluders that separate light and
dark regions on the occluders. The curves in fact can be represented using a level
set approach, following the work of [5, 8, 10]. We also study other types of curves,
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called horizons, and their motions which form a superset of the curves separating
light from dark but can be constructed quickly. We rigorously derive motion laws
for all these types of curves and evolve them under the level set framework. This
framework allows for topological changes which may occur in the curves and its
self interpolating property automatically produces well resolved results. Finally,
we derive an emergence-time estimate to predict an occluded object’s emergence
into view. Thus our work complements the book of Cipolla and Giblin [11] which
discusses the reconstruction of shape from the perspective (orthogonal) projection
of the horizons. This is exactly what we are trying to evolve.

Notations

Through out this paper, we use the following notation:

� The space in which we work will be Rd , where d = 2 or 3.

� xo denotes the position of the vantage point, or observer. We further assume
that xo never lies in the interior of the objects.

� 
 is a set of connected domains whose closure denotes the objects in ques-
tion. Furthermore, let � = @
.

� � denotes the level set function representing the objects of interest. We may
further assume that � is the signed distance function to �. This particular
level set function can be efficiently computed using fast algorithms such as
the fast marching method of [25] or fast sweeping methods.

� We define the view direction vector pointing from xo to x by �(xo;x) =
(x � xo)=jx � xoj. When the context is clear, we will drop the arguments
and write simply �(x) or �.

� Let x1 and x2 denote two points in space. We say x1 � x2 (x1 is “before”
x2) if the conditions �(xo;x1) = �(xo;x2) and jx1 � xoj � jx2 � xoj are
satisfied. We also define the strict relation � if the condition jx1 � xoj �
jx2 � xoj above is replaced by jx1 � xoj < jx2 � xoj.

� A point y 2 � is called a horizon point if and only if �(xo;y) � n(y) = 0,
where n(y) is the outer normal of � at y. The horizon thus refers to the set
of horizon points.

� A point y 2 � is a cast horizon point if and only if there is a point y� such
that: 1) y� � y and 2) y� is a horizon point. The cast horizon thus refers to
the set of cast horizon points.
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� The visible contour refers to the set of visible points of the horizons and cast
horizons.

2 Implicit ray tracing

We now set up the foundation of our approach and derive properties of ray tracing
of a single point source in an implicit framework. The motivation is as follows: we
observe that the visibility status of points sharing the same radial direction centered
at the vantage point satisfy a causality condition. This means if a point is occluded,
then all other points farther away from the vantage point in the same radial direction
are also occluded, i.e., if x1 is occluded and x1 � x2, then x2 is also occluded.

This fact can be described more rigorously as follows. Define

�(p) =

�
minx2Rdfjx� xoj : �(xo;x) = p; �(x) � 0g if exists
1 otherwise,

(1)

giving the distance between xo and the closest point on � in the direction of p from
xo. Thus a given point x is invisible if �(�(x;xo)) � jx� xoj. Refer to Figure 1
for an example and clarification. Therefore, we can define the visibility indicator

�(x;xo) := �(�(x;xo))� jx� xoj;

so that f� � 0g is the set of visible regions in R
d and f� < 0g is the set of

occluded regions.
From another view point, the problem becomes: compute

 (x) := min
�2L(xo;x)

�(�);

where L(xo;x) is the line segment connecting xo and x. Thus if  (x) is negative,
then x is occluded. In fact, our implicit ray tracing algorithm is is an approximation
of this formula.

Implicit formulation

Our implicit framework encodes visibility information in a Lipschitz continuous
function  so that a point y is visible if  (y) � 0 and invisible if  (y) < 0: Thus
we can compute the value of  (x) by

 (x) = min( (x0); �(x)) (2)

where x0 is some point “right before” x in the ray direction. We can therefore start
from the vantage point xo and update the grid points following the ray directions
outwards. A simple algorithm for this reads:
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O

z

x

y

ρ(v1)=

Sd−1

v2)=ρ( infinity

|x−O|

v1=ν(x,O)= ν(y,O)= ν(z,O)

Figure 1: Illustration of �

1. Set  (xo) = �(xo):

2. Do a star-shaped1 updating sequence on the grid.

3. For each grid point x, choose x0 depending on the grid geometry.

4. Compute the value of  (x) via (2).

Each grid node is visited in a specified order that maintains the causality. As long
as the updated grid nodes form a star-shaped region centered at the vantage point,
causality is maintained. See the Appendix for an example of such an updating
method. Due to the minimization and the linear interpolation (see Section 5.1)
used to find x0; the algorithm is l1-stable. More precisely, we have

�int (x
0) � maxfj�(xl)j : xl are the points used in the interpolationg;

where �int is the interpolant we constructed. Please see Section 5.1. Figure 2
shows what  should look like in a one space dimension setting.

1See 5.2
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The Vantage point

phi(x) The occluder

x

The occluded region

The Vantage point

The occluder

x

psi(x)

Figure 2: A demonstration of the motivation of our implicit ray tracing algorithm
in one dimension.
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Volumetric visibility processing

If we want to determine volumetric visibility information, i.e., we want to find
regions that are occluded from a given rectangular region (view cell), the above
algorithm can be modified for this purpose. For simplicity, assume that the view
cell degenerates to a line with end points x1 and x2: At each point x; we compute
x01 and x02 as in step 2 with respect to x1 and x2: The update formula then becomes:
 (x) = min(�(x);max( (x01);  (x

0
2))).

2.1 Multi-resolution calculation

Finding inside/outside

Any multi-resolution approach of the visibility problem requires the skipping of
large regions which we know a priori are either visible or invisible. This hinges
upon the ability to determine whether any given voxel is completely “inside” or
“outside” of the objects. This can be done conservatively with the help of the
Lipschitz constant of the embedding level set function.

Let C be the Lipschitz constant of �: Let xc be the center point and xi the
vertices of the given voxel V . If

�(xi) + Cjxc � xij < 0 8 i; (3)

then we know �jV < 0 (V � f� < 0g). Conversely, if

�(xi) + Cjxc � xij > 0 8 i; (4)

then we know �jV > 0: Since our embedding function is the signed distance func-
tion, the Lipschitz constant C = 1:

Correspondingly, we also have:

�jV < 0 if �(xc) + Cjxi � xcj < 0 8 i;

and
�jV > 0 if �(xc) + Cjxi � xcj > 0 8 i:

A voxel V is occluded if it lies completely inside the an object or if it is “be-
hind” an occluded voxel ~V .This idea can be implemented by a careful reinterpreta-
tion of formula (2). A similar condition for determining completely visible voxels
can also be easily derived.
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Figure 3: This is a schematic diagram for the multi-resolution algorithm. Occluded
voxels are depicted in blue and visible ones in red. The regions are target for
next level refinement.to be refine. The red curves represent the boundaries of the
occluders, and the vantage point is positioned at (1; 1): The sizes of the voxels are:
64� 64; 16� 16,4 � 4; and 1� 1:
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2.2 A Multi-resolution algorithm

Let h give the resolution of our grid such that smaller h means high resolution (i.e.
finer grid). In practice, we can simply set h to be the mesh size. Under resolution
h, we use (ih; jh; kh) to denote the grid indices and Vh for a voxel in the grid. We
will drop the superscripts of these indices when the context is clear.

Algorithm: (Multi-resolution visibility sweeping)
Let fhl : hl > hl+1; l = 0; � � � ;mg be the set of resolutions of interest. For

each resolution level h, decending from h0 to hm,

1. Compute  on the (ih; jh; kh) which do not lie on a voxel marked either
visible or occluded.

2. For each voxel V h which does not lie on a voxel marked either visible or
occluded, mark V h to be visible or occluded according to formulas (3) and
(4).

We remark that the Lipschitz constant of the linearly interpolated  is can be taken
from that of �. Therefore, Step 2 above is well defined. Please see Figure 3 for a
demonstration of this algorithm.

As for complexity, the multiresolution algorithm for constructing visiblity in-
formation should be an O(Nd�1 logN) algorithm in terms of speed. Here N =
1=h where h is the smallest spatial stepsize used in the multiresolution framework
and d is the dimension of the space. The Nd�1 part of the complexity comes from
the fact that a codimension one hypersurface in d dimensional space is being gen-
erated under fast sweeping and the logN part comes from multiresolution. The
memory allocation of our algorithm is also O(Nd�1 logN), with the logN part
once again due to multiresolution. In practice, our algorithms have proven to be
very fast, obtaining detailed visiblity information in almost real-time. For example,
it takes less than a second to perform this algorithm running on only one resolution
(meaning no multi-resolution), on a grid with 1003 cells, on a moderate PC.

2.3 Multi-scale considerations

If we consider the visibility problem in applications related to human vision, such
as 3D virtual environment rendering, it is natural to put a scale parameter into the
size of the objects related to the distance of the object from the vantage point.
We want to ignore certain isolated and small objects that are far away from the
vantage point using this information. It is important to notice that a collection of
closely positioned small objects can form a visible ensemble, seen for example in
clouds and trees.
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Using the level set representation of the virtual environment in conjunction
with PDEs, we are able to deal with this issue easily without explicitly considering
each object separately. The idea is to dilate the interface first so that small objects
can merge to form ensembles of larger size. We then shrink the interfaces (one
possibility is to perform curvature driven motion) such that remaining small objects
will disappear. This approach follows the regularization effect of viscosity solution
theory for Hamilton-Jacobi Equations. It is basic mathematical morphology, and
can be done easily, see e.g. [4][23].

3 Dynamic visibility

We now consider the case in which the vantage point is moving. Naturally vis-
ibility information changes according to the position of the vantage point. We
are interested in how visibility changes and when hidden objects become visible.
This amounts to studying how the boundaries between visible and invisible regions
move with respect to the vantage point motion. We first remark that these bound-
aries are hypersurfaces in regions outside of the occluders, and that the Gaussian
curvature on such surfaces is 0:

For a single convex object, the horizon determines the visibility information
on the surface. Therefore, tracking the motion of the horizon for all time gives us
incremental information on the change of the visible portion of the object.

We formulate the visibility problem so that the points which are on the bound-
aries of the visible regions on the surfaces can easily be identified. The dynamics
of these points are derived so that one can track the visible regions according to the
motion of the vantage point xo.

The points forming the boundaries of visible regions on given surfaces can be
placed into two categories:

� points that are part of the horizon;

� points that border shadows cast by some surface (cast horizon).

Thus, two types of motions need to be investigated, namely, that of the horizon and
of the cast horizon. The motion of the horizon is characterized by the orthogonality
constraint and it, in turn, becomes a part of the constraints of the cast horizon
motion.

In a level set formulation, we want to create a level set function whose zero
level set captures the points described above. We need a description relating each
point on the cast horizon to a point on the horizon of the surface casting the shadow.
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Furthermore, our description should be global, that is, quantities should vary “con-
tinuously” with respect to points not on the surface. This requirement is essential
for the success of our level set formulation.

Assuming that there is no singularity in the velocity field of the horizon or cast
horizon motion, and there are no other considerations, the level set approach of
tracking the visible contours is optimal. With the fast sweeping algorithms and lo-
cal storage strategies, the complexity of the level set approach to track the horizon
and cast horizon curves is formally O(N) in operation counts and in storage. Here,
the number N is the number of points used to resolve the curves. In actual appli-
cations, there are other aspects that affects the overall complexity of this approach.
We will address this point in a later subsection.

3.1 Finding the horizon and the cast horizon implicitly

Horizons and cast horizons are objects of codimension 2. We may therefore cat-
egorize these objects by the intersection of the zeros of two level set functions.
Furthermore, for numerical reasons, we want the two zero level sets to be more or
less orthogonal to each other near their intersection.

Finding the horizon

We extend the orthogonality condition that defines the horizon and arrive at

~(x; t) = (x� x0) � r�(x): (5)

~ determines the visibility of any convex object embedded in � :

f~(x) � 0g
\
f� = 0g () visible:

In general cases, where there are multiple objects (convex and nonconvex), ~ does
not give exact visibility information anymore. It just provides local visibility infor-
mation just as local extrema may not be absolute extrema. Thus clearly, for objects
hiding completely behind other objects, ~ will still be non-negative on the parts
of the surface facing the source. Instead, ~ gives a conservative “estimate” of the
shadow:

f~(x) > 0g
\
f� = 0g =) invisible:

Thus the visible horizon is a subset of f� = 0g
T
f~ = 0g

T
f � 0g; where  is

the visibility function coming from our static algorithm. Figure 4 gives an example
of horizons found this way.
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Finding the cast horizon

How do we find the cast horizon? The idea is to overshoot the shadow boundaries
generated by the visible horizon when it hits another part of �; creating a level set
piece ~ in that neighborhood, and then propagate  as usual. f~ = 0g will cut
through � on the cast horizon, therefore providing an implicit representation of it.
We can even make f ~ = 0g perpendicular to � locally around the intersection by
iterating on the following PDE used in [18]:

~ � + sgn (�)r ~ �
r�

jr�j
= 0:

A more direct approach is to define ~ on a grid point to be the "upwind" value of
�. This will introduce an overshoot of the size of a mesh size. Alternatively, we
notice that the occlusion generated by the set f~ � 0g

T
f� � 0g is the same2 as

f� � 0g. Therefore, we can define ~ from the result of our algorithm under the
configuration f~ � 0g

T
f� � 0g. Figure 4 shows the operations described above

in a simple two circle setting.
With these characterizations and the visibility result, we can easily identify

the visible contours. See Figures 5, 6, and Figures 7, 83 for examples. In these
figures, the visible portions of the horizons and the cast horizons are depicted as
cyan and yellow curves respectively. A green circle is drawn to reveal the location
of the vantage point in each setting. The boundaries between visible and invisible
regions are represented by blue surfaces. We observe that the blue surfaces cut
through the objects exactly at the visible contours.

3.2 The dynamics of the horizon

Let xo(t) be the position of the vantage point and x(t) be a corresponding point
on the horizon at time t. We first consider a single convex occluder 
 embedded
by the signed distance function �. Let n(x) denote the outer normal of @
 at x:
This translates into the following constraints on x(t):�

�(x(t)) = 0
(x� xo) � r�(x) = 0

(6)

In two dimensions, we can invert the above constraints and derive that

_x =

�
_x
_y

�
=

1

�

_xo � n(x)

jx� xoj
�(x): (7)

2modulo a small subset of f� � 0g; which we know is invisible by definition.
3The terrain data is obtained from ftp://ftp.research.microsoft.com/users/hhoppe/data/gcanyon/.
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Figure 4: Finding the visible horizons and their casts. The occluders are the two
circles depicted by the blue curves, and the vantage point is located at (�1;�1).
The green curves are the zero level set of ~. Visible horizons and their casts are
characterized by the intersections of different level set functions as described in the
text.



3 DYNAMIC VISIBILITY 17

−1

−0.5

0

0.5

1 −1
−0.5

0
0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5: Visible contour (portions of horizon and cast horizon that are visible)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6: Visible contour (portions of horizon and cast horizon that are visible)



3 DYNAMIC VISIBILITY 18

Figure 7: Horizons and cast horizons obtained from the elevation data of Grand
Canyon.
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Figure 8: Horizons and cast horizons obtained from the elevation data of Grand
Canyon.
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Figure 9: By taking the intersection of the occlusion during a trajectory of the
observer, we can find the cumulative occlusion easily and efficiently. The following
pictures show a progression of the cumulative occlusion subject to an observer
(“spy plane”) moving across a region of Grand Canyon.
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β(σ)

x'

Figure 10:

Here, � is the curvature of the occluding surface at x. In three space dimensions,
the horizon becomes a closed curve �(s) = x(s; t); where s is the arc length of
�(s): Let P be the plane tangent to _xo; passing through �(s) and xo. Let �(�) be
the curve on the intersection of P and @
: Then, locally at t and x; we have a two
dimensional visibility problem on the plane P; in which �(�) defines the boundary
of the objects. Following this reasoning, � should naturally be taken from �(�):
See Figure 10.

Alternatively and more naturally under our level set formulation, we rederive
the above motion law as

_x =
II(x� x0)

jII(x� x0)j2

�
_x0 �

r�

jr�j

�
; (8)

where II is the second fundamental form, which can conveniently be extended to
the other level sets and takes the form:

II =
1

jr�j
Pr�r

2�Pr�:

Here, Pr� is the orthogonal projection matrix projecting vectors to the plane with
normal vector parallel to r�.

For a detailed derivation and implementation, please see sections 5.4, 5.3 and
5.7. Figure 11 shows a result of horizon motion on a nonconvex body.4

4For more exmaples on the horizon motion, please see
http://www.math.ucla.edu/ ytsai/math_page
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Figure 11: A example of moving horizon around a nonconvex occluder. Observe
that the horizon curves break and change topology.
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3.3 The dynamics of the cast horizon

Assume that x is a cast horizon point and x�(x) is its generator. In two dimensions,
the motion of x is determined by the following constraints:(

�(x) = 0;
x�xo
jx�xoj

= x
��xo

jx��xoj
:

(9)

Inverting, we find that the motion of the cast horizon can be written as follows:

_x =
1

� � n(x)
(
jrj

jr�j
_r� � (��)? + _xo � �

?)n?(x); (10)

where

n?(x) :=

�
�x2(x)
��x1(x)

�
=jr�(x)j;

and similarly for �?. See Section 5.5 for a detailed derivation. See Figure 12 for a
computational result using this formula. We notice that these constraints also tell
us how the shadow boundaries should move.

In three dimensions, we can reduce the instantaneous motion to a two dimen-
sional problem on the “right” section of the surface following the reasoning given
in the previous subsection.

Motions of the shadow boundaries

How does the shadow move in space? We can constrain a point on the shadow
boundary to move only normal to the viewing direction (ergo, the shadow bound-
ary): (

x0 � � = 0;
x�xo
jx�xoj

= x
��xo

jx��xoj
:

(11)

Motions of horizons and cast horizons of dynamic surfaces

We remark that we we are able to derive the motion laws of the visible contours
even when the occluders are changing shapes. In this case, the embedding level set
function � is a function of space and time, �(x; t) and differentiating formulas (6)
and (9) with respect to t will bring �(x; t) into the equations.
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Figure 12: A result of tracking the horizon and cast horizon motion using the
formulas derived in this paper. The blue curve represents the trajectory of the
vantage point and the green curves represent the paths of the horizon and cast
horizon. The black line links the current position of the vantage point and the cast
horizon; it shows that the colinearity of the vantage point, the horizon and its cast
is preserved.
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3.4 Analysis of the motions

PDEs for moving the level set functions

Once we have the motion laws, we can extend the velocity to the domain near the
surfaces and obtain the corresponding velocity field v(x). We then evolve the level
set function(s) u in question by

ut + v � ru = 0:

Furthermore, the velocity fields for horizon and cast horion motions do not de-
pend on the function u. In horizon motion, the velocity is a function of pos-
tion, time, _xo, and the derivatives of �, i.e. v = v(t;x;xo;r�;D

2�). Fur-
thermore, the level set function to be evolved is ~. In cast horizon motion, we
have ~v = ~v(t;x;xo;r�;D

2�; ~); and the level set function to be evolved is ~ .
Therefore, we are evolving the following two level set equations:

~t + v(t;x;xo;r�;D
2�) � r~ = 0;

~ t + ~v(t;x;xo;r�;D
2�; ~) � r ~ = 0:

These are simple convection equations whose viscoity solutions are well studied,
provided that the velocity fields are bounded. We only have to be careful near
singularities.

Singularities in the velocity fields

Formula (7) reveals a few interesting facts. First, we notice that the speed of the
horizon motion is inversely proportional to the normal curvature in the viewing
direction and to the distance between the horizon and the vantage point. If the
vantage point is moving in the tangent direction �, the horizon will not move (since
_xo � n = 0). The speed of the horizon motion becomes singular if the curvature
of the surface at the horizon location becomes zero. On strictly convex objects,
this will never happen. If we restrict our analysis to a single connected smooth
non-convex object, we will see easily that at the instance in which a horizon point
moves into the location where � = 0; a neightborhood of this location becomes
completely visible. This signifies the disappearance of the horizon point. If the
course of the vantage point is reversed, we get the genesis of a new horizon point.

Formula (10) tells us that the motion of a cast horizon point becomes singular
when it is a horizon point (� �n = 0). On a single non-convex smooth surface, this
happens precisely when a horizon point and its cast across the concavity collide
into each other at the location where � = 0. In the setting where there are multiple
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strictly convex objects, this also describes the changing of the cast horizon into a
visible horizon point which is previously invisible. Therefore, the singularities of
the horizons and cast horizons describe a part of their genesis. A complete genesis
of the visible contours includes another part, in which a hidden object suddenly
becomes visible. We shall discuss this point in a later subsection.

3.5 Relating horizon and its shadow

To move the cast horizon, following the notation used in the previous section, we
need to find x�(x) for each point x on the cast horizon.

3.5.1 Explicit formula

x and x�(x) are related by

x�(x) := x� r(x)�(x);

r(x) can be computed by

r(x) = jx� xoj � �(�(x));

where � and � are defined as previously.

3.5.2 Implicit formulation

We follow the spirit of formula (2) introduced in Section 2 and propagate the link
between the horizon and its cast shadow implicitly. Define # : Rd 7! R

d to be

#(x) :=

�
x if ~ (x) = �(x)

x0 if ~ (x) = ~ (x0):

~ is the function defined in Section 3.1. When we move the points x near the
cast horizon, we also move the points #(x), which are points near the horizon.
By continuity around the cast horizon, we will have the right motion of the cast
horizon.

3.6 Reinitialization and emergence-time estimate

It can be easily seen from figure 13 that a completely hidden object may suddenly
become visible at a later time during the journey of the vantage point. At the time of
emergence, we need to reinitialize our algorithm, i.e., we need to find the apparent
contours on the newly emerged surfaces to get the correct visibility information.
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Figure 13: Model scenario I

An explicit reinitialization criterion

Assuming that we are merely tracking the visibility boundaries on the objects. How
do we know when to initialize? We can formalize the reasoning as follows. We
define the map G�1 : Sd�1 7! fxig

N(�)
i=0 such that

G�1(�) := fxi 2 R
d : r�(xi)=jr�(xi)j = � and �(xi) = 0g:

This map is the inverse of the Gauss map in the case that f� = 0g is a strictly con-
vex hypersurface. Let S be the set containing x and x�: We reinitialize whenever
there exists an x 2 S such that 9 y 2 G(�(y)) with x�(x) � y � x:

This provides an explicit criterion for reinitialization. However, we can do
better with our implicit formulation. This amounts to knowing 1) how the shadow
moves 2) how far a hidden surface is from the shadow boundaries.

Emergence-time estimate

Given current vantage point position and its motion, we want to estimate the emer-
gence time for an object that is occluded. We begin by assuming the the curvatures
of the surfaces locally around the regions of interest are constant. The diagram in
Figure 14 shows a model configuration: The small circle is initially occluded by
the larger circle on the left. We want to estimate the time interval Æt between this
instance t0 and the time t1 = t0 + Æt when the small circle first emerges into the
scene.

Following the discussion above, consider a point y on the shadow boundaries
away from the horizon such that r�(y) ? �(y) and r�(y) � r�(y(x)) > 0: This
is the point closest to some hidden part of the objects.
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Figure 14: A diagram for emergence time estimate.

For consistency of notation, we will use D in place of y. Let d be the distance
between D and the circle centered at O0. Let � and �0 be the radius of the circle
centered at O and O0 respectively. Let r denote the distance between D and C0:
By elementary Euclidean geometry, we have the following identities:

CC 0 = � tan
Æ�

2
; CD = r � CC 0 = r � � tan

Æ�

2
; =) DE = CD sin Æ�;

O0A0 =
1

cos Æ�
�0:

Therefore, we can find Æ� from the last two equalities. Since we know how fast the
horizon is moving, we can then determine Æt:

Let _x = j _xj1;
DE

Æt
= j _xj1; Æt =

DE

j _xj1
:

Further considerations

We have mentioned in the beginning of this paper that the approach of moving
the visible contour may not be more efficient than simply performing implicit ray
tracing in general “large world” configurations. Here we construct such a case to
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Figure 15: bad case for moving curves

validate our arguments. Consider a nonconvex part of an object as shown by the
dashed red curve in Figure 15. Suppose the red curve is broken down into dense
small disconnected components. In the case where the red curve is the nonconvex
part of a connected component and with the viewing direction being depicted in
Figure 15, the cast horizon will move continuously on the nonconvex part of the
object without need for reinitialization. However, in the second case, we have to
reinitialize very often because the cast horizon will “jump” from component to
component.

4 Conclusion and future directions

In this article, we introduced a fast implicit ray tracing algorithm independent of
grid geometry and easily parallelizable. This is then extended to a multi-resolution
algorithm for near optimal efficiency. Furthermore, we showed that the implicit
framework captures accurately the shadow boundaries, which include the horizon
and cast horizon curves. We studied how these objects move when the source point
is moving. Explicit formulas which reveal the relations between the motions and
the local/global geometry of the given configuration are derived and are tightly
coupled with our level set framework for implementation. Also, questions such
as “how soon will this hidden object appear” can be answered as a result of our
algorithm.

There is a rich pool of applications related to the visibility problem described
in this paper. Currently we are working on problems related to navigation, visibil-
ity with occluders changing shapes in time, in non-uniform media. Our solutions
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Figure 16: A demonstration of 2D and 3D interpolation

will combine approaches both from the PDE formulation and the algorithms in
computational geometry.
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5 Appendix

5.1 Interpolation schemes

Since the majority of visibility applications benefit from the simplicity of Carte-
sian grids, we need to adapt the algorithm in order to take advantage of this. As
described in the algorithm, at each grid point x = (i; j; k); we need to determine
an upwind neighbor x0 and find the value of  (x0): In most cases, x0 does not lie
on the grid. Therefore, we need to interpolate the values of  from the grid points
closest to x0: For simplicity and speed considerations, we choose to perform linear
interpolation in 2D and bilinear interpolation in 3D. In Figure 16, we use  (P1)
and  (P2) for linear interpolation in the 2D case and use  (Pi); i = 1; 2; 3; 4; for
bilinear interpolation of  .

We note that a fast marching or fast sweeping strategy for determining distance
from the source point and passing values can be used in place of this interpolation.

Let  int be the interpolant near x0; we know that  int (x
0) =  (x0) + O(h2):

Thus, the discrete visibility equation (2) is in effect

 (x) = min( int(x
0); �(x)):
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xo

Figure 17: The red points denote the cell vertices.

5.2 Examples of star-shaped updating sequence (sweeping)

There are many different ways of implementing a star-shaped updating sequence.
One approach is to use the algorithm based on the heap sort strategy [25] to find
grid nodes for update based on their distance to the vantage point. However, due
the complexity involved with heap sort, this algorithm is not optimal.

Alternatively, we use a sweeping approach in our simulation. For example,
let us consider a Cartesian grid in 2D and assume that the vantage point lies on
a grid node; we can then consider separately the visibility problem in each of the
four quadrants centered at the vantage point. For simplicity, let us assume that the
vantage point is at the origin and the grid is represented by the lattice [�nx; nx]�
[�ny; ny] � Z

2. A compact way of writing this sweeping sequence in C/C++ is:
for(s1=-1;s1<=1;s1+=2)
for(s2=-1;s2<=1;s2+=2)
for(i=0;(s1<0?i>=-nx:i<=nx);i+=s1)
for(j=0;(s2<0?j>=-ny:j<=ny);j+=s2)
update  i;j.

In the case where xo does not lie on a grid node, we describe an easy modifi-
cation to the updating sequence above. Let xo 2 Io := [xi0 ; xi0+1)� [yj0 ; yj0+1).
Update the values of  on the vertices of Io. Then update the grid nodes in the strips
f(xi; yj) : i = i0; i0 + 1 and j = �ny tonyg and f(xi; yj) : i = �nx; nx and j =
j0; j0+1g. Finally, update the remaining four quadrants independently. See Figure
17 for a depiction of this approach.
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5.3 Finding the curvature of a specified direction

As we argued in Section 3.2, the three dimensional problem of determining the
motion of the horizon can be reduced to an instantaneous two dimensional problem.
In order to move the horizon in this manner, we need to evaluate the curvature of
the surface in the specified direction. Here we present a way to do that.

Let � be the tangent vector being specified. We want to find the curvature on
@
 in this direction. First let p(x; �) be the plane passing through x, spanned by
n(x) and �; and let P be the level set function that embeds this plane. Then

~� =
r��rP

jr��rP j
;

where ~�(x) = �; and the curvature is

k�n = ~r~� � ~� :

5.4 Derivation of the dynamics of horizon

We follow the constraints (6):�
�(x) = 0
(x� x0) � r�(x) = 0

and differentiate with respect to t; we have

r�(x) � _x = 0 (12)

(x� xo) �D
2�(x) _x = _xo � r�(x) (13)

In 2 space dimensions, these two relations uniquely determine the motion of
x with given initial conditions. Writing (x � xo) = jx � xojn

?(x) = jx �
xoj (��y; �x)=jr�j; we have

jx� xoj

jr�j

�
��y
�x

�
�

�
�xx �xy
�yx �yy

��
_x
_y

�

=
jx� x0j

jr�j

�
��y�xx + �x�yx
��y�xy + �x�yy

�
�

�
_x
_y

�
;

and

jx� xoj

jr�j

�
�x �y

��y�xx + �x�yx ��y�xy + �x�yy

��
_x
_y

�

=

�
0

_xo � r�(x)

�
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�
_x
_y

�
= jr�j

jx�xoj
1
D

�
��y�xy + �x�yy ��y
�y�xx � �x�yx �x

��
0

_xo � r�(x)

�

= jr�j
jx�xoj

_xo�r�(x)
D

�
��y
�x

�
;

where

D = det

�
�x �y

��y�xx + �x�yx ��y�xy + �x�yy

�
= ��x�y�xy + �2x�yy + �2y�xx � �x�y�xy

= �2x�yy + �2y�xx � 2�x�y�xy:

Since the curvature of @
 at x is

� = r �
r�

jr�j

=
1

jr�j3
(�2x�yy + �2y�xx � 2�x�y�xy);

the motion of x is

_x =

�
_x
_y

�
=

1

�

_xo � n(x)

jx� xoj
n?(x): (14)

We define n?(x) = (x� xo)=jx� xoj:
Alternatively, we can write _x in a slightly different form:

_x =
Pr�r

2�(x� x0)

jPr�r2�(x� x0)j2
( _x0 � r�);

where Pv is the orthogonal projection matrix projecting vectors to the plane with
normal vector v. Let us check this expression for the velocity of the curve. Note
r�� _x = 0 since v�Pvw = 0 for all vectors v andw. Also,r2�(x�x0)� _x = r�� _x0
is satisfied since Pvw � w = jPvwj

2 for all vectors v and w. Thus this velocity is
valid and is the first form in our alternate derivation.

Geometric interpretation

If x indeed represents the position of the curve, then x�x0 is tangent to the object
surface at x and so x� x0 = Pr�(x � x0). Making this replacement above gives
our second form for the velocity,

_x =
Pr�r

2�Pr�(x� x0)

jPr�r2�Pr�(x� x0)j2
( _x0 � r�):
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Figure 18: Model cast horizon scenario

This form is particularly nice because we know the second fundamental form in a
level set framework is transformed to

II =
1

jr�j
Pr�r

2�Pr�:

Thus we can rewrite the velocity in its final form,

_x =
II(x� x0)

jII(x� x0)j2

�
_x0 �

r�

jr�j

�
:

IIv evaluated at a point represents the change in the normals of the object surface
in the direction of v at that point.

5.5 Derivation of the dynamics of the cast horizon

We assume that the level sets of � near x are smooth curves and are not tangent to
�: In two space dimension, we have two equations that determine the dynamics of
x : �

�(x) = constant
� = ~�

(15)

Let r and ~r denote (x � xo) and (~x � xo) respectively. Differentiating these
equations, we arrive at:

r�(x) � x0 = 0;

r0

jrj
�

r

jrj2
� � r0 =

~r0

j~rj
�

~r

j~rj2
~� � ~r0:
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Notice that the term
� � r0

r

jrj
= (� � r0)�

is r0 projected onto the unit vector �. Therefore, the left hand side denotes the
projection of r0 onto the unit vector �?:

1

jrj
(r0 � � � r0�) =

r0 � �?

jrj
=

1

jrj
P�r

0:

Similarly, with the right hand side, we have the equation:

1

jrj
P�r

0 =
1

j~rj
P~�~r

0:

Keeping in mind that we want to solve for x0, we move every other term to the
right hand side and arrive at

P�x
0 =

jrj

j~rj
P~�~r

0 + P�x
0
o;

r�(x) � x0 = 0:

In two dimensions, P�w = (w ��?)�?, and P�w ��? = w ��?; therefore, we have�
�2 ��1
�x1 �x2

��
x01
x02

�
=

 
jrj
j~rj~r

0 � v? + x0o � �
?

0

!
;

and consequently,�
x01
x02

�
=

1

� � r�(x)
�

�
�x2 �1
��x1 �2

� jrj
j~rj~r

0 � �? + x0o � �
?

0

!

=
1

� � r�(x)

(
jrj

j~rj
~r0 � �? + x0

o
� �?)

�
�x2
��x1

�

=
n?(x)

� � n(x)
(
jrj

j~rj
~r0 + x0

o
) � �?

=
( jrjj~rj~r

0 + x0o) � �
?

� � n(x)
n?(x)

where

r?�(x) :=

�
�x2
��x1

�
; and n? :=

r?�(x)

jr?�(x)j
:
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5.6 An algorithm to project f = 0g to Sn�1

We discretize Sn�1 over a Cartesian grid: � : [0; 2�) � [��; �) 7! xo + Sn�1=r;
with r large enough so that xo + Sn�1=r lies completely outside of  : ��1; ��2
are set to be the smallest angle possible on the grid that discretizes  : Therefore,
we can set ��1 = tan�1(min(�x;�y)=L); where L is the diagonal length of the
grid.

For each �l;m, we then shoot a ray, starting from p0 = �l:m outward according
to the angle determined by (l;m); and use the bisection method to find p1; the
intersection of the ray and f = 0g:

Note that the complexity is N2 logN for a grid of size N3.

5.7 Numerics

We computed the quantities describe in this paper using standard level set tech-
nologies. Please refer to [19, 20, 21, 22, 10] for details.

5.8 A list of level set functions used in this paper

We provide a comprehensive list of the level set functions we construct in this
paper:

� embeds the objects

~(x) := (x� xo) � r�(x) characterizes the horizon

~� := max(�;�~) f~� � 0g = f� � 0g n f~ < 0g; defines the same visibility as �

 the visibility map resulting from the implicit ray tracing on �

~ the visibility map resulting from the implicit ray tracing on ~�, characterizes the
cast horizon

#: Rd 7! R
d links horizon to its cast implicitly
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Fast Surface Reconstruction Using the Level Set Method

Hong-Kai Zhao
�

Stanley Osher
�

Ronald Fedkiw
�

Abstract

In this paper we describe new formulations and develop fast algo-
rithms for implicit surface reconstruction based on variational and
partial differential equation (PDE) methods. In particular we use
the level set method and fast sweeping and tagging methods to re-
construct surfaces from scattered data set. The data set might con-
sist of points, curves and/or surface patches. A weighted minimal
surface-like model is constructed and its variational level set formu-
lation is implemented with optimal efficiency. The reconstructed
surface is smoother than piecewise linear and has a natural scaling
in the regularization that allows varying flexibility according to the
local sampling density. As is usual with the level set method we can
handle complicated topologies and deformations, as well as noisy
or highly non-unifrom data sets easily. The method is based on a
simple rectangular grid, although adaptive and triangular grids are
also possible. Some consequences, such as hole filling capability,
are demonstrated, as well as a rigorous proof of the viability and
convergence of our new fast tagging algorithm.

Keywords: implicit surface, partial differential equations, vari-
ational formulation, convection, minimal surface, hole filling

1 Introduction

Surface reconstruction from unorganized data set is very challeng-
ing in three and higher dimensions. The problem is ill-posed, i.e,
there is no unique solution. Furthermore the ordering or connec-
tivity of data set and the topology of the real surface can be very
complicated in three and higher dimensions. A desirable recon-
struction procedure should be able to deal with complicated topol-
ogy and geometry as well as noise and non-uniformity of the data
to construct a surface that is a good approximation of the data set
and has some smoothness (regularity). Moreover, the reconstructed
surface should have a representation and data structure that not only
good for static rendering but also good for deformation, animation
and other dynamic operation on surfaces. None of the present ap-
proaches possess all of these properties. In general there are two
kinds of surface representations, explicit or implicit. Explicit sur-
faces prescribe the precise location of a surface while implicit sur-
faces represent a surface as a particular isocontour of a scalar func-
tion. Popular explicit representations include parametric surfaces
and triangulated surfaces. For examples, for parametric surfaces
such as NURBS [22, 23], the reconstructed surface is smooth and
the data set can be non-uniform. However this requires one to
parametrize the data set in a nice way such that the reconstructed
surface is a graph in the parameter space. The parametrization and
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patching can be very difficult for surface reconstruction from an ar-
bitrary data set in three and higher dimensions. Also noise in the
data set is difficult to deal with. Another popular approach in com-
puter graphics is to reconstruct a triangulated surfaces using Delau-
nay triangulations and Voronoi diagrams. The reconstructed surface
is typically a subset of the faces of the Delaunay triangulations. A
lot of work has been done along these lines [3, 4, 5, 8, 12, 13]
and efficient algorithms are available to compute Delaunay trian-
gulations and Voronoi diagrams. Although this approach is more
versatile in that it can deal with more general data sets, the con-
structed surface is only piecewise linear and it is difficult to handle
non-uniform and noisy data. Furthermore the tracking of large de-
formations and topological changes is usually quite difficult using
explicit surfaces.

Recently, implicit surfaces or volumetric representations have
attracted a lot of attention. There are two main approaches for
creating and analyzing implicit surfaces. The traditional approach
[7, 18, 27, 29] uses a combination of smooth basis functions, such
as blobs, to find a scalar function such that all data points are close
to an isocontour of that scalar function. This isocontour represents
the constructed implicit surface. Although the implicit surface is
usually smooth, the construction is global, i.e. all the basis func-
tions are coupled together and a single data point change can result
in globally different coefficients. This makes human interaction, in-
cremental updates and deformation difficult. The second approach
uses the data set to define a signed distance function on rectangular
grids and denotes the zero isocontour of the signed distance func-
tion as the reconstructed implicit surface [6, 9, 16]. The construc-
tion of the signed distance function uses a discrete approach and
needs an estimation of local tangent planes or normals for the ori-
entation, i.e. a distinction needs to be made between inside and out-
side. Similar ideas have been applied to shape reconstruction from
range data and image fusion [11, 15] where partial connections are
available on each piece of data and some “zippering” is needed to
patch things together. The advantages of implicit surfaces include
topological flexibility, a simple data structure, depth/volumetric in-
formation and memory storage efficiency. Using the signed dis-
tance representation, many surface operations such as Boolean op-
erations, ray tracing and offset become quite simple. Moreover an
extremely efficient marching cubes algorithm [17] is available to
turn an implicit surface into a triangulated surface.

We approach this fundamental problem on the continuous level
by constructing continuous models using differential geometry and
partial differential equations. We also develop efficient and robust
numerical algorithms for our continuous formulations. Moreover
we combine the level set method and implicit surfaces to provide
a general framework for surface modeling, analysis, deformation
and many other applications. In our previous work [31] we pro-
posed a new “weighted” minimal surface model based on varia-
tional formulations and PDE methods. Only the unsigned distance
function to the data set was used in our formulation. Our recon-
structed surface is smoother than piecewise linear. In addition, in
our formulation there is a regularization that is adaptive to the local
sampling density which can keep sharp features if the a local sam-
pling condition is satisfied. The formulation handles noisy as well
as non-unform data and works in any number of dimensions. We
use the level set method as the numerical technique to deform the
implicit surface continuously following the gradient descent of the
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energy functional for the final reconstruction. Instead of tracking
a parametrized explicit surface we solve an PDE on a simple rect-
angular grid and handle topological changes easily. In this paper
we develop a simple physically motivated convection model and a
fast tagging algorithm to construct a good initial approximation for
our minimal surface reconstruction. This will speed up our previ-
ous reconstruction by an order of magnitude. We also introduce
a smoothing algorithm similar to [28] as a post process to smooth
implicit surfaces or reconstructed implicit surfaces from noisy data.

In the next section we briefly review the variational formulation
for the weighted minimal surface model in introduced in [31]. A
physically motivated simple convection model is developed in sec-
tion 3. In section 4 we introduce the level set method for our prob-
lems and a simple denoising/smoothing formulation for implicit
surfaces . We explain the details of the numerical implementation
and fast algorithms in section 5 and show results in section 6.

2 A Weighted Minimal Surface Model

Let
�

denote a general data set which can include data points,
curves or pieces of surfaces. Define �������	�
������������ � � to be the
distance function to

�
. (We shall use bold faced characters to de-

note vectors.) In [31] the following surface energy is defined for
the variational formulation:� ������� ��� � �������������� �!#"%$'&)(*&%+ � (1)

where � is an arbitrary surface and �� is the surface area. The
energy functional is independent of parametrization and is invariant
under rotation and translation. When

( � + ,
� ����� is the value of

the distance of the point � on � furthest from
�

. For
(
,-+

,
The surface energy

� ���.� is equivalent to / � � � �������� , the surface
area weighted by some power of the distance function. We take the
local minimizer of our energy functional, which mimics a weighted
minimal surface or an elastic membrane attached to the data set, to
be the reconstructed surface.

As derived in [31] the gradient flow of the energy functional (1)
is �0��1� �)2 ��� � �������3������ �!5476 ��� 476 ���.� �98 �����3�;:=<#>

$( �������@?���<	�
(2)

and the minimizer or steady state solution of the gradient flow sat-
isfies the Euler-Lagrange equation

��� 4A6 ���3� ��8 �������B:�<C> $( �����3�@?��D�FE�� (3)

where < is the unit outward normal and ? is the mean curvature.
We see a balance between the attraction

8 �����3�G:0< and the sur-
face tension �����3�@? in the equations above. Moreover the nonlinear
regularization due to surface tension has a desirable scaling �����3� .
Thus the reconstructed surface is more flexible in the region where
sampling density is high and is more rigid in the region where the
sampling density is low. In the steady state equation(3) above, since8 �H:;< &I$ , a local sampling density condition similar to the one
proposed in [4], which says sampling densities should be propor-
tional to the local curvature of the feature. To construct the min-
imal surface we used a continuous deformation in [31]. We start
with an initial surface that encloses all data and follow the gradient
flow (2). The parameter

(
affects the flexibility of the membrane to

some extent. When
( � $

, the gradient flow (2) is scale invariant
i.e., dimensionless. In practice we find that

( � $ or J (similar to a
least squares formulation) are good choices. Some more details can
be found in [31].

In two dimensions, it was shown in [31] that a polygon which
connects adjacent points by straight lines is a local minimum. This
result shows a connection between the variational formulation and
previous approaches. On the other hand this result is not surprising
since a minimal surface passing through two points is a straight line
in two dimensions. However in three dimensions the situation be-
comes much more interesting. The reconstructed minimal surface
has no edges and is smoother than a polyhedron.

3 The Convection Model

The evolution equation (2) involves the mean curvature of the sur-
face and is a nonlinear parabolic equation. A time implicit scheme
is not currently available. A stable time explicit scheme requires a
restrictive time step size, KL�M�ONP��Q5RS� , where Q is the spatial grid
cell size. Thus it is very desirable to have an efficient algorithm to
find a good approximation before we start the gradient flow for the
minimal surface. We propose the following physically motivated
convection model for this purpose.

The convection of a flexible surface � in a velocity field T3���3� is
described by the differential equation�0�M�U�V��1� �WT.���M�U�V�X� "
If the velocity field is created by a potential field Y , then TZ�2 8 Y . In our convection model the potential field is the distance
function ������� to the data set

�
. This leads to the convection equa-

tion �0�[�U�X��1� �O2 8 ������� " (4)

For example, if the data set contains a single point �.\ , the potential
field is ���������L] ��2M� \ ] and the velocity field is T����.���^2 8 ���������2 � 4 �3_` � 4 �3_ ` , a unit vector pointing towards �3\ . Any particle in this
potential field will be attracted toward �.\ along a straight line with
unit speed. For a general data set

�
, a particle will be attracted to

its closest point in
�

unless the particle is located an equal distance
from two or more data points. The set of equal distance points has
measure zero. Similarly, points on a curve or a surface, except those
equal distance points, are attracted by their closest points in the data
set (see Fig. 1(a)). The ambiguity at those equal distance points is
resolved by adding a small surface tension force which automati-
cally exists as numerical viscosity in our finite difference schemes.
Those equal distance points on the curve or surface are dragged by
their neighbors and the whole curve or surface is attracted to the
data set until it reaches a local equilibrium (see Fig.1(b)), which is
a polygon or polyhedron whose vertices belong to the data set as
the viscosity tends to zero (see Fig.1(b)).

Here are some properties of this simple convection model: (1)
the normal velocity of the curve or the surface is less than or equal
to 1, (2) each point of the curve or surface is attracted by its closest
point in the data set.

Figure 1(b) is an illustration of the convection of a curve.
The initial curve (the dotted rectangle) feels the attraction of� 6 �V� R �V��a��V��b and closes in. Then it begins to feel ��c . The fi-
nal shape is a pentagon that goes through � 6 �V� R �V��a��V�Bb and ��c
while �3d is screened out.

Since the convection equation is a first order linear differen-
tial equation, we can solve it using a time step K#�e�fNP��Q��
leading to significant computational savings over typical parabolicK#�g�ZNP��Q R � time step restrictions. The convection model by it-
self very often results in a good surface reconstruction. In section
5 we will construct a very fast tagging algorithm that finds a crude
approximation of the local equilibrium solution for our convection
model.
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(a) the attraction of a piece of curve by two points, (b) dotted line
is the initial curve, solid line is the final curve, dashed line is the

Voronoi diagram.

Figure 1:

4 The Level Set Formulation

In general we do not have any á priori knowledge about the topol-
ogy of the shape to be reconstructed. Topological changes may
occur during the continuous deformation process. This makes ex-
plicit tracking, which requires consistent parametrization, almost
impossible to implement. Here we introduce the level set method
as a powerful numerical technique for the deformation of implicit
surfaces. Although implicit surfaces have been used in computer
graphics for quite a while, they were mostly used for static model-
ing and rendering and were based on discrete formulations [7]. The
level set method is based on a continuous formulation using PDEs
and allows one to deform an implicit surface, which is usually the
zero isocontour of a scalar (level set) function, according to various
laws of motion depending on geometry, external forces, or a desired
energy minimization. In numerical computations, instead of explic-
itly tracking a moving surface we implicitly capture it by solving a
PDE for the level set function on rectangular grids. The data struc-
ture is extremely simple and topological changes are handled easily.
The level set formulation works in any number of dimensions and
the computation can easily be restricted to a narrow band near the
zero level set, see e.g. [1, 21]. We can locate or render the moving
surface easily by interpolating the zero isosurface of the level set
function. The level set method was originally introduced by Osher
and Sethian in [20] to capture moving interfaces and has been used
quite successfully in moving interface and free boundary problems
as well as in image processing, image segmentation and elsewhere.
See [19] for a comprehensive review.

Two key steps for the level set method are:
� Embed the surface: we initially represent a co-dimension one

surface � as the zero isocontour of a scalar (level set) function� ����� , i.e. � ���;��� � ���3�M�
E�� .
� ���3� is negative inside �

and positive outside � . Geometric properties of the surface � ,
such as the normal, surface area, volume, mean and Gaussian
curvature can be easily computed using

�
. For example, the

outward unit normal < is simply �
	` �
	 ` and the mean curvature? is

8 : �
	` �
	 ` .� Embed the motion: we derive the time evolution PDE for the
level set function such that the zero level set has the same
motion law as the moving surface, i.e. the moving surface
coincides with the zero level set for all time. Since �M�U�V�#�
�;��� � �����X�V�B�FE�� ,� � ���M�U�X� �@�V��1� � �� > �0�M�U�V��1� : 8 � �FE�� (5)

where we replace � ��� ��
�
 with a velocity field T3����� defined for

all � and equal to � ��� ��
�
 for � on � ���;��� � �����@�X�3�FE�� .

To develop the time evolution PDE for the level set function, one
needs to extend the velocity at the zero level set, which is given by
the motion law of the original surface, to other level sets in a natural
way. For geometric motions, i.e. where the motion law (velocity)
depends only on the geometry of the moving surface, the most nat-
ural way to define T is to apply the same motion law for all level
sets of the level set function, which will result in a morphological
PDE [2]. For example, the gradient flow (2) is a geometric motion.
Using the fact (see, e.g., [25, 31])�

� � � ���3����G� � � � ���3����� � �����X��] 8 � ������] �0� �
where

� �������V� is the level set function whose zero level set is � �U�X�
and ������� is the one dimensional delta function, and extending the
motion (normal velocity) to all level sets we have the level set for-
mulation for the gradient flow (2)

� �
� � � $( ] 8 � ] ��� ������������� � ��] 8 � ] �0�7� �! 4;6 8 : � ��������� 8 �] 8 � ] �#� (6)

For the convection model (4), since the velocity field 2 8 ������� is
defined everywhere, we can naturally extend the convection to all
level sets of

� ��� �@�V� to obtain
� �
� � � 8 ������� : 8 � "

(7)

Although all level set functions are equally good theoretically,
in practice the signed distance function is preferred for numerical
computations. However even if we start with a signed distance
function the level set function will generally not remain a signed
distance function. As an example, in the convection model all level
sets are attracted to the data set simultaneously and they become
more and more packed together. We need a procedure to force them
apart while keeping the zero level set intact. We use a numerical
procedure called reinitialization, see e.g. [21, 25], to redistance the
level set function locally without interfering with the motion of the
zero level set. The reinitialization process will also provide us with
a signed distance function for rendering the implicit surface after
the deformation procedure stops.

If the data set contains noise, we derive a post-smoothing pro-
cess similar to that of [28] for our reconstructed implicit surfaces
using the variational level set formulation. Let

� \ denote the ini-
tial level set function whose zero level set is the surface we would
like to denoise or smooth. We define the denoised or smoothed im-
plicit surface as the zero level set of

�
that minimizes the following

functional$J � ���C� � �72��C� � \S�X� R �0�D>��
�

��� � ��] 8 � ] �0��� (8)

where �C���5� is the one dimensional Heaviside function. The first
term in the above energy functional is a fidelity term that measures
the symmetric volume difference between two closed surfaces. The
second integral in the above functional is the surface area of the
zero level set of

�
, which is a regularization term that minimizes

the surface area of the denoised or smoothed surface. The constant
� is a parameter that controls the balance between the fidelity and
the regularization. We again find the minimizer by following the
gradient flow of (8), whose level set formulation is:

�� �O] 8 � ] � �V? 2 ���C� � �A2��C� � \S�X�"!
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To some extent this variational formulation is also related to To-
tal Variation (TV) denoising for images proposed in [24]. In fact it
is exactly TV denoising applied to �C� � � , since the total variation
of a function can be represented as the integration of the parameter
length of all level sets of the function by co-area formula [14].

5 Numerical Implementation

There are three key numerical ingredients in our implicit surface
reconstruction. First, we need a fast algorithm to compute the dis-
tance function to an arbitrary data set on rectangular grids. Second,
we need to find a good initial surface for our gradient flow. Third,
we have to solve time dependent PDEs for the level set function.

5.1 Computing the distance function

The distance function ������� to an arbitrary data set
�

solves the
following Eikonal equation:] 8 �����.��]�� $ � �����3�3�FE0�B� � � "

(9)

From the PDE point of view, the characteristics of this Eikonal
equation are straight lines which radiate from the data set. This
reveals the causality property for the solution of the PDE, i.e., the
information propagates along straight lines from the data set, and
the solution at a grid point should be determined only by its neigh-
boring grid points that have smaller distance values. We use an
algorithm [10, 31] that combines upwind differencing with Gauss-
Seidel iterations of different sweeping order to solve (9) on rect-
angular grids. From numerical experiments it seems that the total
number of iterations is independent of mesh size, i.e. the complex-
ity is NP��� >�� � for � grid points and � data points.

Suppose we have a set of data points and a rectangular grid. We
use an initialization procedure, of complexity NP��� >�� � to as-
sign initial values for � grid points and � data points. Those
gird points that belong to the data set are assigned zero. Those grid
points that are neighbors (i.e., vertices of grid cells that contain data
points,) are assigned the exact distance values. These grid points
are our boundary points and their distance values will not change in
later computations. We assign a large positive number to all other
grid points. These values will be updated in later computations. We
can deal with more general data set as long as the distance values on
grids neighboring to the set are provided initially. In one dimension,
the following upwind differencing is used to discretize the Eikonal
equation (9) at � th grid point that are not boundary points,

�=�9���A2)��� 476 � � ! R > �=�9���A2 ��� � 6 � � ! R � Q R � � � $ � J�� "�"�" �
	 (10)

where Q is the grid size, 	 is the total number of grids and ���5� � �� � �� EE �
& E . We use two different sweeps of Gauss-Seidel it-

erations successively, i.e., for �#� $
��	 and �#��	��

$
, to solve

this system of equations. At the � th grid, using the current val-
ues of � � 4A6 and � � , there exists at least one solution for equation
(10) � � �����9��� 4A6 �X��� � 6 ��>��� R �
��� � �9��� 4A6 �X��� � 6 ��>��� R ! , which only
depends on neighbors with smaller values. We take ��� to be the
smaller one if there are two solutions. It can be shown that these
two sweeps will get the exact solution of the discrete system (10),
which is of first order NP��Q�� accuracy to the real distance function.
In two dimensions, a slightly more complicated system,

�=�9����� �[2)��� 476 � � � � !UR3> � �9����� �M2 ��� � 6 � � � � ! R> �=�9����� �G2 ����� � 4A6 � � !UR3> �=�9����� �[2 ����� � � 6 � � ! RM�FQ�R �� � $ � "�"�" �
	 ��� � $ � "�"S" � ��� has to be solved using sweeps of
Gauss-Seidel iterations of four different orders,� $ �A� � $ �!	 ���#� $ ��� ��J��A�7� $ �"	 ���#�#� �

$��$1�A� �%	 �
$ �&�#� $ ��� ��'��A�7�(	 �

$ ���#�#� �
$

In most numerical computations, a total of five or six sweeps is
enough in two dimensions. Similarly a three dimensional extension
is straight forward. This distance algorithm is versatile, efficient
and will be used in later stages of the surface reconstruction.

5.2 Finding a good initial guess

We can use an arbitrary initial surface that contains the data set such
as a rectangular bounding box, since we do not have to assume any
á priori knowledge for the topology of the reconstructed surface.
However, a good initial surface is important for the efficiency of
our PDE based method. On a rectangular grid, we view an im-
plicit surface as an interface that separates the exterior grid points
from the interior grid points. In other words, volumetric render-
ing requires identifying all exterior (interior) grid points correctly.
Based on this idea, we propose a novel, extremely efficient tagging
algorithm that can identify as many correct exterior grid points as
possible and hence provide a good initial implicit surface. As al-
ways, we start from any initial exterior region that is a subset of
the true exterior region. Here is the description of our fast tagging
algorithm and the proof of its viability. For simplicity of exposition
only, we shall consider a uniform grid��� � �
) � �3�F� � � �e�9��K ����KP� �D�V���g�FE�� * $ �+*	J0��2
in 2 dimensions, where K is the grid size. The results work in any
number of dimensions and for more general grid structure.

Let � � � �F����� � � � be the unsigned distance of � � � to the data set�
(i.e. to the closest point on

�
). We say ��� � , �-,/. , or �0� � is

closer than �1,/. or � � � is smaller than �-,/. if � � � , �2,/. .
We define

�43
to be the set of grid nodes � � � for which � � � , K .

(Note: if every data point lies on a grid node, then
�53 � � ).

We wish to obtain a set 6 for which
� 387 6 and for which the

boundary
� 6 serves as a very good initial guess for our final recon-

structed surface. From our convection model, we need to rapidly
find a crude approximate solution to the steady state equation8 �����5�7:�<W�FE��
where < is the unit outward normal of the boundary

� 6 . This equa-
tion can be written (in 2D) as��9 � 9G> ��: � :	�FE�� (11)

where
�

is the level set function whose zero level set is
� 6 that

surrounds
� 3

. We wish to march quickly in a manner reminiscent
of the fast algorithm of [26], but for a very different problem – this
is not the eikonal equation, and steady states generally depend on
the initial guess. There are some similarities in that a heap sort
algorithm is used as is the Cartesian structure of the grid.

For a point � � � we define its neighbors as the four points�0�<; 6 � ���V����� � ; 6 . A boundary point of a set 6 is defined to be the
set of ��� � in 6 for which at least one of its four neighbors are in the
exterior of 6 . The boundary of 6 is denoted by

� 6 .
Given 6 \ for which

�43
we shall march quickly towards 6 7 6 \

whose boundary
� 6 will act as our initial level surface for the con-

vection and convection-diffusion algorithms defined below. This is
our fast tagging algorithm.

We begin by considering
� 6 \ which we order in a nondecreasing

sequence via a heap sort algorithm. We denote
� 6 \ as a temporary

boundary set at stage E . We shall inclusively create 65= and a tem-
porary boundary set

� 6 =��  7 � 6 = so that, after a finite number of
steps the largest point in

� 64=2�  is also in
� 3

, at which point the
algorithm terminates and 6 = is the final 6 . At each marching step,
we either tag the largest (furthest) temporary boundary point into
the final boundary or turn the largest (furthest) temporary boundary
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point into an exterior point. This fast tagging algorithm is of com-
plexity NP��� ����� � � ; the log � term appears because of the sorting
step.

The tagging algorithm is as follows: Consider the largest� � = �
� � � � 6�=2�  .

(a) If there is at least one interior neighbor of � � = �
� � which is not

closer to
�

, put � � = �
� � into the tagged boundary set and define� 6�= � 6 �  � � 6�=2�  2��;� � = �

� � ���
6�= � 6 �%6�= .

(b) If all interior neighbors of � � = �
� � are closer to

�
, put � � = �

� � into
the exterior and include its interior neighbors into the new
temporary boundary, i.e., define 6�= � 6 � 6�=*2�� � =� � � and� 6 = � 6 �  � � 6 = � 6 2�� � 6 = 2 � 6 =2�  � .

Repeat this process until either (a) the temporary boundry set be-
comes empty, or (b) maximum distance of the untagged temporary
boundary points, (the set

� 6 =��  ) to
�

is less than K .
We now prove the algorithm is viable and converges. If condition

(a) is satisfied at stage � , then since
� 64= � 6 �  7 � 6�=2�  � � = � 6 �� �

&
� � = �
� � . If condition (b) is satisfied then

� 64= � 6 �  will include new

points that are neighbors of � � = �
� � and are closer to

�
than � � = �

� � .

Thus � � = � 6 �� �
& � � = �

� � . This ends the proof that the algorithm is
viable and converges.

Remark1: Our tagging algorithm produces a very crude ap-
proximation to the steady state solution of the convection equation,
which we rewrite:

8 ��: 8 � �FE . We solve this crudely on a grid for
a function

� � � which has value either +1 or -1. We initialize so that� � � � $ in the exterior of 6 \ � � � � �
2 $ inside 6 \ . At every grid
point ���<� to be updated we march in an ”upwind” direction, which
means the new

� � � depends only on values at the four neighbors
which are further from

�
than �-� � . Thus we order the temporary

boundary points and update the largest untagged point via a crude
process � � �'��� � � =� 4A6 � � � � =� � 6 � � � � =��� � 476 � � =��� � !
where � denotes a procedure that picks one of the values from its
arguments that corresponds to a more remote point as follows: if
there are any more remote interior points, it picks the one which
is furthest from

�
. Else it picks the furthest exterior point. This

is equivalent to using a convex combination of either interior or
exterior points to approximate

8 � and enforce
�

to be constant
along

8 � It is easy to see that this approximates the level set
equation (11) and is exactly our tagging algorithm.

Remark2: At every stage of our tagging algorithm, all points � = �	�
which are interior points of 64= and which are more remote than
the point being tagged, � =� � , will remain in 6�
 for all � � � ,
and hence in the final set 6 , since the maximum distance on the
untagged temporary boundary is decreasing. Thus we generally
obtain a nontrivial limit set 6 .

Figure 2 illustrates how our fast tagging algorithm works. Start-
ing from an arbitrary exterior region that is a subset of the final exte-
rior region, the furthest point on the temporary boundary is tangent
to a distance contour and does not have an interior point that is far-
ther away. The furthest point will be tagged as an exterior point and
the boundary will move inward at that point. Now another point on
the temporary boundary becomes the furthest point and hence the
whole temporary boundary moves inward. After a while the tempo-
rary boundary is close to a distance contour and moves closer and
closer to the data set following the distance contours until the dis-
tance contours begin to break into spheres (circles in the 2D figure)
around data points. We now see that the temporary boundary point
at the breaking point of the distance contour, which is equally dis-
tant from distinct data points, will have neighboring interior points

that have a larger distance. So this temporary boundary point will
be tagged as a final boundary point by our procedure and the tempo-
rary boundary will stop moving inward at this breaking point. The
temporary boundary starts deviating from the distance contours and
continues moving closer to the data set until all temporary bound-
ary points either have been tagged as final boundary points or are
close to the data points. The final boundary is approximately a a
polyhedron (polygon in 2D) with vertices belonging to the data set.

This general tagging algorithm can incorporate human interac-
tion easily by putting any new exterior point(s) or region(s) into our
tagged exterior region at any stage in our tagging algorithm. After
the tagging algorithm is finished we again use the fast distance al-
gorithm to compute a signed distance to the tagged final boundary.

The tagging method above requires an initial guess for the ex-
terior region. This can either be the bounding box of our com-
putational rectangular domain or an outer contour of the distance
function, �������M� � . An outer contour of the distance function can
be found by starting with any exterior point, such as the corners
of of our rectangular domain, and expanding the exterior region
by repeatedly tagging those grid points which are connected to the
starting exterior point and have a distance larger than � as exterior
points. When the tagging algorithm is finished the boundary of the
exterior region is approximately the outer contour of �����3�[� � or
roughly an � offset of the real shape. When using this �����3�3� � con-
tour, first proposed in [31], one needs to exercise caution in choos-
ing � . For example, if � is too small, we will have isolated spheres
surrounding data points. If the sampling density of the data set is
fine enough to resolve the real surface, then we can find an appropri-
ate � and get a very good initial surface with NP��� > � � operations.
When combined with the above fast tagging algorithm, we can find
a good initial approximation very efficiently. For non-uniform data
points the intersection of a bounding box and a distance contour
with moderate � , which is a simple Boolean operation for implicit
surfaces, often gives a good initial surface.

marching boundary

distance contour

data point

Figure 2:

5.3 Solving the partial differential equation.

After we find the distance function ������� and a good initial implicit
surface using the above algorithms, we can start the continuous de-
formation following either the gradient flow (2) or the convection
(4) using the corresponding level set formulation (6) or (7). Our nu-
merical implementations are based on standard algorithms for the
level set method. The one dimensional Delta function �����5� and
Heaviside function �C���5� are approximated numerically if needed.
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Details can be found in, for example, [21, 30, 31]. The convection
model is simple and fast but the reconstructed surface is close to a
piecewise linear approximation. In contrast, the energy minimizing
gradient flow, which contains a weighted curvature regularization
effect, is more complicated and computationally expensive but re-
constructs a smooth weighted minimal surface. These two contin-
uous deformations can be combined, and in particular, the gradient
flow can be used as a smoothing process for implicit surfaces. In
most of our applications, about one hundred time steps in total are
enough for our continuous deformation. Since we use a reinitial-
ization procedure regularly during the deformation, we finish with
a signed distance function for the reconstructed implicit surface.

5.4 Multiresolution

There are two scales in our surface reconstruction. One is the res-
olution of the data set. The other is the resolution of the grid. The
computational cost generally depends mainly on the grid size. To
achieve the best results those two resolutions should be compara-
ble. However our grid resolution can be independent of the sam-
pling density. For example, we can use a low resolution grid when
there is noise and redundancy in the data set or when memory and
speed are important. From our numerical results figure 9(c) our
reconstruction is quite smooth even on a very low resolution grid.
We can also use a multiresolution algorithm, i.e., reconstruct the
surface first on coarser grids and interpolate the result to a finer
resolution grid for further refinement in an hierarchical way.

5.5 Efficient storage

To store or render an implicit surface, we only need to record the
values and locations (indices) of those grid points that are next to
the surface, i.e., those grid points that have a different sign from
at least one of their neighbors. These grid points form a thin grid
shell surrounding the implicit surface. No connectivity or other
information needs to be stored. We reduce the filesize by at least
an order of magnitude by using this method. Moreover we can
easily reconstruct the signed distance function in NP��� � operations
for the implicit surface using the following procedure. (1) Use the
fast distance finding algorithm to find the distance function using
the absolute value of the stored grid shell as an initial condition.
(2) Use a tagging algorithm, similar to the one used above to find
exterior points outside a distance contour, to identify all exterior
points and interior points separated by the stored grid shell and turn
the computed distance into the signed distance. For example, if
we store the signed distance funtion for our reconstructed Happy
Buddha from almost half a million points on a

$ ' ��� $��;E � $ ' �
grid in binary form, the file size is about 30MB. If we use the above
efficient way of storage the file size is reduced to 2.5MB without
using any compression procedure and we can reconstruct the signed
distance function in 1 minute using the above algorithm .

6 Results

In this section we present a few numerical examples that illus-
trate the efficiency and quality of our surface construction. In
particular we show (1) how the level set method handles sur-
face deformation and topological change easily, (2) how quickly
our tagging algorithm constructs a good initial guess, (3) how
smooth the reconstructed surfaces are by using either the con-
vection model or the minimal surface model, (4) how our al-
gorithm works with non-uniform, noisy or damaged data, and
(5) how multiresolution works in our formulation. All calcula-
tions were done with a Pentium III, 600Mhz processor. Data
points for the drill, the dragon and the Buddha were obtained

from www-graphics.stanford.edu/data/3Dscanrep and data points
for the hand skeleton and turbine blade were obtained from
www.cc.gatech.edu/projects/large models. Only locations of the
data points are used in our reconstructions.

The first group of examples show surface reconstruction from
synthesized data. Figure 4 show surface reconstruction, a torus,
from damaged data, which is like hole filling. Figure 5 shows the re-
construction of a sphere from a box using eight longitudinal circles
and eight latitudinal circles. For this example we do not have any
discrete data points. We only provide the unsigned distance func-
tion. This can also be viewed as an extreme case of non-uniform
data. Figure 5(a) shows those circles and figure 5(b) shows recon-
struction using the convection model. Figure 5(c) shows the final
minimal surface reconstruction following the gradient flow on top
of figure 5(b).

The second group of examples are from real data. Timings, num-
ber of data points and grid size are shown in table 3. CPU time is
measured in minutes. CPU (initial) is the time for the initial recon-
struction using the distance contour and the fast tagging algorithm.
CPU (total) is the total time used for the reconstruction. Since our
PDE based algorithms are iterative procedures, different conver-
gence criterion will give different convergence times. For data sets
that are fairly uniform, such as the drill, the dragon, the Buddha
and the hand skeleton, we start with an outer distance contour and
use the fast tagging algorithm to get an initial reconstruction. The
initial reconstruction is extremely fast, as we can see from table 3.
After the initial reconstruction, we first use the convection model
and then use the gradient flow to finish the final reconstruction. In
our reconstruction, the grid resolution is much lower than the data
samples and yet we get final results that are comparable to the re-
constructions shown at those websites above.

Figure 6 shows the reconstruction for a rat brain from MRI slices.
The data set is very non-uniform and noisy. We start with the in-
tersection of a bounding box and an outer distance contour with
relatively large �L� $ J Q , which is shown in figure 6(b). The next
example, figure 7 is our reconstruction of a 1.6mm drill bit from
1961 scanned data points. It is a quite challenging example for
most methods for surface reconstruction from unorganized data as
is shown in [11]. Figure 8 shows the reconstruction of a hand skele-
ton. Figure 9 shows the reconstruction of the Happy Buddha. Fig-
ure 9(a) shows the initial reconstruction using the fast tagging al-
gorithm only. We start with an outer distance contour, �%� $ Q ,
initially and it takes only 3 minutes for half a million points on a$ ' ��� $�� E � $ ' � grid. Figure 10 is the reconstruction of the dragon.
Figure 9(b) is the final reconstruction. Figure 9(c) is the reconstruc-
tion on a much under resolved coarse grid

� $ � $ �;E ��� ' using the
same amount of data points. It only takes 7 minutes and the result
is quite good. For the example of the dragon, we show the initial
reconstruction in figure 10(a), reconstruction using the convection
model only in figure 10(b) and the final weighted minimal surface
reconstruction in figure 10(c). Figure 10(d) shows the reconstruc-
tion using a much lower resolution data set on the same grid and the
result is quite comparable to figure 10(c). The final example shows
the reconstruction of a turbine blade on a

$	��
 � J���� � $ $� grid for
almost a million data points.

7 Conclusions

We present a variational and PDE based formulation for surface re-
construction from unorganized data. Our formulation only depends
on the (unsigned) distance function to the data and the final recon-
struction is smoother than piecewise linear. We use the level set
method as a numerical tool to deform and construct implicit sur-
faces on fixed rectangular grids. We use fast sweeping algorithms
for computing the distance function and fast tagging algorithms for
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Model Data Grid CPU CPU
points size (initial) (total)

Rat brain 1506 80x77x79 .12 3
Drill 1961 24x250x32 0.1 2

Buddha 543652 146x350x146 3 68
Buddha 543652 63x150x64 .3 7
Dragon 437645 300x212x136 4 77
Dragon 100250 300x212x136 3 66
Hand 327323 200x141x71 .5 10

Turbine blade 882954 178x299x139 2.5 60

Figure 3: timing table

initial construction. Our method works for complicated topology
and non uniform or noisy data.
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(a) data points (b) front view of the final reconstruction (c) side view of the final reconstruction

Figure 4: hole filling of a torus

(a) initial data (b) reconstruction using convection (c) final reconstruction

Figure 5: reconstruction of a sphere from circles

(a) data points (b) starting surface (c) final reconstruction

Figure 6: reconstruction of a rat brain

Figure 7: reconstruction of a drill
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(a) initial reconstruction (b) final reconstruction

Figure 8: reconstruction of a hand skeleton

(a) initial reconstruction (b) final reconstruction (c) reconstruction on a coarse grid

Figure 9: reconstruction of the Happy Buddha
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(a) initial reconstruction (b) reconstruction using convection

(c) final reconstruction (d) low resolution reconstruction

Figure 10: reconstruction of the dragon

Figure 11: reconstruction of a turbine blade
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Abstract

This paperis a setof notesthat presentthe basicgeometryof isosurfacesandthe basic
methodsfor usinglevel setsto modeldeformablesurfaces.It beginswith a shortintroduc-
tion to isosurfacegeometry, including curvature. It continueswith a shortexplanationof
the level-setpartial differentialequations.It alsopresentssomepracticaldetailsfor how
to solvetheseequationsusingup-windschemeandsparsecalculationmethods.Thispaper
presentsa seriesof examplesof how level-setsurfacemodelsareusedto solve problems
in graphicsandvision. Finally, it presentssomeexamplesof implementationsusingVIS-
Pack, an objectoriented,C++ library for doing volume processingand level-setsurface
modeling.



1 Intr oduction

1.1 Moti vation

Thesenotesaddressmechanisms for analyzingandprocessingvolumesin away thatdeals
specificallywith isosurfaces. The underlyingphilosophy is to useisosurfacesasa mod-
eling technologythatcanserve asanalternative to parameterizedmodelsfor a varietyof
importantapplications in visualizationand computergraphics. This paperpresentsthe
mathematicsandnumericaltechniquesfor describingthegeometryof isosurfacesandma-
nipulating their shapesin prescribedways. We start with a basic introduction into the
notationandfundamentalconceptsandthenpresentsthegeometryof isosurfaces.We de-
scribethemethodof level sets,i.e.,moving isosurfaces,andpresentthemathematicaland
numericalmethodsthey entail. This paperconcludeswith someapplicationexamplesand
describesVISPACK, a C++, object-orientedlibrary the performsvolumeprocessingand
level-setmodeling.

1.2 Isosurfaces

1.2.1 Modeling SurfacesWith Volumes

Whenconsideringsurfacemodelsfor graphicsandvisualization,oneis facedwith a stag-
geringvariety of optionsincluding meshes,spline-basedpatches,constructive solid ge-
ometry, implicit blobs,andparticlesystems. Theseoptionscanbedivided into two basic
classes— explicit (parameterized)modelsandimplicit models. With an implicit model,
onespecifiesthemodelasa level setof a scalarfunction,����� ���� 	
������� � � (1)

where
����� 	��

is thedomainof thevolume (andtherangeof thesurfacemodel).Thus,a
surface� is ������� � �"! �$#$� �&%(' (2)

Thechoiceof � is arbitrary, and
�

is sometimescalledtheembedding. Noticethatsurfaces
definedin this way divide

�
into a clear inside and outside—suchsurfacesare always

closedwherever they donot intersecttheboundaryof thedomain.

Choosingthis implicit strategy begs thequestionof how to represent
�
. Historically, im-

plicit modelsarerepresentedusinglinearcombinationsof basisfunctions.Thesebasisor



potentialfunctionsusuallyhave several degreesof freedomincluding 3D position, size,
andorientation. By combining thesefunctions, onecancreatecomplex objects. Typical
modelsmight containseveralhundredto several thousandsof suchprimitives.This is the
strategy behindthe“blobby” modelsproposedby Blinn [1].

While suchan implicit modeling strategy offers a variety of new modelingtools, it has
somelimitations.In particular, theglobalnatureof thepotentialfunctionslimitsonesabil-
ity to model local surfacedeformations.Considera point �*)�� where � is the level
surfaceassociatedwith a model

� �,+.-�/ - , and / - is oneof theindividualpotentialfunc-
tionsthatcomprisethatmodel. Supposeonewishesto move thesurfaceat thepoint � in
a way thatmaintainscontinuity with thesurrounding neighborhood. With multiple,global
basisfunctionsonemustdecidewhich basisfunctionor combination of basisfunctionsto
alterandat thesametime control theeffectson otherpartsof thesurface.Theproblemis
generallyill posed— therearemany waysto adjustthebasisfunctionssothat � will move
in thedesireddirectionandyet it maybeimpossibleto eliminatetheeffectsof thosemove-
mentson otherdisjoint partsof the surface. Theseproblemscanbe overcome,however
they usuallyentailheuristics that tie thebehavior of thesurfacedeformationto thechoice
of representation[2].

An alternative to usinga smallnumberof globalbasisfunctionsis to usea relatively large
numberof local basisfunctions.This is theprinciple behindusinga volume asanimplicit
model. A volume is a discretesampling of theembedding

�
. It is alsoan implicit model

with averylargenumberof basisfunctions, asshown in Figure1. Thetotalnumberof basis
functionsis fixed,asaretheir positions(grid points)andextent. Onecanchangeonly the
magnitudeof eachbasisfunction,i.e.,eachbasisfunctionhasonly onedegreeof freedom.
A typicalvolumeof size 02143 560714385607143 containsoveramillion suchbasisfunctions.The
shapeof eachbasisfunctionis opento interpretation— it dependsonhow oneinterpolates
thevaluesbetweenthe grid points. A trilinear interpolation, for instance,impliesa basis
function that is a piece-wisecubic polynomial with a valueof oneat the grid point and
zeroat neighboring grid points. Anotheradvantageof usingvolumesasimplicit models,
is thatfor thepurposesof analysiswecantreatthevolumeasacontinuousfunctionwhose
valuescanbesetat eachpoint accordingto theapplication.Oncethecontinuousanalysis
is completewe canmapthe algorithminto the discretedomainusingstandardmethods
of numericalanalysis.The sectionsthat follow discusshow to computethe geometryof
surfacesthatarerepresentedasvolumesandhow to manipulatetheshapesof thosesurfaces
by changingthegray-scalevaluesin thevolume.
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Figure1: A volumecanbeconsideredasan implicit modelwith a large numberof local
basisfunctions.



1.2.2 IsosurfaceExtraction and Visualization

This paperaddressesthe questionof how to usevolumesassurfacemodels. Depending
on theapplication, however, a 3D grid of data(i.e. a volume)maynotbea suitablemodel
representation.For instance,if the goal is make measurementsof an objector visualize
its shape,an explicit modelmight be necessary. In suchcasesit is beneficialto convert
betweenvolumesandothermodeling technologies.

For instance,theliteratureproposesseveralmethodsfor scanconvertingpolygonalmeshes
or solidmodels[3, 4]. Likewiseavarietyof methodsexist for extractingparametricmodels
of isosurfacesfrom volumes.Themostprevalentmethodis to locateisosurfacecrossings
alonggrid lines in a volume(betweenvoxelsalongthe3 cardinaldirections)andthento
link thesepoints togetherto form trianglesandmeshes.This is thestrategy of “marching
cubes”[5] andotherrelatedapproaches.However, extractinga parametricsurfaceis not
essentialfor visualization,anda varietyof directmethods[6, 7] arenow computationally
feasibleandarguablysuperiorin quality. Thesenotesdonotaddresstheissueof extracting
or renderingisosurfaces,but ratherstudiesthegeometryof isosurfacesandhow to manip-
ulatethemdirectly by changingthegrey-scalevaluesin theunderlyingvolume. Thus,we
proposevolumesasa mechanismfor studying anddeformingsurfaces,regardlessof the
ultimateform of theoutput. Theiraremany waysof renderingor visualizing themandand
thesetechniquesarebeyondthescopeof thisdiscussion.

2 SurfaceNormals

Thesurfacenormalof anisosurfaceis givenby thenormalizedgradientvector. Typically,
we identify asurfacenormalwith apoint in thevolumedomain9 . Thatis: ! �$#$� ; �<! �$#� ; �<! �$#2� where ��)�9 ' (3)

Theconvention regardingthedirectionof this vectoris arbitrary; thenegative of thenor-
malizedgradientmagnitudeis alsonormal to the isosurface. The gradientvectorpoints
towardthatsideof theisosurfacewhichhasgreatervalues(i.e. brighter).Whenrendering,
theconventionis to useoutward pointing normals,andthesignof thegradientmustbead-
justedaccordingly. However, for mostapplicationsany consistentchoiceof normalvector
will suffice. On adiscretegrid, onemustalsodecidehow to approximatethegradientvec-
tor (i.e., first partialderivatives). In many casescentraldifferenceswill suffice. However,
in thepresenceof noise,especiallywhenvolumerendering,it is sometimeshelpful to com-
putefirst derivativesusingsomesmoothingfilter (e.g.,convolution with aGaussian).When



usingthenormalvectorto solve certainkindsof partialdifferentialequations,it is some-
timesnecessaryto approximatethegradientvectorwith discrete,one-sideddifferences,as
discussedin successivesections.

Notethata singlevolumecontainsfamiliesnestedisosurfaces,arrangedlike the layersof
anonion. We specificthenormalto an isosurfaceasa functionof thepositionwithin the
volume.Thatis, : ! �$# is thenormalof the(single)isosurfacethatpassesthroughthepoint� . The � valueassociatedwith thatisosurfaceis

�"! �=# .
3 Second-Order Structur e

In differentialgeometricterms,thesecond-orderstructureof a surfaceis characterizedby
a quadraticpatchthat sharesfirst- and second-ordercontactwith the surfaceat a point
(i.e., tangentplaneandosculatingcircles).Theprincipal directionsof thesurfacearethose
associatedwith the quadraticapproximation,andtheprincipal curvatures, �?>@�A�CB , arethe
curvaturesin thosedirections.

The second-structureof the isosurfacecanbe computed from the first- andsecond-order
structureof theembedding,

�
. All of theisosurfaceshapeinformationis containedfield of

normalsgiven by : ! �$# . The DE5�D matrixof derivativesof thisvector,F ��GIH :�JK:MLN:�O 'QP (4)

The projectionof this derivative onto the tangentplaneof the isosurfacegivesthe shape
matrix, R . Let S denotenormalprojectionoperator, which is definedas

ST� :KUV: � 0�W� ; � �X� B YZ[ � BJ � J � L � J � O� L � J � BL � L � O� O � J � O � L � BO
\^]_ ' (5)

Thetangentialprojectionoperatoris `aGIS , andthustheshapematrix isR�� Fcb � b8dEe2b � (6)

where
dfe

is theHessianof
�
. Theshapematrix R has3, real,eigenvalueswhicharegh> � �i>A��gjB � �CBj��g � �lk ' (7)

The corresondingeigenvectorsare the principle directions(in the tangentplane)andthe
normal,respectively.



Themeancurvature is themeanof the two principalcurvatures,which is onehalf of the
traceof R , which is equalto thetraceof

F
:d � �i>�m��CB1 � 01on<p !rq #� � BJ !s� L^L m � OtO # m � BL !s� J�J m � OtO # m � BO !s� J�J m � LuL #"Gv1 � J � L � J�L Gv1 � J � O � JAO Gv1 � L � O � LwO1 !s� BJ m � BL m � BO # �tx B (8)

TheGaussian curvature is theproductof theprincipalcurvatures:y � �z>^�{B � gh>^gjB"m�gh>ug � m�gjB�g � �|1 n<p !rq # B G 01 �X� q �X� (9)

� � BO !r� J�J � L^L G � J�L � J�L # m � BL !s� J�J � O^O G � JAO � JAO # m � BJ !r� L^L � OtO G � LwO � LuO #m 1 !r� J � L !s� JAO � LuO G � J�L � OtO # m � J � O !s� J�L � LwO G � JAO � LuL # m � L � O !r� J�L � JAO G � LuO � J�J #w#!s� BJ m � BL m � BO # B '
Thetotalcurvature,alsocalledthedeviationfrom flatness,9 , is therootsumof squaresof
thetwo principalcurvatures,which is theEuclideannormof thematrix R .

Notice,thesemeasuresexist ateverypointin
�

, andateachpointthey describethegeome-
try of theparticularisosurfacethatpassesthroughthatpoint. All of thesequantitiescanbe
computedonadiscretevolumeusingfinite differences,asdescribedin successivesections.

4 Deformable Surfaces

This sectionbegins with mathematicsfor describingsurfacedeformationson parametric
models. The result is an evolution equationfor a surface. Eachof the termsin this evo-
lution equationcanbere-expressedin a way that is independentof the parameterization.
Finally, theevolution equationfor a parametricsurfacegives riseto anevolution equation
(differentialequation)onavolume,whichencodestheshapeof thatsurfaceasa level set.

4.1 SurfaceDeformation

A regularsurface� �}� 	�� is acollectionof points in 3D thatcanbeberepresentedlocally
asa continuousfunction. In geometricmodeling a surfaceis typically representedasa
two-parameterobjectin a three-dimensional space,i.e.,asurfaceis localamapping~ :~ �t� 5 ���� � 	 �� � 
������� � (10)



where
� 5 ��� 	 B , and the bold notation refers specifically to a parameterizedsurface

(vector-valuedfunction). A deformablesurfaceexhibits somemotion over time. Thus~���~ ! �����{�u� # , where � ) � 	8� . We assumesecond-order-continuous,orientablesurfaces;
thereforeateverypointonthesurface(andin time)thereissurfacenormal � �l� ! �7�A�C�w� # .
Weuse�?� to referto theentiresetof pointson thesurface.

Localdeformationsof ~ canbedescribedby anevolutionequation,i.e.,adifferentialequa-
tion on ~ that incorporatesthe position of the surface,local andglobal shapeproperties,
andresponsesto otherforcing functions. Thatis,� ~� � �l� ! ~ � ~�� � ~�� � ~M��� � ~M�t� � ~��r� ��'j'j' # � (11)

wherethe subscriptsrepresentpartial derivativeswith respectto thoseparameters.The
evolutionof ~ canbedescribedby asumof termsthatdependsonboththegeometryof ~
andtheinfluenceof otherfunctionsor data.

Thereare a variety of differential expressions that can be combinedfor different appli-
cations. For instance,the model could move in responseto somedirectional“forcing”
function[8, 9], � �z���� � 	 �

, thatis � ~� � �l� ! ~�# ' (12)

Alternatively, the surfacecould expandandcontractwith a spatially-varying speed.For
instance, � ~� � �l� ! ~8#u� (13)

where � ��� 	��a�� � 	
is a signedspeedfunction. Theevolution might alsodependon the

surfacegeometryitself. For instance,� ~� � �|~���� m ~8�s� (14)

describesasurfacethatmoves in way thatis becomesmoresmoothwith respectto its own
parameterization.Thismotioncanbecombinedwith themotion of Equation12to produce
amodelthatis pushedby aforcingfunctionbut maintainsacertainsmoothnessin its shape
andparameterization.Therearemyriadtermsthatdependonboththedifferentialgeometry
of thesurfaceandoutside forcesor functionsto controltheevolution of a surface.



Figure2: Level-setmodelsrepresentcurvesandsurfacesimplicitly usinggreyscaleimages:
a) anellipse is representedasthelevel setof an image,b) to changetheshapewe modify
thegreyscalevaluesof theimage.

5 Deformation: The Level SetApproach

Themethodof level-sets,proposedby OsherandSethian[10] anddescribedextensively in
[11], providesthemathematicalandnumericalmechanismsfor computingsurfacedefor-
mationsastime-varyingiso-valuesof

�
by solvingapartialdifferentialequationonthe3D

grid. That is, the level-set formulationprovidesa setof numericalmethods thatdescribe
how to manipulatethegreyscalevaluesin a volume,sothattheisosurfacesof

�
move in a

prescribedmanner(shown in Figure2).

We denotethemovementof a point on a surfaceasit deformsas ���=�h� � , andwe assume
that this motion canbeexpressedin termsof theposition of ��) � andthegeometryof
thesurfaceat thatpoint. In this case,therearegenerallytwo optionsfor representingsuch
surfacemovementsimplicitly:

Static: A single,static
�<! �=# containsa family of level setscorrespondingto surfacesas

differenttimes � . Thatis,�<! � ! � #u#$� � ! � #�� ; �<! �=#"� � �� � � � ! � #� � ' (15)



To solve this staticmethodrequiresconstructing a
�

thatsatisfiesequation15. This
is aboundaryvalueproblem,whichcanbesolvedsomewhatefficiently startingwith
a singlesurfaceusingthefastmarchingmethodof Sethian[12]. This representation
hassomesignificantlimitations,however, because(by definition) a surfacecannot
passbackover itself over time,i.e.,motionsmustbestrictly monotonic — inwardor
outward.

Dynamic: The approachis to usea one-parameterfamily of embeddings,i.e.,
�"! � �w� #

changesover time, � remainson the � level setof
�

as it moves, and � remains
constant.Thebehavior of

�
is obtainedby settingthetotalderivativeof

�<! � ! � # �w� #$�� to zero.Thus, �"! � ! � # �u� #=� � � � �� � ��G ; � � ���� � ' (16)

Thisapproachcanaccommodatemodelsthatmoveforwardandbackwardandcross
backover their own paths(over time). However, to solve this requiressolving the
initial valueproblem(usingfinite forward differences)on

�<! � �w� # — a potentially
largecomputationalburden.Theremainderof thisdiscussionfocusesonthedynamic
case,becauseof its superiorflexibili ty.

All surfacemovementsdependon position andgeometry, and the level-set geometryis
expressedin termsof the differentialstructureof

�
. Thereforethe dynamicformulation

from equation16givesageneralform of thepartialdifferentialequationon
�
:� �� � ��G ; � � ���� � ��G ; � ��� ! � ��� � ��� B � �j'j'j' # � (17)

where 9�� � is thesetof order- � derivativesof
�

evaluatedat � . Becausethis relationship
appliesto every level-setof

�
, i.e. all valuesof � , this equationcanbeappliedto all of

�
,

andthereforethemovementsof all thelevel-set surfacesembeddedin
�

canbecalculated
from Equation17.

Thelevel-setrepresentationhasanumberof practicalandtheoreticaladvantagesovercon-
ventional surfacemodels,especiallyin thecontext of deformationandsegmentation. First,
level-setmodelsaretopologically flexible, they caneasilyrepresentcomplicatedsurface
shapesthatcan,in turn, form holes,split to form multiple objects,or mergewith otherob-
jectsto form asinglestructure.Thesemodelscanincorporatemany (milli ons)of degreesof
freedom,andthereforethey canaccommodatecomplex shapes.Indeed,theshapesformed
by thelevel setsof

�
arerestrictedonly by theresolutionof thesampling. Thus,thereis no

needto reparameterizethemodelasit undergoessignificantdeformations.

Suchlevel-set methodsarewell documentedin theliterature[10, 13] for applicationssuch
ascomputational physics[14], imageprocessing[15, 16], computervision [17, 18], medi-
cal imageanalysis[19, 18], and3D reconstruction[20, 21]. For instance,in computational



physics level-setmethodsarea a powerful tool for modeling moving interfacesbetween
differentmaterials(seeOsherandFedkiw[14] for a niceoverview of recentresults).Ex-
amplesarewater-air andwater-oil. In suchcases,level-setmethodscanbeusedto compute
deformationsthatminimizesurfaceareawhile preservingvolumesfor materialsthatsplit
and merge in arbitraryways. The methodcanbe extendedto multiple, non-overlapping
objects.

Level-setmethodshave alsobeenshown to be effective in extractingsurfacestructures
from biological andmedicaldata. For instanceMalladi et al. [18] proposea methodin
which the level-setsform an expandingor contractingcontourwhich tendsto “cling” to
interestingfeaturesin 2D angiograms.At thesametime thecontouris alsoinfluencedby
its own curvature,andthereforeremainssmooth.Whitaker etal. [19, 22] haveshown that
level setscanbe usedto simulateconventional deformablesurfacemodels,anddemon-
stratedthisby extractingskinandtumorsfrom thick-sliced(e.g.clinical) MR data,andby
reconstructinga fetal facefrom 3D ultrasound.A varietyof authors[23, 24, 16, 25] have
presentedvariationson themethodandpresentedresultsfor 2D and3D data.Sethian[11]
givesseveralexamplesof level-set curvesandsurfacefor segmentingCT andMR data.

5.1 Deformation Modes

In thecaseof parametricsurfaces,onecanchoosefrom a varietyof differentexpressions
to constructanevolutionequationthat is appropriatefor a particularapplication.For each
of thoseparametricexpressions,thereis acorrespondingexpressionthatcanbeformulated
on
�
, thevolumein which the level-setmodelsareembedded.In constructing evolutions

on levelssets,therecanbeno referenceto theunderlyingsurfaceparameterization(terms
dependingon � and � in Equations10 through14). This hastwo importantimplications:
1) only thosesurfacemovementsthatarenormalto thesurfacearerepresented—any other
movement is equivalent to a reparameterization2) all of the derivatives with respectto
surfaceparameters� and � mustbeexpressedin termsof invariantsurfacepropertiesthat
canbederivedwithoutaparameterization.

Considertheterm ~���� m ~8�r� from equation14. If �7�A� is anorthonormalparameterization,
the effect of that term is basedpurely on surfaceshape,not on theparameterization,and
theexpression~���� m ~8�s� is twicethemeancurvature, H, of thesurface.Thecorresponding
level-setformulationis givenby Equation8.

Table1 shows a list of expressionsusedin the evolution of parameterizedsurfacesand
their equivalents for level-setrepresentations.Also given are the assumptionsaboutthe
parameterizationthatgiveriseto thelevel-setexpressions.



Effect Parametric Evolution
Level-Set
Evolution

Parameter
Assumptions

1 Externalforce � ��� ; � None

2
Expansion/
contraction

� ! �=#w� � ! �$#7� ; �"! � �w� #7� None

3
Mean

curvature   ��� m   �r� d � ; � � Orthonormal

4
Gauss

curvature   ����5   �r� y � ; � � Orthonormal

5 Secondorder   ��� or   �s� ¡ d£¢¥¤ d B G y�¦ � ; � � Principal
curvatures

Table1: A list of evolution termsfor parametricmodelshasacorrespondingexpressionon
theembedding,

�
, associatedwith thelevel-setmodels.

6 Numerical Methods

By takingthestrategy of embeddingsurfacemodelsin volumes,we have convertedequa-
tions that describethe movementof surfacepointsto nonlinear, partial differentialequa-
tionsdefinedonavolume,which is generallya rectilineargrid. Theexpression § �-X¨ ©^¨ ª refers
to the � th timestepatposition « �¬C�A� , whichhasanassociatedvaluein the3D domainof the
continuousvolume

�"! 
 - �� © ��� ª # . Thegoalis to solve thedifferentialequationconsisting of
termsfrom Table5.1on thediscretegrid § �-X¨ ©^¨ ª .
The discretization of theseequationsraisestwo important issues.First is the availability
of accurate,stablenumericalschemesfor solving theseequations.Secondis theproblem
of computational complexity andthe fact that we have converteda surfaceproblemto a
volumeproblem,increasingthe dimensionality of the domainover which the evolution
equationsmustbesolved.

Thelevel-settermsin Table1 arecombined,basedon theneedsof theapplication, to cre-
ateapartialdifferentialequationon

�"! � �w� # . Thesolutionsto theseequationsarecomputed
usingfinite differences.Along thetimeaxissolutionsareobtainedusingfinite forward dif-
ferences,beginning with aninitial model(i.e., volume) andsteppingsequentiallythrough
a seriesof discretetimessteps(which aredenotedassuperscriptson § ). Thustheupdate
equationis: § � � >-X¨ ©^¨ ª ��§ �-X¨ ©^¨ ª m�®¯�^® § �-W¨ ©^¨ ª � (18)

Theterm ® §&�-X¨ ©t¨ ª is a discreteapproximationto
� � � � � , which consistsof a weightedsum



of termssuchasthosein Table5.1.Thosetermsmust,in turn,beapproximatedusingfinite
differenceson thevolumegrid.

6.1 Up-wind Schemes

Thetermsin Table1 fall into two basiccategories:thefirst-orderterms(items1 and2 in
Table1) andthesecond-orderterms(items3 through5). Thefirst-ordertermsdescribea
moving wave front with a space-varying velocity (expression1) or speed(expression2).
Equationsof this form cannotbe solved with a simplefinite forward differencescheme.
Suchschemestendto overshoot, andthey areunstable.To addressthis issueOsherand
Sethian[26] haveproposedanup-windscheme.Theup-windmethodreliesonaone-sided
derivative thatlooksin theup-winddirectionof themoving wavefront, andtherebyavoids
theover-shootingassociatedwith finite forwarddifferences.

We denotethe typeof discretedifferenceusingsuperscriptson a differenceoperator, i.e.,°C± ��²
for forward differences,

°C±´³ ²
for backward differences,and

°
for centraldifferences.

For instance,differencesin the 
 directionon a discretegrid, § -X¨ ©t¨ ª , with domain µ and
uniformspacing¶ aredefinedas° ± ��²J § -X¨ ©^¨ ª ·� ! § - � > ¨ ©^¨ ª GK§ -X¨ ©^¨ ª #w�C¶ � (19)° ±W³ ²J § -X¨ ©^¨ ª ·� ! § -X¨ ©^¨ ª GI§ - ³ > ¨ ©^¨ ª #w�C¶ � and (20)° J § -X¨ ©^¨ ª ·� ! § - � > ¨ ©^¨ ª GK§ - ³ > ¨ ©^¨ ª #w� ! 1C¶&# � (21)

(22)

wherewe have left off thetime superscriptfor conciseness.Second-ordertermsarecom-
putedusingthetightest-fittingcentraldifferenceoperators.For example,° J�J § -X¨ ©^¨ ª ·� ! § - � > ¨ ©^¨ ª m § - ³ > ¨ ©^¨ ª Gv1h§ -X¨ ©^¨ ª #¸�C¶ B � (23)° OtO § -X¨ ©^¨ ª ·� ! § -X¨ ©^¨ ª � >�m § -X¨ ©^¨ ª ³ > Gv1h§ -X¨ ©^¨ ª #¸�C¶ B � and (24)° J�L § -X¨ ©^¨ ª ·� ° J ° L § -X¨ ©^¨ ª (25)

The discreteapproximation to the first-order termsof in Table 5.1 are computedusing
the up-wind proposedby OsherandSethian[10]. This strategy avoids overshooting by
approximating the gradientof

�
usinga one-sideddifferencesin the directionthat is up-

wind of the moving level-set therebyensuringthat no new contoursare createdin the
processof updating § �-X¨ ©^¨ ª (asdepictedin Figure3). The schemeis separablealongeach
axis(i.e., 
 ,  , and � ).
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Figure3: Theup-windnumericalschemeusesone-sidedderivativesto preventovershoot-
ing andthecreationof new level sets.

ConsiderTerm1 in Table5.1. If weusesuperscriptsto denotethevectorcomponents,i.e.,� ! 
������� #$� !º¹ ± J ² ! 
������� # � ¹ ± L ² ! 
������� # � ¹ ± O ² ! 
������� #w# � (26)

theup-windcalculationfor agrid point §»�-X¨ ©^¨ ª is

� ! 
 - �� - ��� - #"� ; �"! 
 - �� © ��� ª �w� #$¼ ½¾u¿2À J ¨ L ¨ OwÁ ¹ ± ¾ ² ! 
 - �� - ��� - #<Â ° �¾ § �-X¨ ©^¨ ª ¹ ± ¾ ² ! 
 - �� - ��� - #ÄÃÅk° -¾ §��-X¨ ©^¨ ª ¹ ± ¾ ² ! 
 - �� - ��� - #ÄÆÅk
(27)

Thetimestepsarelimited—thefastestmovingwave front canmoveonly onegrid unit per
iteration.Thatis ®¯� �*Ç 0+ ¾^¿7À J ¨ L ¨ OuÁzÈwÉ¸Ê -X¨ ©t¨ ª ¿�Ë ��� ; ¹ ± ¾ ² ! 
 - �� © ��� ª #7� % ' (28)

For Term 2 in Table5.1 the directionof the moving surfacedependson the normal,and
thereforethesameup-windstrategy is appliedin a slightly differentform.� ! 
 - �� © ��� ª #7� ; �"! 
 - �� © ��� ª �w� #2�h¼½¾^¿7À J ¨ L ¨ OuÁ � ! 
 - �� - ��� - #<ÂVÌÎÍ7Ï B ! ° �¾ §��-X¨ ©^¨ ª � k{# m ÌÑÐWÒ B ! °{³¾ §&�-W¨ ©^¨ ª � k{#Ó� ! 
 - �� - ��� - #ÔÃ}kÌÑÐWÒ B ! ° �¾ §&�-W¨ ©^¨ ª � k{# m ÌÎÍ�Ï B ! °{³¾ §&�-W¨ ©^¨ ª � k{#Ó� !ÖÕ # ! 
 - �� - ��� - #ÄÆ}k(29)

Thetimestepsare,again,limitedby thefastestmoving wave front:®¯�^× Ç 0D ÈwÉzÊ -X¨ ©^¨ ª ¿ØË ��� ; � ! 
 - �� © ��� ª #2� % (30)



To computeapproximation theupdateto thesecond-ordertermsin Table5.1requiresonly
centraldifferences. Thus,themeancurvatureis approximatedas:d �-X¨ ©^¨ ª � 01ÚÙ ¡ ° J § �-X¨ ©^¨ ª ¦ B m ¡ ° L § �-X¨ ©t¨ ª ¦ B m ¡ ° O § �-X¨ ©^¨ ª ¦ B�Û ³ >�Ü Ù ¡ ° L § �-X¨ ©^¨ ª ¦ B m ¡ ° O § �-W¨ ©^¨ ª ¦ B�Û ° J�J § �-X¨ ©^¨ ª(31)m Ù ¡ ° O § �-X¨ ©^¨ ª ¦ B m ¡ ° J § �-X¨ ©^¨ ª ¦ B Û ° LuL § �-X¨ ©^¨ ª m Ù ¡ ° J § �-W¨ ©^¨ ª ¦ B m ¡ ° L § �-X¨ ©^¨ ª ¦ B Û ° OtO § �-X¨ ©^¨ ªG 1 ° J § �-X¨ ©t¨ ª ° L § �-W¨ ©^¨ ª ° J�L § �-X¨ ©^¨ ª Gv1 ° L § �-X¨ ©^¨ ª ° O § �-X¨ ©^¨ ª ° LwO § �-X¨ ©^¨ ª Gv1 ° O § �-X¨ ©t¨ ª ° J § �-X¨ ©^¨ ª ° OtJ § �-W¨ ©^¨ ª�Ý
Suchcurvaturetermscanbecomputing by usinga combination of forwardandbackward
differencesasdescribedin [27]. In somecasesthis is advantageous—but the detailsare
beyondthescopeof thispaper.

Thetimestepsarelimited, for stability, to®¯�^Þ Ç 0ß ' (32)

Whencombiningterms,themaximum time stepsfor eachtermsis scaledby oneover the
weightingcoefficient for thatterm.

6.2 Narr ow-Band Methods

If oneis interestedin only a singlelevel set, the formulationdescribedpreviously is not
efficient. This is becausesolutionsareusuallycomputedover theentiredomainof

�
. The

solutions,
�<! 
�������z�u� # describetheevolution of anembeddedfamilyof contours.While this

densefamily of solutionsmight be advantageousfor certainapplications,thereareother
applicationsthat requireonly a singlesurfacemodel. In suchapplicationsthecalculation
of solutionsover adensefield is anunnecessarycomputationalburden,andthepresenceof
contourfamiliescanbea nuisancebecausefurtherprocessingmightberequiredto extract
thelevel setthatis of interest.

Fortunately, theevolutionof asinglelevel set,
�"! � �w� #à� � , is notaffectedby thechoiceof

embedding.Theevolution of thelevel setsis suchthatthey evolveindependently(to within
theerrorintroducedby thediscretegrid). Furthermore,theevolution of

�
is importantonly

in thevicinity of that level set.Thus,oneshouldperformcalculationsfor theevolution of�
only in a neighborhoodof thesurface �l�á���â� �"! �$#M� ��% . In thediscretesetting,there

is a particularsubsetof grid pointswhosevaluescontrola particularlevel set(seeFigure
4). Of course,asthesurfacemoves, thatsubsetof grid pointsmustchangeto accountfor
its new position.



Figure4: A level curve of a 2D scalarfield passesthrougha finite setof cells. Only those
grid pointsnearestto thelevel curvearerelevantto theevolution of thatcurve.

Adalsteinson andSethian[28] proposea narrow-bandapproachwhich follows this line of
reasoning.Thenarrow-bandtechniqueconstructsanembeddingof theevolving curve or
surfacevia asigneddistancetransform.Thedistancetransformis truncated,i.e, computed
overafinite width of only ã pointsthatlie within aspecifieddistanceto thelevel set.The
remainingpointsaresetto constantvaluesto indicatethatthey donot lie within thenarrow
band,or tubeasthey call it. Theevolution of thesurface(they demonstrateit for curves
in theplane)is computedby calculatingthe evolution of § only on the setof grid points
thatarewithin a fixeddistanceto the initial level set,i.e. within thenarrow band. When
theevolving level setapproachestheedgeof theband(seeFigure5), they calculatea new
distancetransformandanew embedding,andthey repeattheprocess.Thisalgorithmrelies
on thefactthattheembeddingis nota critical aspectof theevolution of thelevel set.That
is, theembedding canbetransformedor recomputedat any point in time, so long assuch
a transformationdoesnotchangethepositionof the � th level set,andtheevolution will be
unaffectedby thischangein theembedding.

Despitethe improvementsin computation time, thenarrow-bandapproachis not optimal
for severalreasons.First it requiresabandof significantwidth ( ãä��071 in theexamplesof
[28]) whereonewould like to haveabandthatis only aswideasnecessaryto calculatethe
derivativesof § nearthe level set(e.g. ãå�á1 ). Thewider bandis necessarybecausethe
narrow-bandalgorithmtradesoff two competingcomputational costs.Oneis the costof
stopping theevolution andcomputing theposition of thecurve anddistancetransform(to
sub-cellaccuracy) anddeterminingthedomainof theband.Theotheris thecostof com-
putingtheevolution processover theentireband.Thenarrow-bandmethodalsorequires
additionaltechniques,suchassmoothing, to maintainthestability at theboundariesof the
band,wheresomegrid pointsareundergoingtheevolution andnearbyneighborsarestatic.
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Figure5: Thenarrow bandschemelimits computationto thevicinity of thespecificlevel
set. As the level-setmovesneartheedgeof thebandtheprocessis stoppedandtheband
recomputed.



6.3 The Sparse-FieldMethod

Thebasicpremiseof thenarrow bandalgorithmis thatcomputingthedistancetransform
is socostly that it cannotbedoneat every iterationof theevolution process.Thestrategy
proposedhereis to usean approximation to thedistancetransformthatmakesit feasible
to recomputetheneighborhoodof the level-setmodelat eachtime step. Computation of
the evolution equationis computedon a bandof grid points that is only on point wide.
Theembeddingis extendedfrom theactive pointsto a neighborhood aroundthosepoints
that is preciselythewidth neededat eachtime. This extensionis donevia a fastdistance
transformapproximation.

This approachhasseveral advantages.First, the algorithm doespreciselythe numberof
calculationsneededto compute the next position of the level curve. It doesnot require
explicitly recalculatingthe positionsof level setsandtheir distancetransforms.Because
thenumberof pointsbeingcomputedis sosmall, it is feasibleto usea linked-list to keep
track of them. Thus,at eachiteration the algorithmvisits only thosepointsadjacentto
the � -level curve. For large3D datasets,thevery processof incrementinga counterand
checkingthestatusof all of thegrid pointsis prohibitive.

Thesparse-fieldalgorithmis analogousto alocomotiveenginethatlaysdown tracksbefore
it andpicksthemup from behind.In this way thenumberof computationsincreaseswith
thesurfaceareaof themodelratherthantheresolutionof theembedding.Also, thesparse-
field approachidentifiesasinglelevel setwith aspecificsetof pointswhosevaluescontrol
thepositionof thatlevel set.Thisallowsoneto computeexternalforcesto anaccuracy that
is betterthanthe grid spacingof the model,resultingin a modelingsystemthat is more
accuratefor variouskindsof “modelfitting” applications.

Thesparse-fieldalgorithmtakesadvantageof thefactthata � -level surface,  , of adiscrete
image § (of any dimension) hasa setof cells throughwhich it passes,asshown in Figure
4. Thesetof grid pointsadjacentto thelevel setis calledtheactiveset, andtheindividual
elementsof this setarecalledactivepoints. As a first-orderapproximation,the distance
of thelevel setfrom thecenterof any activepoint is proportional to thevalueof § divided
the gradientmagnitudeat that point. Becauseall of the derivatives(up to secondorder)
in this approacharecomputed usingnearestneighbordifferences,only the active points
andtheir neighborsarerelevant to the evolution of the level-setat any particulartime in
the evolution process.The strategy is to computethe evolution given by equation17 on
the active set and then updateneighborhoodaroundthe active set usinga fast distance
transform.Becauseactivepointsmustbeadjacentto thelevel-setmodel,theirpositions lie
within a fixeddistanceto themodel. Thereforethevaluesof § for locationsin theactive
setmustlie within acertainrange.Whenactive-point valuesmoveoutof thisactiverange



they arenolongeradjacentto themodel.They mustberemovedfrom thesetandothergrid
points,thosewhosevaluesaremoving into the active range,mustbe addedto take their
place.Thepreciseorderingandexecutionof theseoperationsis importantto theoperation
of thealgorithm.

The valuesof the points in the active setcanbe updatedusing the up-wind schemefor
first-ordertermsandcentraldifferencesfor the mean-curvatureflow, asdescribedin the
previous sections. In order to maintainstability, onemustupdatethe neighborhoodsof
active grid pointsin a way thatallows grid pointsto enterandleave theactive setwithout
thosechangesin statusaffecting their values. Grid pointsshould be removed from the
activesetwhenthey areno longerthenearestgrid point to thezerocrossing.If weassume
that the embedding§ is a discreteapproximation to the distancetransformof the model,
thenthedistanceof a particulargrid point, 
oæ � ! « �¬C�A� # , to the level setis given by the
valueof § at thatgrid point. If thedistancebetweengrid pointsis definedto beunity, then
weshouldremoveapointfrom theactivesetwhenthevalueof § atthatpointnolongerlies
in theinterval HçG >B � >B P (seeFigure6). If theneighborsof thatpointmaintaintheir distance
of 1, thenthoseneighborswill move into theactive rangejust 
�æ is readyto beremoved.

Thereare two operationsthat aresignificantto the evolution of the active set. First, the
valuesof § at activepointschangefrom oneiterationto thenext. Second,asthevaluesof
active pointspassout of theactive rangethey areremoved from the active setandother,
neighboringgrid pointsareaddedto the active setto take their place. In [21] the author
givessomeformaldefinitionsof activesetsandtheoperationsthataffect them,whichshow
thatactive setswill alwaysform a boundarybetweenpositive andnegative regionsin the
image,evenascontrolof thelevel setpassesfrom onesetoff activepointsto another.

Becausegrid pointsthatareneartheactivesetarekeptat afixedvaluedifferencefrom the
activepoints,activepointsserve to controlthebehavior of non-activegrid pointsto which
they areadjacent.Theneighborhoodsof theactive setaredefinedin layers, è � >@�j'j'j' è ��é
and è ³ >@�j'j'j' è ³ é , wherethe « indicatesthedistance(city block distance)from thenearest
active grid point, and negative numbersare usedfor the outsidelayers. For notational
conveniencetheactivesetis denotedè=ê .
Thenumberof layersshouldcoincidewith thesizeof thefootprint or neighborhoodused
to calculatederivatives.In thisway, theinside andoutsidegrid pointsundergonochanges
in their valuesthataffector distorttheevolutionof thezeroset.Mostof thelevel-setwork
relieson surfacenormalsandcurvature,which requireonly second-orderderivativesof

�
.

Second-orderderivativesarecalculatedusinga DÎ5ëDÑ5ìD kernel(city-block distance2 to
thecorners).Thereforeonly five layersarenecessary(2 inside layers,2 outsidelayers,and
theactiveset).Theselayersaredenotedè > , è B , è ³ > , è ³ B , and èàê .
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Figure6: Thestatusof grid pointsandtheirvaluesat two differentpointsin timeshow that
asthezerocrossingmoves,activity is passedonegrid point to another.

Theactive sethasgrid point valuesin the range HçG >B � >B P . Thevaluesof thegrid pointsin
eachneighborhoodlayerarekept1 unit from thenext layerclosestto theactive set(asin
Figure6). Thusthevaluesof layer è - fall in theinterval H « G >B � « m >B P . For 1 F m 0 layers,
the valuesof the grid points that are totally insideandoutside are

F m >B and G F G >B ,
respectively. The procedurefor updatingthe imageand the active setbasedon surface
movementsis asfollows:

1. For eachactivegrid point, 
&æ � ! « �¬C�A� # , do thefollowing:

(a) Calculatethelocalgeometryof thelevel set.

(b) Computethenetchangeof § J < , basedontheinternalandexternalforces,using
somestable(e.g.,up-wind)numericalschemewherenecessary.

2. For eachactivegrid point 
 © addthechangeto thegrid pointvalueanddecideif the
new value §&� � >J < falls outsidethe HõG >B � >B P interval. If so,put 
�æ on lists of grid points
thatarechangingstatus,calledthestatus list;   > or   ³ > , for §�� � >J < Ã|0 or §�� � >J < Æ|G�0 ,
respectively.

3. Visit thegrid pointsin thelayersè - in theorder «<� ¢ 0 �j'j'j' ¢ F , andupdatethegrid
pointvaluesbasedon thevalues(by addingor subtractingoneunit) of thenext inner
layer, è ->= > . If morethanone è ->= > neighborexiststhenusetheneighborthatindicates
a level curve closestto thatgrid point, i.e., usethemaximumfor theoutside layers
andminimumfor theinside layers.If a grid point in layer è - hasno è ->= > neighbors,
thenit getsdemotedto è ->? > , thenext level away from theactiveset.

4. For eachstatuslist   ? >A�   ? Bj�j'�'j'��   ? é do thefollowing:
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Figure7: Linked-listdatastructuresprovideefficientaccessto thosegrid pointswith values
andstatusthatmustbeupdated.

(a) For eachelement
 © on thestatuslist   - , remove 
 © from thelist è ->= > , andadd
it to the è - list, or, in thecaseof «<� ¢ ! F m 07# , remove it from all lists.

(b) Add all è ->= > neighborsto the   ->? > list.

This algorithmcanbe implementedefficiently usinglinked-list datastructurescombined
with arraysto storethe valuesof the grid points and their statesas shown in Figure 7.
This requiresonly thosegrid pointswhosevaluesarechanging,theactivepoints andtheir
neighbors,tobevisitedateachtimestep.ThecomputationtimegrowsasãN� ³ > , whereã is
thenumberof grid pointsalongonedimensionof § (sometimescalledtheresolution of the
discretesampling). Computation timefor dense-fieldapproachincreasesas ã � . The ã6� ³ >
growth in computation time for the sparse-fieldmodelsis consistentwith conventional
(parameterized)models,for which computation timesincreasewith the resolution of the
domain,ratherthantherange.

Anotherimportantaspectof theperformanceof thesparse-fieldalgorithmis thelargertime
stepsthatarepossible.Thetimestepsarelimited by thespeedof the“f astest”moving level
curve, i.e., themaximumof theforcefunction.Becausethesparse-fieldmethodcalculates
themovementof level setsover a subsetof theimage,time stepsareboundedfrom below
by thoseof thedense-fieldcase,i.e.,ÈuÉ¸ÊJ ¿¾½À¿ Ë !�Á»! 
 #w# Ç ÈwÉzÊJ ¿ØË !�Á�! 
 #w# � (33)



where
Á»! 
 # is thespacevaryingspeedfunctionand Â is theactiveset.

Resultsfrom previouswork [21] havedemonstratedseveralimportantaspectsof thesparse-
field algorithm.First, themanipulationsof theactive setandsurrounding layersallow the
active setto “track” thedeformablesurfaceasit moves. Theactive setalwaysdividesthe
insideandoutsideof theobjectsit describes(i.e., it staysclosed).Empirical resultsshow
significantincreasesin performancerelative to both the computation of full domainand
thenarrow-bandmethod,asproposedin theliterature.Empirical resultsalsoshow thatthe
sparse-fieldmethodis aboutasaccurateasboththefull, discretesolution, andthenarrow-
bandmethod. Finally, becausethe methodpositions level setsto sub-voxel accuracy it
avoidsaliasingproblemsandis moreaccuratethentheseothermethodswhenit comesto
fitting level-setmodelsto othersurfaces.Thissub-voxel accuracy is importantaspectof the
implementation,andwill significantlyimpactthequalityof theresultsfor theapplications
thatfollow.

7 Applications

Thissectiondescribesseveralexamplesof how level-setsurfacemodelscanbeusedto ad-
dressproblemsin graphics,visualization,andcomputervision. Theseexamplesareasmall
selectionof thoseavailablein theliterature.All of theseexampleswhereimplementedus-
ing the sparse-fieldalgorithmandthe VISPack library, which is describedin the section
thatfollows.

7.1 SurfaceMor phing

This sectionsummarizesthe work of [29], which describesthe useof level-setsurface
modelsto perform3D shapemetamorphosis. Themorphingof 3D surfacesis theprocess
of constructingaseriesof 3D modelsthatconstitute asmooth transition from oneshapeto
another(i.e.,ahomotopy). Suchacapabilityis interestingfor creatinganimationsandasa
tool for geometricmodeling. Thereis not yet a single,generalmethodfor generatingsuch
transitional shapes.However, thereareseveral desirableaspectsof morphing algorithms
thatallow usto comparetheadequacy of differentapproachesto surfacemorphing.Several
desirablepropertiesof 3D surfacemorphingare:

1. The transitionprocessshouldbegin with an initial surfaceandendwith a specified
targetsurface.



2. Themorphing algorithmshouldapplyto awide rangeof shapesandtopologies.

3. Intermediatesurfacesshouldundergo continuous3D transitions(ratherthanconti-
nuity only in theimagespace).

4. A 3D morphingalgorithmshouldincorporateuserinput easilybut shoulddegrade
gracefullywithout it.

5. Transitional shapesshoulddependonly on the surfacegeometryof the two input
shapesanduserinput.

Theserequirementsarenot exhaustive, but they capturemany of the practicalaspectsof
3D morphing.

In thissectionweshow how level-setmodelsprovideanalgorithmfor 3D morphingwhich
meetsmostof thesecriteriaandcomparefavorablywith existing algorithms. Furthermore,
this algorithmis a naturalextensionof themathematicalprinciplesdiscussedin previous
sections.Thestrategy is to allow a free-formdeformationof onesurface(calledthe initial
surface)usingthesigneddistancetransformof a secondsurface(the target surface).This
free-formdeformationis combinedwith anunderlyingcoordinatetransformationthatgives
eithera roughglobalalignmentof thetwo surfaces,or one-to-onerelationships betweena
finite setof landmarksonboththeinitial andtargetsurfaces.Thecoordinatetransformation
canbecomputedautomaticallyor usinguserinput (asin [30]).

Much of the previous 3D morphing work hasfocusedon morphingparametricmodels
[31, 32] andappliesto only very limited classesof shapesandtopologies.Severalauthors
havedescribedvolumetrictechniques.Hughes[33] demonstrateshow volumescanprovide
topological flexibili ty in surfacemorphing.Lerioset al. [30] followedup with a volume-
basedschemewhich incorporatesuserinput via underlyingcoordinatetransformations(a
known generalizationtheimagewarpingtechniquethatis oftenusedin imagemorphing).
Neitherof theseapproacheshave dealtwith the deeperissueof deformingthe level sets
of a volume, but ratherrely on the propertiesof the embedding. Payneand Toga [34]
aswell asCohen-Or et al. [35] fix the embeddingproblemby usinga signeddistance
transformto createvolumesfrom surfaces.However, interpolatingdistancetransformscan
introduceartifactsthatviolatethepreviously statedproperties,andbothof thesemethods
useadiscretedistancetransformwhich introducesvolumealiasing.



7.1.1 Free-Form Deformations

The distancetransformgives the nearestEuclideandistanceto a setof points, curve, or
surface.For closedsurfacesin 3D, thesigneddistancetransformgivesa positive distance
for points insideandnegative for pointsoutside (onecanalsochoosethe oppositesign
convention).

If two connectedshapesoverlapthenthe initial surfacecanexpandor contractusingthe
distancetransformof thetarget. Thesteadystateof sucha deformationprocessis a shape
consisting of thezerosetof thedistancetransformof thetarget. That is, the initial object
becomesthetarget.This is thebasisof theproposed3D morphingalgorithm.

Let 9 ! �$# bethesigneddistancetransformof thetargetsurface,Ã , andlet Ä betheinitial
surface.Theevolution processwhich takesamodel   from Ä to Ã is definedby� �� � �|� 9 ! �$# � (34)

where � ! � #.)|��� and ���)Å¸ê6�ÆÄ . The free-formdeformationscanbe combinedwith an
underlyingcoordinatetransformation.The strategy is to usea coordinatetransformation
(for instancea translationandrotation)to position thetwo surfacesneareachother. These
transformationscancapturegrosssimilarities in shapeaswell asuserinput. A coordinate
transformationis given by �ÈÇz� b ! � � / # � (35)

where k Ç / Ç 0 parameterizesa continuousfamily of thesetransformationsthatbegins
with identity, i.e. �I� b ! � � k{# . Theevolution equationfor aparametricsurfaceis� �� � �l� 9 ! b ! � � 02#w# � (36)

andthecorrespondinglevel-setequationis�ÊÉ ! � �w� #� � �á� ; É ! � �w� #2��9 ! b ! � � 07#w# ' (37)

This processproducesa seriesof transitionshapes(parameterizedby � ). The coordinate
transformationcanbe a global rotation,translation,or scaling,or it might be a warping
of theunderlying3D spaceaswasusedby [30]. Incorporatinguserinput is important for
any surfacemorphingtechnique,becausein many casesfinding the bestsetof transition
surfacesdependson context. Only userscanapply semanticconsiderations to the trans-
formationof oneobject to another. However, this underlyingcoordinatetransformation



Figure8: A 3D modelof a jet thatwasbuilt usingClockworks,aCSGmodelingsystem.

can,in general,achieveonly somefinite similarity betweenthe“warped”initial modeland
the target,andeventhis mayrequirea greatdealof userinput. In theevent thata useris
not ableor willin g to defineevery importantcorrespondencebetweentwo objects,some
othermethodmust“fill in” the gapsremainingbetweenthe initial andtarget surface. In
[30] they proposealphablendingto achieve that smoothtransition—really just a fading
from onesurfaceto the other. We areproposingthe useof the free-formdeformations,
implementedwith level-setmodels,to achieve a continuoustransitionbetweentheshapes
thatresultfrom theunderlyingcoordinatetransformation.Wehavealsoexperimentedwith
waysof automaticallyorientingandscalingobjects,using3D moments,in orderto achieve
asignificantcorrespondencebetweentwo objects.

Figure8 showsa3D modelof a jet thatwasbuilt usingClockworks[36], aCSGmodeling
system.Lerioset al. [30] demonstratethe transitionof a jet to a dart,which wasaccom-
plishedusing37user-definedcorrespondences,roughlyahundreduser-definedparameters.
Figure9 shows theuseof level-setmodelsto constructasetof transition surfacesbetween
ajet andadart.Thetrianglemeshis extractedfrom thevolumeusingthemethodof march-
ing cubes[5]. Theseresultsareobtainedwithout any userinput. Distancetransformson
the CSGmodelsarecomputednearthe level surfaceusingan analyticaldescriptionand
extendedinto thevolumeusinga level-setmethod[37].

Theapplicationin this sectionshows how level-setmodelsmoving accordingto thefirst-
ordertermgivenin expression2 in Table1 can“fit” otherobjectsby moving with a speed
thatdependson thesigneddistancetransformof the targetobject. Theapplicationin the
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Figure9: Thedeformationof thejet to a dartusinga level-setmodelmoving with a speed
definedby thesigneddistancetransformof thetargetobject.



next sectionrelieson expression5 of Table1, a second-orderflow that dependson the
principalcurvaturesof thesurfaceitself.

7.2 Filleting and Blending Solid Objects

The construction of blendingsurfacesis an important tool in solid modeling. Geometric
solidprimitivesandtheir intersectionsoftenproducesharpcornersor creasesthatareoften
not consistentwith thereal-world objectsthatthey areintendedto represent.This section
showshow blendingcanbedescribedasadeformationprocess,wheresurfacesmoveunder
ageometricflow thatcanaddor removematerialbasedonlocalcurvatureinformation.The
resultis a methodfor solid objectblendingthatdoesnot dependon any particularmodel
representation.Thusthismethodis notrestrictedto aspecificclassof shapesor topologies.
Additionally, theresultsareinvariant; they donotdependonarbitrarychoicesof coordinate
systemsor bases.Theonly requirementis thattheblendedobjectsmustbeclosedsurfaces
with someknown inside-outsidefunction.

Surfaceblendingtechniquesaretypically tiedverycloselyto thechoiceof geometricprimi-
tives. For instance,MiddleditchandSears[38] proposeaset-theoreticmethodfor blending
solidswhich relieson low-orderalgebraicprimitives. A fillet at the joint of two tori re-
quiresthe solution of a degree32 polynomial. BloomenthalandShoemake [39] propose
a modelingsystembasedon convolutions, which relieson a skeletonizedrepresentation
of objects. In generalthe useof convolution to achieve deformationson implicit shapes
resultsin shapesthatreflect boththeshapeof themodelandtheembedding,

É
.

Theblendingmethodproposedin this sectionimplements aninterativesmoothingscheme
that smoothsonly along the level set; the final result is independentof the embedding.
Considerthecaseof fillets. We proposethata fillet canbeconstructedfrom a processof
“filling in” materialin placesof high curvature.Thecurvatureof a level-setmodelcanbe
calculatedfrom theembedding, andthedeformationof thelevel setis well definedby the
curvaturetermsin Table1.

Thestrategy is to constructa curvatureterm, �ÌË , thatconsists of only positive curvatures.
1 Theprincipalcurvaturesof thelevel setsof

É
arefunctionsof

É
andits derivatives.For

a specific
É

theprincipalcurvaturesarefunctionsof 3-space�z> ! �(# and �CB ! �=# . For adding
materialthejoint betweentwoobjects,weconsideronly thepositivecurvaturecomponents,

1The sign of curvatureis definedby the direction of the normals— in this work normals point into the
volumeenclosedby theobject.



(a) (b)

(c) (d)

Figure10: Two rectangularsolid modelsare joined by a volumetricfillet that is created
from apositivecurvatureflow.



i.e., �ÊÉ� � �á� ; É � �ÍË �£� ; É � � �> m � ; É � � �B � (38)

where � � consistsof only thepositivepartsof � andis definedaszeroelsewhere.Because
theuseof separatecurvaturetermscancauseover-shooting, theup-windscheme(treating�ÎË asaspace-varyingvelocity in thenormaldirection)is usedfor thisevolution.

Figure10showshow thepositive-curvatureflow canbeusedto constructfillets. No knowl-
edgeof the underlyingmodelsis necessary. The fillets grow larger asmoretime passes.
Thephysical extentor positionof thefillet canbecontrolledby eitherspecifyinga region
of actionor by placingasmallblobof deformablematerialin thejoint thatrequiresafillet.
Figure11 shows how sucha blendingcapabilitycanbeusefulin animation. In this casea
pair of superquadricsundergo a rigid transformation thatcontrolstheir relative positions.
Level-setmodelswith a positive-curvatureflow areusedto createa smooth joint between
thesetwo primitives. Notice that the positive curvaturemethoddoesnot suffer from the
growth or expansion artifactsthatareoftenassociatedwith distance-basedblendingmeth-
ods[40].

Thus,a second-orderflow cancreatesmooth blendsbetweenobjectsin a way that does
not requirespecificknowledgeof the shapesor topologies of the object involved. The
applicationin thenext section,3D scenereconstruction,showshow acombinationof first-
orderandsecond-ordertermsfromTable1arecombinedtocreatetechniquethatfitsmodels
to datawhile maintainingcertainsmoothnessconstraintsandtherebyoffsettingtheeffects
of noise.

7.3 3D Reconstructionfr om Multiple RangeMaps

Level-setmodelsareusefulfor problemsrelatedto 3D reconstruction.Previouswork has
presentedlevel-setresultsderived from noisy 3D datasuchasMRI [19] andultrasound
[41]. In [42] we have shown how thereconstructionof objectsfrom multiple rangemaps
canbeformulatedasaproblemof findingthesurfacethatoptimizestheposteriorprobabil-
ity given asetof measurements(noisyrangemaps)andsomeinformation aboutthea-priori
probability of differentkindsof surfaces.Thatoptimizationproblemcanbeexpressedasa
volumeintegral whichcanbesolvedwith level-setmodels.Thissectionpresentsthemath-
ematicalexpressionsthat result from thoseformulationsandpresentssomenew results:
the reconstructionof entirescenesby fitting level-setmodelsto thedatafrom a scanning
LADAR (laserranginganddetection)system.

A range mapis a collectionof rangemeasurementstakenalongdifferentdirections(lines
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Figure 11: A short animationis createdby specifyingthe relative motion betweentwo
superquadriccomponentsof anobject.A positive-curvatureflow (appliedframeby frame
to thejoint betweenthetwo 3D models)createsasmooth, flexible object.



of sight)but from asinglepointof view. Rangemapscouldcomefrom any numberof dif-
ferentsourcesincludinglaserscanners,structuredlight depthsystems,shapefrom stereo,
or shapefrom motion.We assumethatsuchrangemapsarenoisyanduncertain.Thegoal
is to combineanumberof rangemapsfrom differentpointsof view to createa3D structure
thatreflects thecollectiveconfidenceanddepthmeasures.

Several examplesin the literaturehave appliedparametricmodelsto this task. Turk and
Levoy [43], for instance,“zip” togethertrianglemeshesin orderto construct3D objects
from sequencesof rangemapsfrom a laserrangefinder. They performminor adjustments
to thesurfacepositionin orderaccountfor ambiguity in the rangemaps.Their approach
assumesvery littl e noisein the input, which is reasonablegiven the high quality of their
rangemaps.ChenandMedioni[44] useaparametric(trianglemesh)modelwhichexpands
insidea sequenceof rangemaps.CurlessandLevoy [45] describea volume-basedtech-
niquefor combiningrangedata.They usethesigneddistancetransformto encodevolume
elementswith datathat representtheaverages(with someallowancefor outliers)of mul-
tiple measurements.Surfacesof objectsarethelevel setsof volumes.Relatedapproaches
aregiven in [46, 47]. Bajaj et. al. [48] usea Delaunaytriangulationto imposea topol-
ogy on a setof unordered3D points andthenfit trivariateBernstein-Bezierpatches—i.e.
a higher-orderimplicit model—to thedata.Muraki [2] usesimplicit or blobbymodelsto
reconstructobjectsfrom rangedata. The individual blobsaresphericallysymmetric 3D
potentialsthat arecombinedlinearly so that they blendtogether. The resultingmodels,
with approximately400primitivesarequitecoarse.

This work differsfrom previouswork in two ways.First, ratherthanheuristics,our recon-
structionstrategy is basedon a strategy thatsolvesfor theoptimal surfaceestimate. This
optimalestimateincludesinformationaboutone’s expectationsof thelikelihood of differ-
entsurfaces.Theresultis nota closed-formsolution,but aniterativeprocessthatseeksto
fit a level-setmodelto thedatawhile enforcinga kind of smoothnesson thedata.

7.3.1 Objective function for multiple range maps

Theevolution equationfor theestimation of optimal surfacesis shown in [42] to consistof
two parts: � �� � ��G8� ! �(#u� mÐÏ ! �Ä# ' (39)

This first part, G8� ! �(#u� , is the dataterm, which is a movementwith variablespeed(as
in expression2 from Table1) that is thecumulative effect from all of theindividualrange
maps.Thesecondpart is theprior, which describesthelikelihood of thesurfaceindepen-



dentof thedata.Thedatatermis� ! �=#à�|½ © Ñ ± © ² ! �$#$9 ± © ² ! �=#ÓÒ ¡ 9 ± - ² ! �(# ¦ÕÔ ± © ² ! �=# � (40)

where 9 © is thesigneddistancealongtheline of sightfrom a rangemeasurementin range
map ¬ associatedpassingthrough � . The function Ò ��� 	á�� � 	

is a windowing function
that limits the penaltyof any onerangemeasurement,and Ñ ! �ñ# is a confidencefunction,
which is inverselyproportional to the level of noisein the rangemeasurementassociated
with thesameline of sight.Theterm

Ô"! �ç# is anintegrationconstantthattakesinto account
thecurvilinearcoordinatesystemof therangescanner.

Thus,asetof rangemapscreatesascalarfunctionof 3D,whichdescribesthemovementof
asurfacemodelasit seekstheoptimalsurfaceposition. In theabsenceof aprior, Ï �lk , the
zerosetof this functionis thefinal position(steadystate)of thatevolving surface.Thus,in
theabsenceof a prior, onecouldsample

Á»! �$# andobtainanapproximationto theoptimal
surfaceestimate.Thisstrategy resultsin analgorithmthatis verymuchlike thatof [45].

Thereareseveral reasonsfor going to an iterative schemefor finding optimal solutions.
First is the useof a prior. In surfacereconstruction,even a very low level of noisecan
degradethe quality of the renderedsurfacesin the final result, and in suchcasesbetter
reconstructionscanbe obtainedby introducinga prior. Secondis aliasing. DiscretizingÁ»! �$# andfinding thezerocrossingswill causealiasingin thoseplaceswherethetransition
from positive to negative is particularlysteep.A deformablemodelcanplacethesurface
muchmoreprecisely. Thethird reasonfor goingto aniterative schemeis thatdespitethe
windowing function Ò ! �$# thereis interferencebetweendifferentrangemapsat placesof
highcurvature.Thisproblemis addressedby introducinganonlinearitywhich is solvedin
aniterativeschemegiven by equation39. In thework describedin [21], thesolutionof the
linearproblem,thezerosetof

Á»! �$# , servesastheinitial estimatefor thenonlinear, iterative
optimizationstrategy that resultsfrom the inclusionof a prior anda nonlinear term that
compensatesfor lackof any explicit modelof self occlusions.

Equation39includesaprior, whichis a likelihoodfunctiononsurfaceshape.A reasonable
choiceof prior is onethatmodelsobjectswith lesssurfaceareaasmorelikely thanobjects
with moresurfacearea. Alternatively, onecould saythat given a setof surfacesthat are
nearthe data, the algorithmshouldchoosea surfacethat haslessarea. Often, but not
always,thiswill bethesmoothersurface.The Ï ! �Ä# thatresultsfrom thisprior is themean
curvature.Thereforetheevolution of thesurface,usingthelevel-set formulation, thatseeks
to maximizetheposteriorprobability (givena setof rangemapsanda prior thatpenalizes



(a) (b)

Figure12: Rangemaps:Syntheticrangedata2005 200 pixelswith 20%Gaussianwhite
noiseof a torusend(a) andside(b).

surfacearea)is�ÊÉ ! � �w� #� � �£� ; É ! �=#2� ½ ©
YZ[z9 ± © ²^! �=#ÓÒK¡�9 ± - ²u! �$# ¦ 5 Ô ± © ²^! �(# Ñ ± © ²u! �$# ¡ ; É � : ± © ² ! �$# ¦ �; É � : ± © ² ! �=# \^]_ m R d �

(41)
where: ± © ² ! �$# is theline of sightfrom arangefinderto a3D point, � , R is a freeparameter
that controlsthe level of smoothing in the model,and

d
is the expressionfor the mean

curvaturegivenin equation8.

Figure12showsapairof simulatedrangemapsconstructedfrom ananalyticaldescription
of atorus.These2005 200pixel rangemapsarecorruptedwith additiveGaussiannoisethat
hasastandarddeviationof 20%(asafunctionof thesmallerof thetwo radii). Six synthetic
noise-corruptedviewpoints of a torusarecombined to createa level-setreconstructionof
a torus. Figure13(a)shows the initial model(80 5 80 5 40 voxels)usedfor fitting a level-
setmodelsto the rangedata. Figure13(b) shows the resultof the level-setmodelsthat
uses13(a)asan initial stateandhasa valueof R equalto k '×Ö . The resultis a reasonable
reconstructionof thenoiselessmodel(Figure13(c))whichcombinesthesix pointsof view
andthesmoothing function.

Figure14(a)showsarangemaptakenwith thePerceptronmodelP5000,aninfra-red,time-
of-flight laserrangefinderwith a pan-tilt mechanism. Figure14(b)shows theamplitudes
associatedwith thereturnsignal(an intensity), and14(c)showsa surfaceplot of therange



(a) (b) (c)

Figure13: (a) An analytically-definedmodelof a torus. (b) An initial model(80 5 80 5 40
voxels)is constructedby combining six pointsof view of a torusandsolvingfor

Á»! �$#$��k .
(c) The model,which is attractedto the rangedatabut subjectto internalforces,evolves
andsettlesinto asmoothersteadystate.

map to demonstratethe degreeof noise(additive andoutliers). Figure14(d) shows the
confidencevaluesassociatedwith thoserangemeasurements.Theseconfidencevaluesare
derived from empiricaldataaboutthe level of noisein the rangefinder (which depends
on the return amplitude), and someanalysis,from first principles,about the effects of
uncertaintyin the 3D positionsof the scansandthe model— which resultsin the lower
confidenceat edgesasdescribedin [42]. We combinedtwelve suchviews from different
locationsin theroomto generatetheresultsthatfollow.

Figure15(a)showstheinitial estimatebasedonthezerocrossingsof
Á�! �$# , and15(b)shows

theresultof 32iterationswith theprior termandthecorrectionfor thesurfacenormaldirec-
tion. Thesizeof thevolumeis DCk4ka5�0 Ö k�5 023Ck voxels, andtheresolutionis 1.8cm/voxel.
Theseresultsshow theability of thestatistically-basedapproachto overcomethenoisein
thescanner, andthey show thattheinclusion of iterative, model-fittingschemehelpscreate
moreaccuratereconstructions.The resolutionof the modelfalls below thatof thescans,
becauseit waslimited by therandom-access-memoryavailableon our workstation. Some
small features,suchasthe arm restsof the chairs,arelost becauseof the inaccuraciesin
theregistrationof theindividualrangemaps.
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Figure14: (a) Oneof twelve rangemaps(b) Theassociatedamplitudemap(c) A surface
plot of therangedatato show the level of noise. (d) Theconfidencemeasuresassociated
with thoserangevalues.



Figure15: (top) The 3D reconstructionresultingfrom the zerocrossingsof
Á�! �$# gives

someaveraging,but includesnoprior. (bottom) Theresultof 32iterationswith theiterative
schemeincludestheprior andexcludesinfluencesof dataon surfacesthatfaceaway from
thescanner.



8 VISPACK

8.1 Intr oduction

VISPACK is a setof C++, object-orientedlibrariesfor imageprocessing,volumeprocess-
ing, andlevel-setsurfacemodeling. It consistsof five libraries: Matrix, Image,Volume,
Util, andVoxmodel(level-setmodeling). Theselibrariescanbeusedseparatelyor together
whencreatingapplications.

VISPACK incorporateseightbasicdesignattributes.Theseare

Data Handles/Copyon Write: VISPack is an object-orientedlibrary, andassuchwe
allow the objectsto handlememorymanagement,andrelieve the programmer(in
mostcases)from having to worry pointersand the correspondingmemoryalloca-
tion/deallocationproblems.For this we usethe datahandleswith a copyon write
protocol. Copy constructorsperforma shallow copy with referencecountinguntil a
nonconstoperationon theunderlyingbuffersforcesa deepcopy. Thusdeepcopies
areperformedonly whennecessary, but all memoryis maintainedby theobjectsand
objectsbehaveas“variables”ratherthanpointers.

Modified Data Hiding: Accessto datain objectsis generallythroughaccessmethods,
however, pointersto buffersfor fastimplementationsareavailable.

Templates: VISPackutilizesthetemplatingconstructof C++virtually throughout. Many
of theobjects,including images,volumes,lists, andarrays,areintendedto support
a wide rangeof datatypes.Thus,via templating programmerscandefinethepixels
of differentimagesof differenttypes,suchasfloatingpoint,24-bit color, and16-bit
greyscale.

Useof Standard File Formats: WhenappropriateVISPackusesstandardfile formats.
Wechooseformatsthatarewell known andhavepublicly availablelibrariesthatcan
bedistributedwith our libraries. Thematrix library usesa simpletext format. The
imagelibrary usesTIFF andFITS file formats. Becauseno standardformat exists
for saving volumesof datawedousea rawfile format.

Operator Overloading: Properuseof operatoroverloadinggivesusersa convenient
way to executeoperationson an object. When compinedwith the copy-on-write
convention, operatoroverloading allows programmersto treatmany heavy-weight
objects(e.g. imagesandvolumes)asvariables. For instance,the following code
computesnon-maximal edgesin aonafilteredvolume.



Volume<float> dx, dy, dz;
Volume<float> vol gauss = vol.gauss(0.5);
Volume<float> vol out = (((dx = vol gauss.dx()).power(2)

*vol gauss.dx(2)
+ ((dy = vol gauss.dy()).power(2)*vol gauss.dy(2)
+ ((dz = vol gauss.dz()).power(2)*vol gauss.dz(2)
+ dx*dy*(dx).dy() + dx*dz*(dx).dz())
+ dy*dz*(dy).dz()) )).zeroCrossings()

&& ((dx.power(2) + dy.power(2)) > T*T));

8.2 Level-SetSurface-Modeling Library

The Level-SetSurface-Modeling(LSSM) Library is an implementationof the level-set
technique[10, 13] specificallyfor deformingsurfacemodelsembeddedin volumes.The
implementationusesthesparse-fieldmethoddescribedin [20]. Thelibrary implementsall
of thebasicnumericalalgorithmsandhandlesall of thedatastructuresrequiredto perform
LSSM. The strategy for usingthis library is to subclassthe objectVoxModel, setsome
parameters,definea setof simplevirtual functionsthat control the deformationprocess,
initialize the model, and then direct the model to iteratively deform accordingto those
equations.This sectiondescribesthe relationship betweenthe mathematicsof previous
sectionsandtheVISPack library. Its alsopresentsanexample of usingVISPack libarary
to do3D shapemetamorphosis asdescribedin Section7.1.

8.2.1 SurfaceDeformation

TheLSSM library allows oneto solve for surfacedeformations,asa functionof time, for
generallevel-setsurfacemovementsof theform:� �� � ��/ � ! � � � ! �=#w# m R � ! � � � ! �=#w#w� ! �(# m Ô � ! �$# mÙØÛÚ ! �i> ! �$# �A�CB ! �(#u#w# � (42)

where� is apointonthesurface.Thisequationis solvedby representingthesurfaceasthe� th level setof animplicit function
�"! � �u� # �{� 	 � 5 � 	 � �� � 	

. Thisgives� �� � ��/ � ! � � ; � #w#<� ; � m R � ! � � ; � #7� ; � � m Ô � ; � � mÐØÜÚ ! 9 � ��� B � # � (43)



where � � and � B � are collectionsfirst and secondderivatives of
�
, respectively. This

equationis solvedonadiscretegrid usinganup-windschemegradientcalculations,central
differencesfor thecurvature,andforwardfinite differencesin time. TheLSSMlibrary uses
thesparse-fieldmethoddescribedin Section6.3andin [21].

Thus,theLSSM library offersthefollowing capabilities:

1. Createsaninitial model(with associatedactiveset)from avolume.

2. Calculates® §&�-W¨ ©^¨ ª and ®¯� using virtual functions(definedby subclasses)that de-
scribe � and � , andparameters(valuessetby thesubclass)/ , R ,

Ô
, and Ø .

3. Performsanupdateon thevaluesof §��-X¨ ©^¨ ª .
4. Maintainsthelist of active grid pointsandupdatesthe layers aroundthosepointsin

orderto maintainaneighborhoodfrom which to calculatesubsequentupdates.

5. Providesaccessto the volume that defines §o�-X¨ ©^¨ ª and the linked list of active grid
points.

Giventhevolumedefining§o�-X¨ ©t¨ ª , onecanthenrelyonthefunctionalityof thevolumelibrary
for subsequentprocessing,file I/O, or surfaceextraction.

8.2.2 Structureand Philosophy of the LSSM Library

Thelibrary is organized(mostly for easeof development) into a baseclass,LevelSet-
Model, anda derived class,VoxModel. The baseclassdoesall of the book keeping
associatedwith the active setandsurroundinglayers, the link lists associatedwith those
sets,andinitializing themodel. Thusit addsandremoves voxelsfrom theactive set(and
surroundinglayers)in responseto an updateoperation.The baseclassassumesthat the
subclassesknow how to updateindividual voxels. Applications arebuilt by subclassing
VoxModel andredefiningasmallsetof virtual functionsthatcontrolthemovementof the
model.

Thesubclass,VoxModel, performsupdateon thegrid pointsin theactivesetof theform
givenin Equation18,usingfunctions� and � andparameters/ , R ,

Ô
, and Ø . It alsocalcu-

latesthemaximum ®¯� thatensuresstability. Thusa userwho wishesto performa surface
deformationusingtheLSSM library, would createsubclassof VoxModel anddefinethe
appropriatevirtual functionsandsettheparametersto achieve thedesiredbehavior.



8.2.3 The LevelSetModel Object

The LevelSetModel containsa volume of values,a volume of statusflags,five lists
(oneactive list, two insidelists, andtwo outsidelists), andthreeparametersthatdetermine
theorigin of thecoordinatesystemform which themodelperformsits calculations.

There are two constructors,LevelSetModel() and LevelSetModel( const
VISVolume<float> &). Thefirst simply initializesthedatastructure,andthesecond
alsosetthevaluesof themodelvolume( values) to theinput. Oncethevalueshavebeen
set,onecancreateaninitial volume from thosevaluesby callingconstructLists(),
whichcanalsotakeafloating-pointargumentthatcontrolsthescalingof theinput relative
to a localdistancetransformnearthezeroset.

Thelist thatkeepstrackof theactiveset,called active list, keepstrackof thelocation
of thosegridpointsandasinglefloating-pointvalue,whichstoresthechangein theirvalues
from oneiterationto thenext.

Anotherimportantmethodsfor usersof this objectis update(float), which changes
the grey-scalevaluesof the grid for the active set accordingto the valuesstored in
active list, andupdatesthe statusof elementson the active list aswell asthe val-

uesandstatusof nearbylayers(2 insideand2 outside). The floating point argumentis
the valueof ®f� from Equation18, andthe returnvalueis the maximumchangethat oc-
curredon theactive set. Finally, themethoditerate() calls thevirtual methodcal-
culate change, avirtual functionwhichsetsthevaluesof ® §��-X¨ ©^¨ ª andreturnsthemax-
imum valueof ®f� for stability, andthencallsupdate. For this objectthefunctioncal-
culate change performssometrivial (i.e.,useless)operation.

8.2.4 The VoxModel Object

TheVoxModel objectis a subclassof LevelSetModel, andit addthreethings to the
baseclass.

1. calculate change() is redefinedto implement the surface deformationde-
scribedin Equation43.

2. Thevirtual functionsaredeclaredfor
¹

(calledforce) and � (calledgrow). These
functionsaredefinedto returnzerofor thisobject.



3. Theparametersthatcontroltherelative influenceof thevarioustermsarereadfrom
file by a routineload params.

4. A methodrescale(float) is defined,whichresamplesthevolumeof grid-point
valuesinto anew volumewith differentresolution andredefinesthelists(andthereby
themodel)in this new volume. This methodis for performingcoarse-to-finedefor-
mationprocedures.

8.3 Example: 3D ShapeMetamorphasis

TheMorph objectallowsoneto constructa sequenceof volumesor surfacemeshesusing
the3D shapemetamorphasis techniquedescribedin Section7.1,which wasfirst proposed
by Whitaker andBreen[20]. This techniquereliesdistancetransformsfor boththesource
andtargetobjectsandusesa LSSMsto manipulatetheshapeof thesourcesothat it coin-
cideswith thetarget.Thesurfacedeformationthatdescribesthisbehavior is� �� � ��R � ! b ! �$#w#�� ! �=# � (44)

where � ! �=# is simply thedistancetransform(or somemonotonic functionthereof)of the
target,and

b
is a coordinatetransformationthatalignsthesourceandtargetobjects.The

level-setformulationof this is � �"! � �w� #� � �¥R<� ! b ! �$#u#<� ; � � ' (45)

Themorphing processconsistsof severalsteps:

1. Readin distancetransforms(in theform of volumes)for bothsourceandtarget.

2. Initialize theLSSM by fitting it to thezerosetof thesourcedistancetransform.

3. UpdatetheLSSM accordingto Equation45.

4. Save intermediatevolumes/surfacesat regularintervals.

Theremainderof this sectionlists thecodeandcommentsfor threefiles, morph.h(which
declaresthe Morph object), morph.C(which definesthe methods) and main.C (which
performsall of theI/O andusestheMorph objectto constructasequenceof shapes.



8.4 Mor ph.h

//
// morph.h
//
//

#ifndef iris_morph_h
#define iris_morph_h

#include "voxmodel/voxmodel.h"
#include "matrix/matrix.h"

#define INIT_STATE 0
#define MORPH_STATE 1
//
// This is the morph object. It uses all of the machinery of the base
// class to manipulate level sets. It needs to have an initial volume
// and a final volume (which would typically be the distance transform,
// it might need a 3D transformation, and it needs to redefine the
// virtual function "grow", which takes 6 floats as input, the position
// followed by the normal vectors (all will calculated and passed into
// this method by the base class). It might also have a state, that
// indicates whether or not it’s been initialized.
//
// Functions not defined here should be defined in "morph.C"
//
class Morph: public VoxModel
{

protected:
VISVolume<float> _dist_source;
VISVolume<float> _dist_target;
VISMatrix _transform;

//
// This is the function that is used by the base class to manipulate the
level
// set. You can define it to by anything you want. For this object, it
will
// return a value from the distance transform of the target.
//



virtual float grow(float x, float y, float z,
float nx, float ny, float nz);

// There are two states. In the first state, the model is trying to fit
// to the input data. In this way the models starts by looking just like

// the input data
int _state;

public:

Morph(const Morph& other)
{

_dist_target = other._dist_target;
_initial = other._initial;
_state = MORPH_STATE;
_transform = VISVISMatrix(3, 3);
_transform.identity();

// initialize();
}

Morph(VISVolume<float> init, VISVolume<float> d)
:VoxModel()

{
_dist_target = d;
_initial = init;
_state = MORPH_STATE;
_transform = VISVISMatrix(3, 3);
_transform.identity();

// initialize();
}

void initialize();

// for this object I assume that the transform is just a matrix.
// but it could be anything

void transform(const VISVISMatrix& t)
{ _transform = t;}

const VISVISMatrix& transform()
{ return(_transform);}



void distance(const VISVolume<float> d)
{ _dist_target = d;}
VISVolume<float> distance()
{ return(_dist_target);}

};
#endif

8.5 Mor ph.C

#include "morph.h"
#include "util/geometry.h"
#include "util/mathutil.h"

//
// this is the virtual function, that is the guts of it all.
//

float Morph::grow(float x, float y, float z,
float nx, float ny, float nz)

{

// this says you are in the morph state (things have been initialized)
if (_state == MORPH_STATE)

{
float xx, yy, zz;
VISPoint p(4u);
p.at(0) = x;
p.at(1) = y;
p.at(2) = z;
p.at(3) = 1;
VISPoint p_tmp;

// this is where you could put some other transform.
p_tmp = _transform*p;

xx = p_tmp.x();
yy = p_tmp.y();



zz = p_tmp.z();

// make sure you are not out of the bounds
// of your distance volume.
if (_dist_target.checkBounds(xx, yy, zz))

// if not, get the distance (use trilinear interpolation).
return(_dist_target.interp(xx, yy, zz));

else
return(0.0f);

}
else

{
// if you are still initializing, then move toward the zero set of
// your initial case
if (_initial.checkBounds(x, y, z))

return(_initial.interp(x, y, z));
else

return(0.0f);
}

}

// this makes the model look like the input.
#define INIT_ITERATIONS 5
void Morph::initialize()
{

_values = _initial;
int state_tmp = _state;
_state = INIT_STATE;
construct_lists(DIFFERENCE_FACTOR);

// these couple of iterations are required to make sure that the zero
// sets of the model match the zero sets of the
//

for (int i = 0; i < INIT_ITERATIONS; i++)
{

// limit the dt to 1.0 so that the model settles in to a solution
update(::min(calculate_change(), 1.0f));

}
_state = state_tmp;

}



8.6 Main.C

#include "vol/volume.h"
#include "vol/volumefile.h"
#include "image/imagefile.h"
#include "morph.h"
#include <string.h>

const int V_HEIGHT = (40);
const int V_WIDTH = (40);
const int V_DEPTH = (40);

#define XY_RADIUS (12) // this matches the 2.5D data generated in
torus.C
#define T_RADIUS (4) // this matches the 2.5D data generated in torus.C
#define S_RADIUS (12) // radius of a sphere

#define B_WIDTH (20.0f)
#define B_HEIGHT (60.0f)
#define B_DEPTH (20.0f)

#define B_CENTER_X (12.0f)
#define B_CENTER_Y (32.0f)
#define B_CENTER_Z (12.0f)

float sphere(unsigned x, unsigned y, unsigned z);
float torus(unsigned x, unsigned y, unsigned z);
float cube(unsigned x, unsigned y, unsigned z);

// This is a program that does the morph. If you give it two
// arguments, it reads the initial model and the dist trans for the
// final model from the two file names given, otherwise, it makes a
sphere
// and deforms it into a torus

main(int argc, char** argv)
{



VISVolume<float> vol_source, vol_target;
VISVolumeFile vol_file;
int i;
char fname[80];

vol_source = VISVolume<float>(25,65,25);
vol_source.evaluate(cube);

if (argc > 2)
{

// read in the sourceing model
vol_source = VISVolume<float>(vol_file.read_float(argv[1]));

// read in the dist trans of the final model
vol_target = VISVolume<float>(vol_file.read_float(argv[2]));

}
else
// make up some volumes

{
vol_source = VISVolume<float>(V_WIDTH, V_HEIGHT, V_DEPTH);
vol_source.evaluate(sphere);
vol_target = VISVolume<float>(V_WIDTH, V_HEIGHT, V_DEPTH);
vol_target.evaluate(torus);

}

// create morph object
Morph morph(vol_source, vol_target);
// loads in some parameters (for morphing these are all zero but one)
// i.e.
//
//
//
//
morph.load_parameters("morph_params");
morph.initialize();
vol_file.write_float(morph.values(), "morph0.flt");

float dt;

// do 150 iterations for your model to get from start to finish
// probably don’t need this many iterations



for (i = 0; i < 150; i++)
{

dt = morph.calculate_change();
// limit dt to 0.5 so that model never overshoots goal
dt = min(dt, 0.5f);
morph.update(dt);

printf("iteration %d dt %f\n", i, dt);

if (((i + 1)%10) == 0)
{

// save every tenth volume
sprintf(fname, "morph_out.%d.dat", i + 1);
vol_file.write_float(morph.values(), fname);

}
}

// save a surface model (i.e. marching cubes).
vol_file.march(0.0f, morph.values(), ‘‘morph_final.iv’’);

printf("done\n");

}
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1. INTRODUCTION
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to theprocessingof 3D surfaceshasbecomeanimportantproblemin computergraphics,
visualization,andvision. For instance,3D rangesensingtechnologiesproducehigh reso-
lution descriptionsof objects,but they oftensuffer from noise.Medicalimagingmodalities
suchasMRI andCT scansproducelarge volumesof scalaror tensormeasurements,but
surfacesof interestmustbeextractedthroughsomesegmentationprocessor fitted directly
to the measurements.Thesesurfacestypically containtopologicalartifactssuchasholes
andunconnectedpieces.

Thegoalof this paperis to introducea new surfaceprocessingstrategy that is flexible,
general,andgeometric. By flexible we meanthat the framework shouldprovide a basis
for a broadvariety of capabilities,including surfaceprocessingtools that resemblethe
state-of-the-artin imageprocessingalgorithms.Theproposedmethodsshouldapply to a
general classof surfaces.Usersshouldbeableto processcomplex surfacesof arbitraryand
changingtopology, andobtainmeaningfulresultswith very little a priori knowledgeabout
the shapes.By geometricwe meanthat outputof surfaceprocessingalgorithmsshould
dependon surfaceshapeandresolution, but shouldbeindependentof arbitrarydecisions
abouttherepresentationor parameterization.

The work presentedin this paperis basedon the propositionthat the naturalgeneral-
izationof imageprocessingto surfacesis via thesurfacenormalvectors. Thus,a smooth
surfaceis onethathassmoothlyvaryingnormals.Penaltyfunctionsonthesurfacenormals
typically giveriseto fourth-orderpartialdifferentialequations(PDE).Ourstrategy is to use
a two stepapproach:(i) operatingon the normalmapof a surface,and(ii) manipulating
thesurfaceto fit theprocessednormals.Iteratingthis two-stepprocess,we canefficiently
implementfourth-orderflowsby solvinga setof coupledsecond-orderPDEs.In this light,
thedifferencesbetweensurfaceprocessingandimageprocessingarethreefold:

(1) Normalsarevectorvaluedandconstrainedto beunit length;theprocessingtechniques
mustaccommodatethis.

(2) Normalslive on a manifold(thesurface)andcannotbeprocessedusinga flat metric,
asis typically donewith images.

(3) Normalsarecoupledwith thesurfaceshape,thusthenormalsshoulddragthesurface
alongastheir valuesaremodifiedduringprocessing.

This paperpresentsan implementationthat representssurfacesasthe level setsof vol-
umesandcomputesthe processingof the normalsandthe deformationof the surfacesas
solutionsto a setof PDEs.In someapplications,suchasanimation,modelsaremanually
generatedby adesigner, andtheparameterizationis notarbitrarybut is animportantaspect
of the geometricmodel. In thesecases,mesh-basedprocessingmethodsoffer a powerful
setof tools,suchashierarchicalediting [Guskov et al. 1999],which arenot yet possible
with the proposedrepresentation.However, in other applications,suchas 3D segmen-
tation andsurfacereconstruction[Malladi et al. 1995;Whitaker 1998], the processingis
datadriven,surfacescandeformquite far from their initial shapesandchangetopology;
hence,userinterventionis not practical. Furthermore,whenconsideringprocessesother
thanisotropicsmoothing,suchasnonlinearsmoothing,thecreationor sharpeningof small
featurescanexhibit noticeableeffectsof themeshtopology—thecreationof new features
requireschangesin the meshparameterization.In contrast,the underlyinggrid for level
setsis independentof the surfaceshape;therefore,the only limitation for the creationof
new featuresis the resolutionof the grid. Hence,the useof a level set formulationen-
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ablesusto achievea“black box” behavior andbuild surfaceprocessingtechniquesthatare
especiallyusefulwhenprocessingmeasureddata.

Wehaveintroducedananisotropicdiffusionfor surfacesbasedonprocessingthenormal
mapin [Tasdizenet al. 2002]. This paperdiscussesthe mathematicalfoundationsof the
normalmapprocessingstrategy in detailandprovidesdetailsof thenumericalimplemen-
tation aswell asintroducinghigh-boostfiltering of normalsasa new surfaceprocessing
tool. Thespecificcontributionsare:

(1) a novel approachbasedon surfacenormalsfor geometricprocessingof surfaces;

(2) anumericalmethodfor solvinggeometricfourth-orderlevel setequationsfor surfaces
in two simplersteps,therebyavoiding theexplicit computationof unstablehigh-order
derivatives;and

(3) examplesof threegeometricsurfaceprocessingalgorithmswith applicationsto com-
plex datasets.

Therestof thispaperis organizedasfollows. Wewill discussrelatedsurfaceprocessing
work in Section2. In Section3, we formulateour splitting approachfor solvinggeomet-
ric fourth-orderlevel setequationsfor surfaces. In the limit, this approachis equivalent
to solving the full, fourth-orderflow, Appendix(A), but it generalizesto a wide rangeof
processesandmakesno assumptionsaboutthe shapesof the solutions. In Section4, we
show resultsfor isotropicandanisotropicdiffusion. To demonstratethe flexibility of the
proposedframework,wewill alsoshow resultsof high-boostsurfacefiltering implemented
with our framework in Section5. Thenumericalimplementationsof our approachis cov-
eredin Appendix (B). Conclusionsand directionsfor future work will be discussedin
Section6.

2. RELATED WORK

The majority of surfaceprocessingresearchhasbeenin the context of surfacefairing
with themotivationof smoothingsurfacesto createaestheticallypleasingmodels.Surface
fairing canbe accomplishedeitherby minimizing an energy function that favors smooth
surfaces[MoretonandSéquin1992;WelchandWitkin 1992;Halsteadet al. 1993;Welch
and Witkin 1994] or by applying smoothingfilters [Taubin 1995; Desbrunet al. 1999;
Guskov et al. 1999]. Energy minimizationis a globalmethodwhereasfiltering useslocal
neighborhoods.In therestof this section,we review relatedwork in thesetwo categories.
An approachthat falls betweenthesetwo extremesis basedon Wiener filtering which
utilizesarbitrarylocal spectralpropertiesof themesh[Alexa 2002].

Energy functionscandependon the geometryof the surfaceor the parameterization.
Geometricfunctionsmake useof invariantssuchasprincipal curvatures,which are pa-
rameterizationindependent,intrinsic propertiesof the surface. Therefore,geometricap-
proachesproduceresultsthat arenot affectedby arbitrarydecisionsaboutthe parameter-
ization; however, geometricinvariantsarenonlinearfunctionsof surfacederivativesthat
arecomputationallyexpensiveto evaluate.Parameterizationdependentfunctionsarelinear
substitutesfor geometricinvariants.

Oneway to smootha surfaceis to incrementallyreduceits surfacearea. This canbe
accomplishedby meancurvatureflow (MCF), a second-orderPDE,

∂x
∂ t

qsr HN qtr u
κ1 v κ2

2 w N (1)
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whereκ1, κ2 arethe principalcurvaturesandH is the meancurvatureat a point x on the
surface,N is the surfacenormal,andthe parametert tracksthedeformingsurfaceshape.
For parameterizedsurfaces,themembraneenergy function,a linearsubstitutefor surface
area,is x

Ω
X2

u v X2
v du dv (2)

whereX y u z v{ andΩ aresurfaceparameterizationandits domain,respectively. Thevaria-
tional derivativeof (2) is theLaplacian

∆X q Xuu v Xvv z (3)

which is a linear substitutefor meancurvature;however, they areequivalentonly if the
parameterizationis orthonormaleverywhere.Thesemethodsgenerallyproduceunsatisfac-
tory resultsdueto inherentlimitationssuchasinability to preserve features,a systematic
shrinking,andtheintroductionof high-curvaturesingularities.

A second-orderenergy functionis theintegral of total curvatureover thesurfaceSx
S

κ2
1 v κ2

2 dS (4)

which hasbeenshown to deform surfacesinto sphereswhen minimized [Polden1997].
We will refer to (4) as the total curvature penaltywhich shouldnot be confusedwith
the local quantity total curvature. The total curvaturepenaltyis a geometric(invariant)
propertyof thesurfacethatcanbeminimizedby afourth-orderPDEwhichis verydifficult
to solve. The meshfairing approachof [Welch andWitkin 1994], which minimizes(4),
fits local polynomialbasisfunctionsto local neighborhoodsfor the computationof total
curvature. Thesepolynomial basisfunctionsrangefrom full quadraticpolynomialsto
constrainedquadraticsand planarapproximations.Dependingon the complexity of the
local neighborhood,the algorithmmustchoose,at eachlocation,which basisto employ.
Ambiguitiesresultat locationswheremultiplebasesprovideequallygoodrepresentations.

If we penalizetheparameterization(i.e. non-geometric),equation(4) becomesthethin
plateenergy function x

Ω
X2

uu v 2X2
uv v X2

vv du dv (5)

whereX andΩ areasdefinedfor (2). Thevariationalderivative of (5) is thelinearbihar-
monicoperator

∆2X q Xuuuu v 2Xuuvv v Xvvvv (6)

which is a fourth-orderoperatorusedfor surfacefairing [WelchandWitkin 1992].
MoretonandSéquinproposea geometricenergy functionthatpenalizesthevariationof

principle curvatures[1992]. This function hasa sixth-ordervariationalderivative which
requiresvery largecomputationtimes.Theanalysisandimplementationof generalenergy
functionsabovesecondorderremainsanopenproblem,which is beyondthescopeof this
paper. Evidencein this paperandelsewhere[Desbrunet al. 1999;SchneiderandKobbelt
2000]suggeststhatfourth-ordergeometricflowsform asufficientfoundationfor ageneral,
geometricsurfaceprocessingsystem.

Taubinpioneersthe linear filter basedapproachesto surfacefairing. He observesthat
simpleGaussianfiltering associatedwith the membraneenergy causesshrinkage[1995].
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He eliminatesthis problemby designinga low passfilter usinga weightedaverageof the
Laplacian(3) andthebiharmonicoperator(6). Theweightsmustbefine-tunedto obtainthe
non-shrinkingproperty. Analyzedin thefrequency domain,this low-passfilter canbeseen
asa Gaussiansmoothingshrinkingstepfollowed by an unshrinkingstep. Taubinshows
that any polynomial transferfunction in the frequency domaincanbe implementedwith
thismethod[1996]. A relatedapproachin whichsurfacesaresmoothedby simultaneously
solvingthemembrane(2) andthin plate(5) energy functionsis proposedin [Kobbeltet al.
1998]. Desbrunet al. useimplicit integrationto build a computationallyefficient method
for meshfairing[1999]. Guskov etal. definesdown- andup-samplingtoolsandsmoothing
filters for irregularmeshesto build a multiresolutionmeshprocessingframework [1999].
Their work is basedon a generalizedlow passfilter which usesa non-uniformrelaxation
operatorthat minimizesa locally weightedquadraticenergy of second-orderdifferences
on themesh.

The techniquesproposedin this paperarealso relatedto that of [Choppand Sethian
1999], who derive the intrinsic Laplacianof curvaturefor an implicit curve, and solve
the resultingfourth-ordernonlinearPDE. However, their methoddoesnot generalizeto
implicit surfaces.Moreover, they arguethat thenumericalmethodsusedto solve second-
orderflows arenot practical,becausethey lack long term stability. They proposeseveral
new numericalschemes,but noneare found to be completelysatisfactory due to their
slow computationandinability to handlesingularities.As a generalizationof this PDEfor
surfaces,SchneiderandKobbeltproposeusingtheintrinsic Laplacianof meancurvature,
∆BH, for meshes,where∆B is the Laplace-Beltramioperator, i.e. the Laplacianfor pa-
rameterizedsurfaces[2000]. However, thatapproachworksonly for meshes,andrelieson
analyticpropertiesof thesteady-statesolutions,∆BH q 0, by fitting surfaceprimitivesthat
havethoseproperties.Thus,theformalismdoesnotgeneralizewell to applications,suchas
surfacereconstruction,wherethesolutionis a combinationof measureddataanda fourth-
ordersmoothingterm. Also, it doesnot applyto othertypesof smoothingprocesses,such
asanisotropicdiffusionthatminimizesnonlinearfeature-preservingpenalties.We solve a
moregeneralclassof surfaceflows with a variationalbasisin aneffective,stablesplitting
method.

An exampleof a splitting strategy canbefoundin [Ballesteret al. 2001],wheretheau-
thorspenalizethe smoothnessof a vectorfield while simultaneouslyforcing the gradient
directionsof a grayscaleimageto closelymatchthevectorfield. Thepenaltyfunctionon
the normalfield is proportionalto the divergenceof the normalvectors. It forms a high-
orderinterpolationfunction,whichis shown to beusefulfor imageinpainting—recovering
missingpatchesof datain 2D images.The strategy of simultaneouslypenalizingthe di-
vergenceof a normalfield andthemismatchof thisfield with theimagegradientis closely
relatedto thetotalcurvaturepenaltyfunctionusedin thispaper. However, our formulation
emphasizestheprocessingof normalson anarbitrarysurfacemanifold(ratherthantheflat
geometryof animage),with anexplicit relationshipto fourth-ordersurfaceflows. Further-
more,thispaperestablishesnew directionsfor surfaceflows—towardedge-preservingsur-
facesmoothingandfeatureenhancement.Our proposedPDEsplitting approachis related
to themethodsin [SchneiderandKobbelt2000],which we discussin detail in Section3.

Our splitting methodrequiresdiffusingunit-lengthvectorson a non-flatmanifold. Per-
onaproposesa methodfor diffusing orientation-like quantitieson flat manifolds[1998].
This methodsolves the problemof diffusing 2D unit vectorsas a 1D problemof angle
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Fig. 1. Second-vs. fourth-ordersurfacesmoothing.Fromleft to right: Original model,meancurvatureflow, and
isotropicfourth-ordersurfaceflow.

diffusion; however, it is not rotationallyinvariantandit doesnot generalizeto the diffu-
sion of unit vectorsin higherdimensions.Several authorsuseharmonicmapstheoryto
solve the diffusionof unit vectorsdefinedon higherdimensionalnon-flatmanifolds,e.g.
surfaces[Bertalmioet al. 2001;Tanget al. 2000].Hence,theirmethodsarecloselyrelated
to someof theproblemswesolvein this,but they do notprovideasolutionto thecoupling
betweensurfaceshapeandtheunit vectorsbecausetheir goalis not surfaceprocessing.

3. MINIMIZING TOTAL CURVATURE

Oneof the underlyingstrategiesof our approachis to usegeometricsurfaceprocessing,
wheretheoutputof the processdependsonly on theshapeof the input surface,anddoes
notcontainartifactsfrom theunderlyingparameterization.Themotivationfor thisstrategy
is discussedin detail in [SchneiderandKobbelt2001],wheretheinfluenceof theparame-
terizationon surfacefairingresultsis clearlyshown, andhigher-ordernonlineargeometric
flows areproposedasthesolution.

As anillustrationof the importanceof higher-ordergeometricprocessing,considerthe
resultsin Figure1, which demonstratesthe differencesbetweenprocessingsurfaceswith
meancurvatureflow (MCF) andthe isotropic fourth-orderPDE that minimizesthe total
curvaturepenalty(4). Theamountof smoothingfor both processesin this examplewere
chosento be qualitatively similar, andyet importantdifferencescanbe observed on the
smallerfeaturesof thismodel.MCF hasshortenedthehornsof theoriginalmodel,andyet
they remainsharp—nota desirablebehavior for a “smoothing”process.This behavior for
MCF is well documentedas a pinching off of cylindrical objectsand is expectedfrom
the variationalpoint of view: MCF minimizessurfaceareaand thereforewill quickly
eliminatesmallerpartsof a model. Sapirodiscussesvolumepreservingforms of second-
orderflows [2001], but theseprocessescompensateby enlarging the objectas a whole,
which exhibits, qualitatively, the samebehavior on small features.The isotropicfourth-
orderPDE,on the otherhand,preservesthe structureof thesefeaturesmuchbetterwhile
smoothingthem as can be seenin Figure 1. Note that all of the surfacesin this paper
are representedand processedvolumetrically. To display the results,we rendera mesh
obtainedwith theMarchingCubesalgorithm[LorensonandCline 1987].

We proposea two-stepsolutionbasedon letting the surfaceshapeto lag the normals
as they are filtered and then refitting the surfaceto the normalsby a separateprocess.
For generalfourth-ordersurfaceflows suchasisotropicandanisotropicdiffusion,bothof
thesestepsinvolve solving second-orderPDEs. The first second-orderPDE is usedfor
minimizing a penaltyfunction on the normals. The other second-orderPDE minimizes
thediscrepancy betweenthemodifiednormalsandthesurface;in otherwords,it refitsthe
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Fig. 2. Shown herein 2D, the processbegins with a shapeand constructsa normal map from the distance
transform(left), modifiesthenormalmapaccordingto aPDEderivedfrom apenaltyfunction(center),andre-fits
theshapeto thenormalmap(right).

surfaceto thenormals.Figure2 shows this threestepprocessgraphicallyin 2D—shapes
giveriseto normalmaps,which,whenfilteredgiveriseto new normalmaps,whichfinally
giveriseto new shapes.Therestof this sectionis organizedasfollows. Level setmethods
are introducedin Section3.1. We formulatetotal curvatureasa function of the normal
mapandderive gradientdescentminimizationsfor generalfunctionsof total curvaturein
Section3.2; this givesriseto thefirst PDEmentionedabove. Thesurfacerefitting process
is discussedin Section3.3; this givesriseto theothersecond-orderPDE.

3.1 Level set methods

In this section,we briefly introducethenotationof level setmethods.We candescribethe
deformationof aregularsurfaceusingthe3D velocityof eachof its constituentpoints,i.e.,
∂x y t {�| ∂ t for all x } S. We representthedeformingsurfacesimplicitly asa functionof the
parametert

S q�~ x y t {�� φ y x y t {.z t { q 0 ��z (7)

whereφ is the embeddingfunction. Surfacesdefinedin this way divide a volume into
two parts: inside(φ � 0) andoutside(φ � 0). It is commonto chooseφ to bethesigned
distancetransformof S, or anapproximationthereof.Thesurfaceremainsa level setof φ
over time, andthustaking the total derivative with respectto time (usingthe chainrule)
gives

∂φ | ∂ t qtr ∇φ � ∂x | ∂ t (8)

Because∇φ is proportionalto the surfacenormal,∂x | ∂ t affectsφ only in the direction
of thenormal—motionin any otherdirectionis merelya changein theparameterization.
This family of PDEsand the upwind schemefor solving them on a discretegrid is the
methodsof level sets[OsherandSethian1988]. For instance,usingthis framework and
∂x | ∂ t from (1), thePDEon φ thatdescribesthemotionof a surfaceby meancurvatureis

∂φ | ∂ t qsr ∇φ � HN qsr �Y�∇φ �7� H � (9)

Surfaceintegralsof penaltyfunctionshavecorrespondingvolumeintegralswhichquan-
tify the associatedpropertiesfor the embeddedsurfacesof φ . A generalsurfacepenalty
functionbasedon thetotal curvaturepenalty(4) canbewritten for level setsurfacesas�

φ
q x

U
G � κ2

1 v κ2
2 �%� ∇φ � dx z (10)
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whereU � ℜ3 is thevolumetricdomainof φ . WhenG is theidentityfunction,(10)reduces
to thetotal curvaturepenalty. Therestof this paperdiscussesmethodsfor minimizing this
penaltyfunctionin a stableandcomputationallyefficient manner.

3.2 Total curvature of normal maps

In this section,we formulatetotal curvatureof a surfacefrom its normalmap. Then,we
derive the variationalPDEson the normal map that minimize functionsof total curva-
ture.Whenusingimplicit representations,onemustaccountfor thefactthatderivativesof
functionsdefinedon thesurfacearecomputedby projectingtheir 3D derivativesontothe
surfacetangentplane.The3 � 3 projectionmatrix for theimplicit surfacenormalis

P q ∇φ � ∇φ |��+�∇φ �+� 2 z (11)

where � is thetensorproductdefinedasa � a q aaT . Consequently, theprojectionmatrix
ontothesurfacetangentplaneis I r P, whereI is theidentity matrix.

Thelocal geometryof a surfacecanbedescribedwith thefirst andsecondfundamental
forms, y I { and y I I { , respectively [DoCarmo1976].Theeigenvaluesof thematrix y I {�� 1 y I I { ,
which we referto astheshapematrix, aretheprincipalcurvaturesof thesurfaceindepen-
dent of the parameterization.For an implicit surface, the shapematrix is obtainedby
differentiatingthenormalmapandprojectingthederivativeontothesurfacetangentplane.
We definethedifferentialof thenormalmap

∇N q�� ∇N � 1� ∇N � 2� ∇N � 3��� T z (12)

asthematrix whoserows arethegradientvectorsof thecomponentsof N which we have
denotedby N � i � for i q 1 z 2, and3. Thenthe shapematrix is the projection∇N y I r P { ,
which measuresthe intrinsic changein the normalsby mappingthe differentialsof N on
to thetangentplanesof φ . TheEuclideannormof theshapematrix is thesumof squared
principalcurvatures,i.e. total curvature,

κ2 q κ2
1 v κ2

2
q �+�Fy ∇N {Ny I r P {.�+� 2 � (13)

We canuse(13) to defineanenergy of thenormalmapthat is analogousto thegeneral
energy functionof φ definedin (10)�

N
q x

U
G y��7�Fy ∇N {Ny I r P {	�+� 2 { dx � (14)

The first variation of this energy with respectto the normalsis a secondorder PDE. It
is crucial to observe that, even thoughthe projectionoperatorP is a function of φ , it
independentof N becausewe fix φ aswe processN. Hence,P doesnot increasetheorder
of thefirst variationof (14). In contrast,takingthefirst variationof (10) with respectto φ
directly, would have yieldeda muchharderto solve fourth orderPDEon φ .

As we processthenormalmapto minimize(14), letting φ lag, we mustensurethat the
normalvectorsmaintainthe unit lengthconstraint.Solutionsto constrainedoptimization
problemsdefinedon non-flatmanifoldsarediscussedin [Bertalmioet al. 2001;Tanget al.
2000]. Using the methodof Lagrangemultipliers, we obtainedthe first variationof the
constrainedenergy as

d
�

dN
qsr y I r N � N { ∇ �?� g � �+�Fy ∇N {Ny I r P {.�+� 2 � ∇N y I r P {�� (15)
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whereg is the derivative of G with respectto its argument,κ2. We will discussseveral
choicesfor G in Section4. The projectionoperator, I r N � N, forcesthe changesto N
to beperpendicularto itself in accordancewith theunit lengthconstraint.This operatoris
differentfrom theotherprojectionoperatorI r P dueto thedecouplingof N andφ . Finally,
thegradientdescentPDEfor thenormalsis ∂N | ∂ t qsr d

� | dN.

3.3 Surface evolution via normal maps

We have shown how to evolve thenormalsto minimizefunctionsof total curvature;how-
ever, the final goal is to processthe surface,which requiresdeformingφ . Therefore,the
next stepis to relatethedeformationof thelevel setsof φ to theevolution of N. Suppose
thatwe aregiventhenormalmapN to somesetof surfaces,but not necessarilylevel sets
of φ—asis the caseif we filter N andlet φ lag. We canmanipulateφ so that it fits the
normalfield N by minimizing a penaltyfunction that quantifiesthe discrepancy between
thegradientvectorsof φ andthetargetnormalmap.Thatpenaltyfunctionis�

φ
q x

U
D y φ { dx z where D y φ { q�� ∇φ � ∇φ r ∇φ � N � (16)

The integrand,which is alwaysa positive scalar, is proportionalto the sineof the angle
betweenthegradientvectorsof φ andthetargetnormalvectors.

Thefirst variationof this penaltyfunctionwith respectto φ is

d
�

dφ
qtr ∇ �H� ∇φ�+�∇φ �+� r N � qtr�� Hφ r HN � (17)

whereHφ is the meancurvatureof the level set surfaceand HN is half the divergence
of the normal map. Then, the gradientdescentPDE that minimizes (16) is dφ | dt qr �+�∇φ �+� d � | dφ . Thefactorof �F�∇φ �+� , which is typical with level setformulations[Sethian
1999], comesfrom the fact that we aremanipulatingthe shapeof the level set,which is
embeddedin φ , asin (8). Accordingto (17), thesurfacemovesasthedifferencebetween
its own meancurvatureandthatof thenormalfield.

Theproposedsplittingstrategy for solvingfourth-orderlevel-setflowsentailsprocessing
the normalsand allowing φ to lag and then be refitted later, in a separateprocess.We
have derived a gradientdescentfor the normal map basedon a certainclassof penalty
functionsthat usethe total curvaturedefinedin Section3.2. This processis denotedin
Figure 3 as the d

� | N loop. The surfacerefitting to the normal map is formulatedas
a gradientdescentin (17). This processis the d

� | dφ loop in Figure 3. The overall
algorithmshown in Figure3 repeatsthesetwo stepsto minimize thepenaltyfunctionsin
termsof the surface. We refer to both of theseprocesses,back-to-back,asoneiteration
of our algorithm. In Appendix(A) we will show that theoverall processof concatenating
thesetwo second-orderPDEsis equivalentto thefourth-orderflow ontheoriginalsurface.
An alternatesplitting approachfor solvingthesamefourth-orderlevel-setflows would be
to simultaneouslysolve both second-orderPDEsd

� | dN andd
� | dφ usinga Lagrange

multiplier insteadof concatenatingthemaswe have done. This approachwas taken by
Ballesteretal. to solvetheimageinpaintingproblem[2001]. However, thisapproachuses
a weightedsumof thetwo second-orderPDEs;therefore,it is not clearwhetherit solves
theoriginal fourth-orderflow. Moreover, in our case,dueto thesignificantcomputational
overheadof settingup the diffusion of normalvectors,it is moreefficient to concatenate
thetwo second-orderPDEsandto do multiple consecutive iterationsof d

� | dN.
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φn+1

�
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Fig. 3. Flow chart

4. ISOTROPIC AND ANISOTROPIC DIFFUSION

The flexible normal map energy minimization and surfacerefitting methodologyintro-
ducedin Section3 allows us to experimentwith variousforms of G in (14) that give rise
to differentclassesof penaltyfunctions. The choiceof G y κ2 { q κ2 leadsto an isotropic
diffusion. This choiceworks well for smoothingsurfacesand eliminating noise,but it
alsodeformsor removesimportantfeatures.This typeof smoothingis calledisotropicbe-
causeit correspondsto solvingtheheatequationonthenormalmapwith aconstant,scalar
conductioncoefficient, which is the sameasGaussiansmoothing,for images. Isotropic
diffusion is not particularly effective if the goal is to denoisea surfacethat hasan un-
derlying structurewith fine features.This scenariois commonwhenextractingsurfaces
from 3D imagingmodalities,suchas magneticresonanceimaging (MRI), in which the
measurementsareinherentlynoisy.

The problemof preservingfeatureswhile smoothingaway noisehasbeenstudiedex-
tensively in computervision. Anisotropicdiffusionintroducedin [PeronaandMalik 1990]
hasbeenvery successfulin dealingwith this problemin a wide rangeof images.Perona
& Malik (P&M) proposedto replaceLaplaciansmoothing,which is equivalentto theheat
equation∂ I | ∂ t q ∇ � ∇I , with a nonlinearPDE

∂ I | ∂ t q ∇ � � g � � ∇I � 2 � ∇I � z (18)

whereI is generallythegrey-level image.This PDEis thefirst variationofx
U

G � � ∇I � 2 � dx dy z (19)

whereg in (18), thederivative of G with respectto � ∇I � 2, is theedgestoppingfunction,
andU is theimagedomain.P&M suggestedusingg y x{ q e�-� ∇I � 2   2µ , whereµ is apositive,
free parameterthat controlsthe level of contrastof edgesthat can affect the smoothing
process.Notice thatg y � ∇I � { approaches1 for � ∇I �'¡ µ and0 for � ∇I �'¢ µ . Edges
are generallyassociatedwith large imagegradients,and thus diffusion acrossedgesis
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stoppedwhile regions that are relatively flat undergo smoothing. Solutionsto (18) can
actuallyexhibit aninversediffusionnearedges,andcanenhanceor sharpensmoothedges
thathave gradientsgreaterthanµ [PeronaandMalik 1990].

A greatdealof researchhasfocusedon modifiedsecond-orderflows that producebet-
ter resultsthan MCF. Using level set models,several authorshave proposedsmoothing
surfacesby weightedcombinationsof principle curvatures. For instance,Whitaker has
proposeda nonlinearreweightingschemethat favors the smallercurvatureandpreserves
cylindrical structures[1994]. Lorigo et al. proposea smoothingby the minimum curva-
ture[2000]. A varietyof othercombinationshavebeenproposed[Sapiro2001].A similar
setof curvature-basedalgorithmshave beendevelopedfor surfacemeshes.For instance,
Clarenzet al. proposea modifiedMCF asan anisotropicdiffusion of the surface[2000].
They thresholda weightedsumof the principle curvaturesto determinethesurfaceloca-
tions whereedgesharpeningis needed.Tangentialdisplacementis addedto the standard
MCF at theselocationsfor sharpeningthe edges. Although, this flow producesresults
that tendto preserve sharpfeatures,it is not a strict generalizationof [PeronaandMalik
1990]anisotropicdiffusionfrom imagesto surfaces.Anothermesh-basedmodifiedMCF
is proposedin [Ohtakeetal. 2000]whereathresholdon themeancurvatureis usedto stop
over-smoothing. Taubin proposesa “linear anisotropic”Laplacianoperatorfor meshes
thatis basedon a separateprocessingof thenormals[2001]. It is essentiallya reweighting
of the Laplacian. In a differentcontext, anisotropicdiffusion asa modifiedsurfacearea
minimizationfor heightfunctionswasproposedin [Desbrunet al. 2000].

Theselevel setandmeshbasedmethodsareall modificationsof curvatureflows,andare
thereforeall second-orderprocesses.Becausethey arebasedonreweightingsof curvature,
thesemethodsalwayssmooththesurfacein onedirectionor another. They do not exhibit
a sharpeningof details,which is achievedby the P&M equation(for images)throughan
inversediffusion process. Hence,thesemethodsare not satisfactory generalizationsof
theP&M anisotropicdiffusionequation.Thegeneralizationof P&M diffusionto surfaces
requiresa higher-ordergeometricflow which is achieved from variationalprinciplesby
choosingtheappropriatefunctionof total curvaturein (14). For instance,

G y κ2 { q 2µ2
u

1 r e� κ2

2µ2 w z andg y κ2 { q e� κ2

2µ2 z (20)

whereg is the derivative of G with respectto κ2. The first variationwith respectto the
surfacenormalsgives a vector-valuedanisotropicdiffusion on the level set surface—a
straightforwardgeneralizationof (18). This flow preservesor enhancesareasof high cur-
vature,which we will call creases. Creasesarethe generalizationof edgesin imagesto
surfaces[Eberly 1996].

4.1 Results

Figure4(a) illustratesanexampleof theskin surface,which wasextracted,via isosurfac-
ing, from anMRI dataset.Noticethattheroughnessof theskin is noise,anartifactof the
measurementprocess.This modelis alsoquitecomplex because,despiteour bestefforts
to avoid it, theisosurfacesincludemany convolutedpassagesup in thesinusesandaround
the neck. Isotropicdiffusion,shown in Figure4(b), is marginally effective for denoising
theheadsurface.Notice that thesharpedgesaroundtheeyes,nose,lips andearsarelost
in this process.Thedifferencesbetweenanisotropicdiffusionandisotropicdiffusioncan
clearly be observed in Figure4(c). Thereis no noticeabledifferencein the resultsof the
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(a) (b) (c)

Fig. 4. Processingresultson the MRI headmodel: (a) original isosurface, (b) isotropic diffusion, and (c)
anisotropicdiffusion. Thesmallprotrusionunderthenoseis a physicalmarker usedfor registration.

(a) (b)

Fig. 5. (a) Noisy venusheadmodel,and(b) smoothedversionafterthreeiterationsof anisotropicdiffusion.

two processesaroundthe smoothareasof the original model suchas the foreheadand
the cheeks;however, very significantdifferencesexist aroundthe lips andthe eyes. The
creasesin theseareas,which havebeeneliminatedby isotropicdiffusion,arepreservedby
the anisotropicprocess.Note that the freeparameterµ in (20) wasfixedat 0 � 1 for all of
theresultsshown in this paper. Unlike, in P&M imagediffusion,this parameterdoesnot
needto bechangedfor differentsurfacemodels.In the context of P&M imagediffusion,
theunitsof µ arein graylevels;consequently, theoptimalchoiceof µ is imagedependent.
However, for surfaces,theunitsarein curvature,which is dataindependent.This makesit
possibleto choosea µ valuethatgivesconsistentresultsovera broadrangeof surfaces.

Thecomputationtime requiredfor oneiterationof the mainprocessingloop operating
on this modelis approximately15 minuteson a 1.7GhzIntel processorfor bothisotropic
and anisotropicdiffusion. The resultsshown in Figure4(b) and (c) areboth after three
iterationswhich translatesto around45 minutesof processingtime. Thegeneralityof the
proposedapproachcomesatthecostof significantcomputationtime. However, themethod
is practicalwith state-of-the-artcomputersandis well-poisedto benefitfrom parallelcom-
putingarchitectures,dueto its relianceon local, iterative computations.

Anotherexampleof denoisingby anisotropicdiffusionis shown in Figure5. Noisewas
addedto the original model,which in this caseis a 221 � 221 � 161volume. After three
iterationsof themainprocessingloopthenoisewassuccessfullyremovedwhile preserving
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(a) (b) (c)

Fig. 6. (a) Originalbrainisosurfacefrom MRI dataset,(b) resultof MCF, and(c) after5 iterationsof anisotropic
diffusion.

the featuresof the original model. The quality of theseresultscomparesfavorably with
resultsfrom thesamemodelshown in [Clarenzetal. 2000].Ourresultsdemonstratebetter
preservation of fine, sharpdetails,suchas thosearoundthe eyes and in the hair. The
computationtimesperiterationfor this exampleareapproximatelyfiveminutescompared
to 15 minutesperiterationfor theexamplein Figure4. This is indicative of therelatively
high degreeof complexity of theMRI basedmodelin thepreviousexample.

Figure6(a)shows a differentisosurface(thecortex) extractedfrom thesameMRI scan
as the model in Figure 4. The complexity of this model, i.e. the many tightly nested
folds, make it ill-suited for meshbaseddeformations. Also, the main cortical surface
hasmany detachedpieces,an artifact of the segmentationprocess.As an indication of
this complexity, we note that objectenclosedby the cortical surfacehasmore than700
connectedcomponents.The approachproposedin this papercanautomaticallysimplify
topologicallynoisyfeaturesdueto thelevel setimplementation— animportantaspectof
denoisingmeasuredsurfaces.

The examplesin Figure 7 demonstratesanotheraspectof the proposedmethod. Al-
thoughthe original model in Figure7(a) wasconstructedasa volumedirectly from 3D
rangedata[CurlessandLevoy 1996],it doesnot exhibit significantnoise.Hence,smooth-
ing is donewith the purposeof simplificationof the original modelratherthandenoising
in theseexamples.Runningisotropicdiffusionfor many stepscreatesa linearscalespace
wheredetailsin the modelareprogressively eliminatedin accordanceto their scale;the
scaleson theskin andthehornshave beeneliminatedin Figure7(b) andFig 7(c), respec-
tively. When running the proposedmethodfor anisotropicdiffusion, however, surfaces
tend toward solutionsthat have piecewise smoothnormalswith sharpdiscontinuitiesin
the normal map—analogousto the behavior of the P&M equationfor intensity images.
Suchpropertiesin thenormalmapcorrespondto surfacesconsistingof planarpatchesand
smoothpatchesboundedby sharpcreases.Thus,theproposedmethodgeneratesa feature
preservingscalespace,very muchlike thatof P&M for images.Theseresults,which are
shown in Figure 7(d) and (e), supportour propositionthat processingthe normalsof a
surfaceis the naturalgeneralizationof imageprocessing.The non-linearprogressionof
eliminationof detailsfrom the smallestscaleto the largestalsosuggestsapplicationsof
this methodto surfacecompressionandmulti-resolutionmodeling.
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(a) (b) (c)

(d) (e)

Fig. 7. (a) Original model. Isotropicdiffusion: (b) after 10 iterations,and(c) after 20 iterations. Anisotropic
diffusion: (a) after10 iterations,and(b) after20 iterations.

(a) (b) (c)

Fig. 8. (a) Original model,(b) after1, and(c) 2 iterationsof high-boostfiltering.

5. HIGH-BOOST FILTERING

The surfaceprocessingframework introducedin Section3 is flexible andallows for the
implementationof evenmoregeneralimageprocessingmethods.We demonstratethis by
describinghow to generalizeimageenhancementby high-boostfiltering of surfaces.

A high-boostfilter hasafrequency transformthatamplifieshigh frequency components.
In image processing,this can be achieved by unsharpmasking[Gonzalezand Woods
1992]. Let the low-passfiltered versionof an imageI be Ĩ . The high-frequency com-
ponentsare Ihf

q I r Ĩ . The high-boostoutput is the sumof the input imageand some
fractionof its high-frequency components:

Iout
q I v αIhf

q y 1 v α { I r α Ĩ z (21)
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(a) (b)

(c) (d)

Fig. 9. High-boostfiltering: (a) original model,(b) afterfiltering, (c) close-upof original,and(d) filteredmodel.

whereα is a positive constantthatcontrolstheamountof high-boostfiltering.
This samealgorithm appliesto surfacenormalsby a simple modificationto the flow

chartin Figure3. Recallthatthed
� | dN loop producesNn£ 1. Definea new setof normal

vectorsby

N ¤ q y 1 v α { Nn r αNn£ 1�F�Fy 1 v α { Nn r αNn£ 1 �F� � (22)

This new normalmapis theninput to the d
� | dφ refitting loop. The effect of (22) is to

extrapolatefrom theprevioussetof normalsin thedirectionoppositeto thesetof normals
obtainedby isotropic diffusion. Recall that isotropic diffusion will smoothareaswith
high curvatureandnot significantlyaffect alreadysmoothareas.Processingtheloop with
the modificationof (22) will have the effect of increasingthe curvaturein areasof high
curvature,while leaving smoothareasrelatively unchanged.Thus,we areableto obtain
high quality surfaceenhancementon fairly complex surfacesof arbitrarytopology, ascan
beobservedin Figs.8 and9. Thescalesontheskinandtheridgebackareenhanced.Also,
notethatdifferentamountsof enhancementcanbeachievedby controllingthenumberof
iterationsof themain loop. Thedegreeof low-passfiltering usedto obtainNn£ 1 controls
thesizeof thefeaturesthat areenhanced.Figure9 shows anotherexampleof high-boost
filtering; noticetheenhancementof featuresparticularlyon thewings.
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6. DISCUSSION

Thenatural generalizationof imageprocessingto surfacesis via thenormals.Thelowest-
orderdifferentialinvariantof imagesis thegradientmagnitude,andminimizingaquadratic
penaltyof thisquantityproducesthediffusionequation,whichgivesriseto Gaussianblur-
ring. Thelowest-orderdifferentialinvariantsof surfaceshapearetheprincipalcurvatures.
Likewise,thecurvatureof a 3D surfaceis a functionof thegradientof thesurfacenormal
asshown in Section3.2. In this light, total curvature,which is theEuclideannormof the
Jacobianof thevectorfield of surfacenormals,is thenaturalgeneralizationof thesquared-
gradient-magnitudesmoothnesspenaltyfor images.Thus,for surfaces,first variation of
theisotropic total curvaturepenalty, ratherthanMCF, is theequivalentof Gaussianblur-
ring.

Variationalprocesseson thesurfacecurvaturehave correspondingvariationalformula-
tionson thesurfacenormals.Thegeneralizationof image-processingto surfacenormals,
however, requiresthat we processthe normalsusing a metric on the surfacemanifold,
ratherthana simple,flat metric, aswe do with images.By processingthe normalssep-
arately, we cansolve a pair of coupledsecond-orderequationsinsteadof a fourth-order
equation.Typically, weallow oneequation(thesurface)to lag theother, but asthelaggets
very small, it shouldnot matter. In this framework, the diffusion of the surfacenormals
(andcorrespondingmotionsof thesurface)is equivalentto theparticularfourth-orderflow
thatminimizesthesurfacetotal curvaturepenaltyfunction.

Themethodgeneralizesbecausewe cando virtually anything we wish with thenormal
map. A generalizationof anisotropicdiffusion to a constrained,vector-valuedfunction,
definedon a manifold,givesusa smoothingprocessthatpreservescreases.If we wantto
enhancethesurface,we canenhancethenormalsandrefit thesurface.

We solve theseequationsusingimplicit surfaces,representingthe implicit function on
a discretegrid, modelingthedeformationwith themethodof level sets.This level setim-
plementationallowsusto separatetheshapeof themodelfrom theprocessingmechanism.
Becauseof theimplementation,themethodappliesequallywell to any surfacethatcanbe
representedin a volume.Consequently, our resultsshow alevel of surfacecomplexity that
goesbeyondthatof previousmethods.

Futurework will studytheusefulnessof otherinterestingimageprocessingtechniques
suchastotal variation [Rudinetal. 1992;Burchard2002]andlocalcontrastenhancement.
To date,we have dealtwith postprocessingsurfaces,but future work will combinethis
methodwith segmentationandreconstructiontechniques.Thecurrentshortcomingof this
methodis the computationtime, which is significant. However, the processlendsitself
to parallelism,andtheadventof cheap,specialized,vector-processinghardwarepromises
significantlyfasterimplementations.
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A. MATHEMATICAL FOUNDATION

In this section,we will derive the equivalenceof the proposedalgorithm,in the limit, to
minimizing the original energy function

�
φ definedin (10). Let us rewrite this energy

functionby observingthattheprincipalcurvaturesarefunctionsof thederivativesof φ�
φ
q x

U
G y φ { � ∇φ � dx � (23)

Let dφ : ℜ3 ¥ ℜ bea volumeof incrementalchangesappliedto φ : ℜ3 ¥ ℜ. Thechange
to

�
inducedby dφ canbe expressedasthevolumeintegral of thetotal derivative of the

penaltyfunction,dG y φ { � ∇φ � , whichis theproductof dφ andthevariationof thepenalty
functionwith respectto φ

d
�

φ
q x

U

d y G � ∇φ � {
dφ

dφ dx � (24)

Applying theproductrule to d � G � ∇φ � �
dφ , we obtain

d
�

φ
q x

U

dG
dφ � ∇φ � dφ dx¦ §.¨ ©

dª φ « 1 v x
U

G
d � ∇φ �

dφ
dφ dx¦ §	¨ ©

d ª φ « 2 � (25)

Thetotal derivativedG y φ { � ∇φ � canbewritten in termsof thesurfacenormalsby using
theequality

dG
dφ

dφ q dG
dN

� dN z (26)

giventhatthenormalmapis a functionof φ . Then,thefirst termin (25) canbewritten as

d
�

φ ¬ 1 q x
U

dG
dN

� dN � ∇φ � dx � (27)
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To simplify (27),we derivedN asa functionof N andd∇φ

dN q d
∇φ� ∇φ � q d

∇φy ∇φ � ∇φ { 1  2 (28)q d∇φ� ∇φ � r y d∇φ � N { N� ∇φ � � (29)

Equation(29) follows from (28) by usingthechainrule for thedifferentiation,andsubsti-
tuting N backfor ∇φ | � ∇φ � . Substituting(29) for dN in (27),we get

d
�

φ ¬ 1 q x
U

u
dG
dN

� d∇φ r y d∇φ � N { dG
dN

� N w dx � (30)

We areonly interestedin processesthat maintainthe unit lengthconstraintof the normal
map;therefore,dG| dN � N q 0, and(30) is reducedto

d
�

φ ¬ 1 q x
U

dG
dN

� ∇dφ dx z (31)

wherewe also usethe linearity of differentiationto make the substitutiond∇φ q ∇dφ .
We treatthis energy minimizationasanadiabaticproblem,which meansthatenergy flow
acrosstheboundaryof U is zero. Hence,usingNeumannboundaryconditionsfor U and
integrationby parts,we obtain

d
�

φ ¬ 1 q x
U

∇ � dG
dN

dφ dx � (32)

We now examinethe secondterm in (25), d
�

φ ¬ 2. As in Section3.2, we treatG asa
function of N; therefore,due to the decouplingbetweenN and φ , G canbe considered
independentof φ . Usingthis assumption,we canrewrite d

�
φ ¬ 2 as

d
�

φ ¬ 2 q x
U

dGN � ∇φ �
dφ

dφ dx z (33)

wherethesuperscripton GN is to meanthatG is fixedwith respectto φ . Taking the first
variationof dGN � ∇φ � yields

d
�

φ ¬ 2 q x
U

∇ � u GN ∇φ� ∇φ � w dφ dx z (34)

wherewe usethe fact that d � ∇φ � | d∇φ q ∇φ | � ∇φ � . Finally, combiningequations
(24), (32), and (34), we can derive the desiredrelationshipbetweenthe variationswith
respectto φ andN

d y G � ∇φ � {
dφ

q ∇ � u dG
dN v GN ∇φ� ∇φ � w � (35)

Let usnow considertheflow achievedby processing(15) and(17) backto backin one
iterationof the main loop in Figure3 again. At the beginningof iterationn, the normals
arecomputedfrom φn. If we evolve thenormalsfor onestepaccordingto (15), insteadof
processingthemmultiple iterations,thenew normalsare

Nn£ 1 q Nn r dG
dN

z (36)
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wherewe write dG
dN insteadof dª

dN becausewe arereferringto theupdatefor N at a specific
point in space.If we immediatelyapply(17) to fit φ to this new normalmap,we get

dD
dφ

q Hφn r ∇ � u Nn r dG
dN w z (37)

whereD is thelocal functiondefinedin (16). BecauseNn is deriveddirectly from φn, we
have ∇ � N q Hφn

, which givestherule in our algorithmto makeup this infinitesimallag:

dD
dφ

q ∇ � dG
dN

� (38)

Comparingwith (35),we find therule to descendon theenergy asa functionof φ

d y G � ∇φ � {
dφ

q dD
dφ v ∇ � u GN ∇φ� ∇φ � w � (39)

Thisestablishesthemathematicalfoundationof ourmethod.However, in ourexperiments,
wehavefoundthatthecontributionof thesecondtermis verysmallandit doesnotchange
theresultsqualitatively. Therefore,wedropit for thesakeof computationalefficiency, and
implementonly dD

dφ asdescribedin Section3.

B. NUMERICAL IMPLEMENTATION

By embeddingsurfacemodelsin volumes,we have convertedequationsthatdescribethe
movementof surfacepointsto nonlinearPDEsdefinedon a volume. The next stepis to
discretizethesePDEsin spaceandtime. In thispaper, theembeddingfunctionφ is defined
on the volumedomainU andtime. The PDEsaresolvedusinga discretesamplingwith
forwarddifferencesalongthetime axis.

For brevity, we will discussthenumericalimplementationin 2D— theextensionto 3D
is straightforward. The function φ : U ¥ ℜ hasa discretesamplingφ ® p z q̄ , where ® p z q̄
is a grid location and φ ® p z q̄ q φ y xp z yq { . We will refer to a specifictime instanceof
this function with superscripts,i.e. φn ® p z q̄ q φ y xp z yq z tn { . In our calculations,we need
threedifferentapproximationsto first-orderderivatives: forward, backward, and central
differences.We denotethe type of discretedifferenceusingsuperscriptson a difference
operator, i.e.,δ

� £3� for forwarddifferences,δ
� � � for backwarddifferences,andδ for central

differences.For instance,the differencesin the x direction on a discretegrid with unit
spacingare

δ
� £3�
x φ ® p z q̄±°q φ ® p v 1 z q̄ r φ ® p z q̄/z

δ
� � �x φ ® p z q̄±°q φ ® p z q̄ r φ ® p r 1 z q̄/z and (40)

δxφ ® p z q̄±°q φ ® p v 1 z q̄ r φ ® p r 1 z q̄
2

�
The applicationof thesedifferenceoperatorsto vector-valuedfunctionsdenotescompo-
nentwisedifferentiation.

In describingthe numericalimplementation,we will refer to theflow chartin Figure3
for oneiterationof the main loop. Hence,the first stepin our numericalimplementation
is thecalculationof thesurfacenormalvectorsfrom φn. Recallthat thesurfaceis a level
setof φn asdefinedin (7). Hence,thesurfacenormalvectorscanbecomputedastheunit
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vectorin thedirectionof thegradientof φn. Thegradientof φn is computedwith central
differencesas

∇φn ² u
δxφn

δyφn w ; (41)

andthenormalvectorsareinitialized as

Nu³ 0 q ∇φn |��+�∇φn �F��� (42)

Becauseφn is fixed andallowed to lag behindthe evolution of N, the time stepsin the
evolution of N aredenotedwith a differentsuperscript,u. For this evolution, ∂N | ∂ t qr d

� | dN , which is derivedin (15).
We now describehow to numericallycomputed

� | dN. This computationis imple-
mentedwith smallestsupportareaoperators,whichusethesmallestpossibleneighborhood
of voxelsto computetherequiredoutput.TheLaplacianof a functioncanbecomputedin
two stepsby first applyingthegradientoperatorandthenthedivergenceoperator. In 2D,
thegradientof the normalsproducesa 2 � 2 matrix, which we call theflux matrix. Next,
thedivergenceoperatorcollapsestheflux matrix to a 2 � 1 vector. The“columns” of the
flux matrix arecomputedindependentlyas

x́

Mu ² δ
� £3�
x Nu r�� δ � £3�x φn � x́

Cu z (43)

ý

Mu ² δ
� £3�
y Nu r�� δ � £3�y φn � ý

Cu (44)

wherethe time index n remainsfixed aswe incrementu. The positionsof Mu, which is
computedwith forwarddifferences,arestaggeredoff thegrid by half apixel, seeFigure10.

For instance,
x́

Mu usesinformationfrom positions ® p v 1 z q̄ and ® p z q̄ ; hence,it exists at® p v 1| 2 z q̄ . We usethefollowing notation:for somefunctionα,
x́
α , and

ý
α will denotethe

functioncomputedat ® p v 1 | 2 z q̄ and ® p z q v 1 | 2̄ , respectively.

To computethe intrinsic derivativesof Nu on the level setsof φn, y δ � £3�x φn { x́

Cu, andy δ � £3�y φn { ý

Cu aresubtractedfrom the regular derivativesof Nu. The variables
x́

Cu and
ý

Cu

arecomputedasfollows

x́

Cu q x́

∇Nu � x́

∇φn | � x́

∇φn � 2 z (45)
ý

Cu q ý

∇Nu � ý

∇φn | � ý

∇φn � 2 z (46)

wherethematrix∇N is asdefinedin (12). In (45),thedotproductbetweenthematrix
x́

∇Nu

andthe vector
x́

∇φn | � x́

∇φn � 2 denotesthe vectorwhosecomponentsarethe dot products

of therows of
x́

∇Nu andthevector
x́

∇φn | � x́

∇φn � 2. Thesameappliesto (46). Thevariables

(45) and(46) mustbecomputedat thesamelocationsas
x́

Mu and
ý

Mu, respectively. These
computationsaredonewith thesmallestsupportareaoperators,usingthesymmetric2 � 3
grid of samplesaroundeachstaggeredpoint. For instance,the staggeredgradientsof φ ,
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Grid for N, φ, and dG/dN
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y−
M

y+
M

Fig. 10. Computationalgrid.

which areneededfor theevaluating(45) and(46),arecomputedas

x́

∇φn q ∇φn ® p v 1
2
z q̄ ² u

δ
� £[�
x φ ® p z q̄

1
2 y δyφ ® p z q̄ v δyφ ® p v 1 z q̄D{ w z

ý

∇φn q ∇φn ® p z q v 1
2
¯ ² u 1

2 y δxφ ® p z q̄ v δxφ ® p z q v 1̄D{
δ
� £[�
y φ ® p z q̄ w (47)

Thestaggeredgradientmatricesof thenormals,
x́

∇Nu and
ý

∇Nu, which arealsoneededfor
evaluating(45) and(46),arecomputedwith thesamestencil.

After thecomputationof theflux, backwardsdifferencesareusedto computethediver-
genceoperationin (15). For isotropicdiffusion,

∆u q δ
� � �x

x́

Mu v δ
� � �y

ý

Mu z (48)

andfrom (15) r � d �
dN

� u ² y I r Nu � Nu { ∆u q ∆u r y ∆u � Nu { Nu � (49)

Theresultsof thebackwardsdifferencingaredefinedat theoriginal φ grid location ® p z q̄
becausethey undothe forward staggeringin the flux locations. Therefore,both compo-
nentsof ∆ andthusd

� | dN arelocatedon theoriginal grid for φ .
To evaluate(15) for anisotropicdiffusion,we alsoneedto computeg y κ2 { at theprecise

locationswherethe flux (43) and(44) arelocated.Hence,we computethe total intrinsic
curvatureof thenormals

x́

κ2 q � x́

∇Nu � 2 r x́

Cu � x́

Cu z
ý

κ2 q � ý

∇Nu � 2 r ý

Cu � ý

Cu z (50)

where � � � 2 is the Euclideannorm, the sumof the squaresof all elementsof the matrix.
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Then,thedivergencefor anisotropicdiffusionis computedas

∆u q δ
� � �x � g y x́

κ2 { x́

Mu � v δ
� � �y µ g y ý

κ2 { ý

Mu ¶ z (51)

andthetangentialprojectionis appliedto this vectorasin (49).
Startingwith theinitialization in (42) for u q 0, we iterate

Nu£ 1 q Nu r � d �
dN

� u

(52)

for a fixed numberof steps,25 iterationsfor the examplesin this paper. In otherwords,
we do not aim at minimizing theenergy givenin (14) in thed

� | dN loop of Figure3; we
only reduceit. Theminimizationof total meancurvatureasa functionof φ is achievedby
iteratingthemainloop in Figure3.

Oncetheevolution of N is concluded,φ is refittedto thenew normalvectorsaccording
to (17). We denotetheevolvednormalsby Nn£ 1. To solve (17) we mustcalculateHφ and
HNń 1

, which is the inducedmeancurvatureof the normalmap; in otherwords,it is the
curvatureof thehypotheticaltargetsurfacethatfits thenormalmap.Curvaturefrom afield
of normalsis givenby

HNń 1 ² δxNn£ 1� x� v δyNn£ 1� y� z (53)

wherewe have usedcentraldifferenceson thecomponentsof thenormalvectorsthatare
denotedby the subscriptsy x{ and y y{ . ThequantityHNn ´ 1

needsto becomputedonceat
initialization asthe normalvectorsremainfixed during the refitting phase.Let v be the
time stepindex in the d

� | dφ loop. Hφv
is the meancurvatureof the moving level set

surfaceat time stepv andis calculatedfrom φ with thesmallestareaof support

Hφv ² δ
� � �x

δ
� £[�
x φv� x́

∇φv � v δ
� � �y

δ
� £3�
y φv� ý

∇φv � (54)

wherethe gradientsin the denominatorsarestaggeredto matchthe locationsof the for-
ward differencesin the numerator. The staggeredgradientsof φ in the denominatorare
calculatedusingthe2 � 3 neighborhoodasin (47).

ThePDEin (17) is solvedwith afinite forwarddifferences,but with theupwindscheme
for thegradientmagnitude[OsherandSethian1988],to avoid overshootingandmaintain
stability. Theup-windmethodcomputesa one-sidedderivative that looks in the up-wind
directionof the moving wave front, andtherebyavoidsovershooting.Moreover, because
we areinterestedin only a singlelevel setof φ , solving(17)overall of U is not necessary.
Different level setsevolve independently, and we can computethe evolution of φ only
in a narrow bandaroundthe level setof interestandre-initialize this bandasnecessary
[AdalsteinsonandSethian1995;Penget al. 1999].See[Sethian1999]for moredetailson
numericalschemesandefficient solutionsfor level setmethods.

Usingtheupwindschemeandnarrow bandmethods,φv£ 1 is computedfrom φv accord-
ing to (17) usingthecurvaturescomputedin (53) and(54). This loop is iterateduntil the
energy in (16) ceasesto decrease;let vf inal denotethe final iterationof this loop. Then

we setφ for thenext iterationof themainloop (seeFigure3) asφn£ 1 q φvf inal andrepeat
the entireprocedure.The numberof iterationsof the main loop is a free parameterthat
generallydeterminestheextentof processing.

ACM JournalName,Vol. V, No. N, Month 20YY.
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A Streaming Narrow-Band Algorithm: Interactive
Computation and Visualization of Level Sets

Aaron E. Lefohn, Joe M. Kniss, Charles D. Hansen, Ross T. Whitaker

(Invited Paper)

Fig. 1. Interactive level-set segmentation of a brain tumor from a 256 ×
256 × 198 MRI with volume rendering to give context to the segmented
surface. A clipping plane shows the user the source data, the volume rendering,
and the segmentation simultaneously. The segmentation and volume rendering
parameters are set by the user probing data values on the clipping plane.

Abstract— Deformable isosurfaces, implemented with level-set
methods, have demonstrated a great potential in visualization and
computer graphics for applications such as segmentation, surface
processing, and physically-based modeling. Their usefulness has
been limited, however, by their high computational cost and
reliance on significant parameter tuning. This paper presents
a solution to these challenges by describing graphics processor
(GPU) based algorithms for solving and visualizing level-set
solutions at interactive rates. The proposed solution is based on
a new, streaming implementation of the narrow-band algorithm.
The new algorithm packs the level-set isosurface data into
2D texture memory via a multi-dimensional virtual memory
system. As the level-set moves, this texture-based representation
is dynamically updated via a novel GPU-to-CPU message passing
scheme. By integrating the level-set solver with a real-time volume
renderer, a user can visualize and intuitively steer the level-set
surface as it evolves. We demonstrate the capabilities of this
technology for interactive volume segmentation and visualization.

Index Terms— Deformable Models, Image Segmentation, Vol-
ume Visualization, GPU, Level Sets, Streaming Computation,
Virtual Memory

All authors are associated with the Scientific Computing and Imaging
Institute at the University of Utah.
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I. INTRODUCTION

Level-set methods [1] rely on partial differential equations
(PDEs) to model deforming isosurfaces. These methods have
applications in a wide range of fields such as visualization, sci-
entific computing, computer graphics, and computer vision [2],
[3]. Applications in visualization include volume segmenta-
tion [4], surface processing [5], and surface reconstruction [6].

The use of level sets in visualization can be problematic.
Level sets are relatively slow to compute and they typically
introduce several free parameters that control the surface
deformation and the quality of the results. Setting these free
parameters can be difficult because, in many scenarios, a
user must wait minutes or hours to observe the results of a
parameter change. Although efforts have been made to take
advantage of the sparse nature of the computation, the most
highly optimized solvers are still far from interactive. This
paper proposes a solution to the above problems by mapping
the level-set PDE solver to a commodity graphics processor.

While the proposed technology has a wide range of uses
within visualization and elsewhere, this paper focuses on a
particular application: the analysis and visualization of volume
data. By accelerating the PDE solver to interactive rates and
coupling it to a real-time volume renderer, it is possible to
visualize and steer the computation of a level-set surface as it
moves toward interesting regions within a volume. The volume
renderer provides visual context for the evolving level set due
to the global nature of the transfer function’s opacity and color
assignment. Also, the results of a level-set segmentation can
specify a region-of-interest for the volume renderer [7].

The main contributions of this paper are:

• An integrated system demonstrating that level-set compu-
tations can be intuitively controlled by coupling a real-
time volume renderer with an interactive solver

• A GPU-based 3D level-set solver that is approximately
15 times faster than previous optimized solutions

• A multi-dimensional virtual memory scheme for GPU
texture memory that supports computation on time-
dependent, sparse data

• Real-time volume rendering directly from a packed, 2D
texture format. The technique also enables volume ren-
dering from a data set represented as a single set of 2D
slices.

• A message passing scheme between the GPU and CPU
that uses automatic mipmap generation to create compact,
encoded messages

• Efficient computation of a volumetric distance transform
on the GPU
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II. BACKGROUND AND RELATED WORK

A. Level Sets

This paper describes a new solver for an implicit repre-
sentation of deformable surface models called the method
of level sets [1]. The use of level sets has been widely
documented in the visualization literature, and several works
give comprehensive reviews of the method and the associated
numerical techniques [2], [3]. Here we merely review the
notation and describe the particular formulation that is relevant
to this paper.

An implicit model represents a surface as the set of points
S = {x̄|φ(x̄) = 0}, where φ : R

3 �→ R. Level-set methods
relate the motion of that surface to a PDE on the volume, i.e.

∂φ/∂t = −∇φ · v̄, (1)

where v̄ describes the motion of the surface. Note that v̄
can vary in both space and time. Within this framework one
can implement a wide range of deformations by defining an
appropriate v̄. This velocity term is often a combination of
several other terms, including data-dependent terms, geometric
terms (e.g. curvature), and others. In many applications, these
velocities introduce free parameters, and the proper tuning
of those parameters is critical to making the level-set model
behave in a desirable manner. Equation (1) is the general form
of the level-set equation, which can be tuned for wide variety
of problems and which motivates the architecture of our solver.

The proposed solver addresses the issues surrounding the
solutions of (1). For this paper, however, we restrict the
discussion on the particular form of this equation that is
suitable for the segmentation application described in Sect. VI-
A. This special case of (1) occurs when v̄ = G(x̄, t̄)n̄, where
n̄ is the surface normal and G is a scalar field, which we refer
to as the speed of the level set. In this case (1) becomes

∂φ/∂t = −|∇φ|G. (2)

Equation (2) describes a surface motion in the direction of the
surface normal, and thus the volume enclosed by the surface
expands or contracts, depending on the sign and magnitude of
G.

Another important special case occurs when G, in (2), is the
mean curvature of the level-set surface. The mean curvature
of the level sets of φ are expressed as

H =
1
2
∇ · ∇φ

|∇φ| . (3)

In volume segmentation and surface reconstruction this mean
curvature term is typically combined with an application-
specific data term in order to obtain a smooth result that
reflects interesting properties in the data.

There is a special case of (1) in which the surface mo-
tion is strictly inward or outward. In such cases the PDE
can be solved somewhat efficiently using the fast marching
method [3] and variations thereof [8]. However, this case
covers only a very small subset of interesting speed functions.
In general, we are concerned with solutions that allow the
model to expand and contract as well as include a curvature
term.

Initiallize
Computational 

Domain

Execute
Kernel

Update
Computational 

Domain

1
2

3

Fig. 2. The three fundamental steps in a sparse-grid solver. Step 1 initializes
the sparse computational domain. Step 2 executes the computational kernel
on each element in the domain. Step 3 updates the domain if necessary. Steps
2 and 3 are repeated for each solver iteration.

Efficient algorithms for solving the more general equation
rely on the observation that at any one time step the only
parts of the solution that are important are those adjacent
to the moving surface (near points where φ = 0). This
observation places level-set solvers as part of a larger class
of solvers that efficiently operate on time-dependent, sparse
computational domains—i.e. a subset of the original problem
domain (Figure 2).

Two of the most common CPU-based level-set solver tech-
niques are the narrow-band [9] and sparse-field [6], [10]
methods. Both approaches limit the computation to a narrow
region near the isosurface yet store the complete computational
domain in memory. The narrow-band approach implements the
initialization and update steps in Figure 2 (Steps 1 and 3) by
updating the embedding, φ, on a band of 10-20 pixels around
the model, using a signed distance transform implemented with
the fast marching method [3]. The band is reinitialized when-
ever the model (defined as a particular level set) approaches
the edge. In contrast, the sparse-field method only traverses the
complete domain during the initialization step of the algorithm
in Figure 2. The sparse-field approach keeps a linked list of
active data elements. The list is incrementally updated via a
distance transform after each iteration. Even with this very
narrow band of computation, update rates using conventional
processors on typical resolutions (e.g. 2563 voxels) are not
interactive. This is the motivation behind our GPU-based
solver. Although the new solver borrows ideas from both
the narrow-band and sparse-field algorithms, it implements a
new solution that conforms to the architectural restrictions of
GPUs.

B. Scientific Computation on Graphics Processors

Graphics processing units have been developed primarily
for the computer gaming industry, but over the last several
years researchers have come to recognize them as a low cost,
high performance computing platform. Two important trends
in GPU development, increased programmability and higher
precision arithmetic processing, have helped to foster new non-
gaming applications.

For many data-parallel computations, graphics processors
out-perform central processing units (CPUs) by more than an
order of magnitude because of their streaming architecture [11]
and dedicated high-speed memory. In the streaming model of
computation, arrays of input data are processed identically by
the same computation kernel to produce output data streams.
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In contrast to vector architectures, the computation kernel
in a streaming architecture may consist of many (possibly
thousands) of instructions and use temporary registers to hold
intermediate values. The GPU takes advantage of the data-
level parallelism inherent in the streaming model by having
many identical processing units execute the computation in
parallel.

Currently GPUs must be programmed via graphics APIs
such as OpenGL or DirectX. Therefore all computations must
be cast in terms of computer graphics primitives such as
vertices, textures, texture coordinates, etc. Figure 3 depicts the
computation pipeline of a typical GPU. Vertices and texture
coordinates are first processed by the vertex processor. The
rasterizer then interpolates across the primitives defined by
the vertices and generates fragments (i.e. pixels). The fragment
processor applies textures and/or performs computations that
determine the final pixel value. A render pass is a set of data
passing completely through this pipeline. It can also be thought
of as the complete processing of a stream by a given kernel
(i.e. a ForEach call).

Grid-based computations are solved by first transferring
the initial data into texture memory. The GPU performs the
computation by rendering graphics primitives that access this
texture. In the simplest case, a computation is performed on all
elements of a 2D texture by drawing a quadrilateral that covers
the same number of grid points (pixels) as the texture. Memory
addresses that identify each fragment’s data value as well as
the location of its neighbors are given as texture coordinates.
A fragment program (the kernel) then uses these addresses
to read data from texture memory, perform the computation,
and write the result back to texture memory. A 3D grid
is processed as a sequence of 2D slices. This computation
model has been used by a number of researchers to map
a wide variety of computationally demanding problems to
GPUs. Examples include matrix multiplication, finite element
methods, multi-grid solvers, and others [12]–[14]. All of these
examples demonstrate a homogeneous sequence of operations
over a densely populated grid structure.

Strzodka et al. [15] were the first to show that the level-
set equations could be solved using a graphics processor.
Their solver implements the two-dimensional level-set method
using a time-invariant speed function for flood-fill-like image
segmentation, without the associated curvature. Lefohn and
Whitaker demonstrate a full three dimensional level-set solver,
with curvature, running on a graphics processor [16]. Neither
of these approaches, however, take advantage of the sparse
nature of level-set PDEs and therefore they perform only
marginally better (e.g. twice as fast) than sparse or narrow
band CPU implementations.

This paper presents a GPU computational model that sup-
ports time-dependent, sparse grid problems. These problems
are difficult to solve efficiently with GPUs for two reasons. The
first is that in order to take advantage of the GPU’s parallelism,
the streams being processed must be large, contiguous blocks
of data, and thus grid points near the level-set surface model
must be packed into a small number of textures. The second
difficulty is that the level set moves with each time step,
and thus the packed representation must readily adapt to the

Vertex & Texture
Coordinate data

Vertex Program

Rasterize

Fragment

Program

Texture data

Frame/Pixel Buffer

Fig. 3. The modern graphics processor pipeline.

changing position of the model. This requirement is in contrast
to the recent sparse matrix solvers [17], [18] and previous
work on rendering with compressed data [19], [20]. Recent
work by Sherbondy et al. [21] describes an alternative time-
dependent, sparse GPU computation model which is discussed
in Section VI-C.

C. Hardware-Accelerated Volume Rendering

Volume rendering is a flexible and efficient technique for
creating images from 3D data [22]–[24]. With the advent of
dedicated hardware for rasterization and texturing, interactive
volume rendering has become one of the most widely used
techniques for visualizing moderately sized 3D rectilinear
data [25], [26]. In recent years, graphics hardware has become
more programmable, permitting rendering features with an
image quality that rival sophisticated software techniques [27],
[28]. In this paper, we describe a novel volume rendering
system that leverages programmable graphics hardware to
render the packed level-set solution data.

III. A VIRTUAL MEMORY ADDRESS SCHEME FOR SPARSE

COMPUTATION

The limited computational capabilities of modern GPUs,
their data-parallel streaming architecture, and our goal of
interactive performance impose some important design re-
strictions on the proposed solver. For instance, the data-
parallel computation model requires homogeneous operations
on the entire computational domain, and memory constraints
require us to process and store only the active domain on the
computational processor (i.e. the GPU). Furthermore, GPUs do
not support scatter write operations, and the communication
bandwidth between the GPU and CPU is insufficient to allow
transmission of any significant portion of the computational
domain. Our new streaming, narrow-band level-set solver
works efficiently within these restrictions and leverages GPU
capabilities by packing the active computational domain into
2D texture memory. The GPU solves the 3D, level-set PDE
directly on this packed format and quickly updates the packed
representation after each solver iteration.

Re-mapping the computational domain (a subset of a vol-
ume) to take advantage of the GPU’s capabilities has the unfor-
tunate effect of making the computational kernels extremely
complicated—that is difficult to design, debug, and modify.
The kernel programmer must take the physical memory layout
into consideration each time the kernel addresses memory.
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Other researchers have successfully re-mapped computational
domains to efficiently leverage the GPU’s capabilities [12],
[17], [18], [29], but they invariably describe these complex
kernels in terms of the physical memory layout. This section
presents a solution to this problem for level-set computation
that allows kernels to access memory as if it were stored in the
original, 3D domain—irrespective of the 2D physical layout
used on the GPU. Our solution is an extension to the virtual
memory systems used in modern operating systems.

A. Traditional Virtual Memory Overview

Nearly all modern operating systems contain a virtual
memory system [30]. The purpose of virtual memory is to give
the programmer the illusion that the application has access
to a contiguous memory address space, while allowing the
operating system to allocate memory for each process on
demand, in manageable increments, from whatever physical
resources happen to be available. Note that there are two
meanings of virtual memory. The first is the mapping from a
logical address space to a physical address space. The second
is the mechanism for mapping logical memory onto a physical
memory hierarchy (e.g. main memory, disk, etc). For this
discussion, virtual memory only refers to the former definition.

Virtual memory works by adding a level of indirection
between physical memory and the memory accessed by an
application. Most conventional virtual memory systems divide
physical and virtual memory into equally sized pages. The
data addressed by an application’s contiguous virtual address
space will often be stored in many, disconnected physical
memory pages. A page table tracks the mapping from virtual
to physical memory pages. When an application requests
memory, the system allocates physical memory pages and
updates the page table. Note that the virtual and physical pages
are identically sized.

When an application accesses memory via a virtual address,
the system must first perform a virtual-to-physical address
translation. The virtual address, VA, is first converted to a
virtual page number, VPN. The system uses the page table to
convert the VPN to a physical page address, PPA. The PPA is
the physical address of the first element in a page. Finally, the
memory system obtains the physical address, PA, by adding
the PPA to the offset, OFF. The OFF is the linear distance
between the virtual address and the beginning of the virtual
page which contains it. The address computation is

VPN ← VA
S[P]

PPA ← PageTable(VPN)
OFF ← mod(VA,S[P])
PA ← PPA + OFF,

(4)

where S[P] is the size of a memory page.

B. Multi-Dimensional Virtual Memory for GPUs

The virtual memory system used in our solver is a multi-
dimensional extension of the traditional virtual memory sys-
tem described in Section III-A.

Traditional virtual memory systems use one-dimensional
virtual and physical address spaces. Our system uses a 3D

Virtual Data (
�

) Virtual Page (
�

)

Physical Memory ( � ) Physical Page ( �   )

Page
Table

Inverse
Page
Table

Virtual Space

Physical Space

�

�

Fig. 4. The multi-dimensional virtual and physical memory spaces used
in our virtual memory system. The original problem space is V, the virtual
address space. The virtual page space, VP, is a subdivided version of V.
Virtual memory pages are mapped to the physical page space, GP, by the
page table. The inverse page table maps physical pages in GP to virtual
pages in VP. The collection of all elements in GP constitute G, the physical
memory of the hardware.

virtual and a 2D physical memory address space. We use a
3D virtual memory space because the level-set computation is
inherently volumetric. The 2D physical memory address space
is motivated by the fact that GPUs are optimized to process
2D memory regions. By using a 2D physical address space,
we are able to process the entire active volumetric domain
simultaneously. This maximizes the benefit of the parallel,
SIMD architecture of the GPU. We also make the simplifying
assumption that virtual and physical pages are identical in
dimension and size. Thus, the virtual space is not partitioned
equally in all axes: 2D pages must be stacked in 3D to populate
the problem domain as seen in Figure 4. Our system uses
pages of size S[P] = (16, 16). This size represents a good
compromise between a tight fit to the narrow computational
domain and the overhead of managing and computing pages.
Empirical results validate this choice.

We now introduce notation for the various address spaces
in our system. We notate the space of K-length vectors of
integers as Z

K . The set of all voxels in the 3D virtual address
space (i.e. the problem domain) is defined as V ⊂ Z

3. Each
of the virtual memory pages is a set of contiguous voxels in
V; the space of all virtual pages is VP (Figure 4). Similarly,
the physical address space, G ⊂ Z

2, is subdivided into pages
to form the physical page space, GP. The elements within
a virtual or physical page are addressed identically using
elements of P ⊂ Z

2. We also define a size operator for the 2D
and 3D spaces described above. For X in {V,VP,G,GP,P},
we define S[X] to be a 2-vector or 3-vector (according to
the dimension of X) giving the number of elements along
each axis of the space X . Note that S[VP] = S[V]/S[P] and
S[GP] = S[G]/S[P] (using component-wise division).

Virtual-to-physical address translation in a multi-
dimensional virtual memory system works analogously
to the 1D algorithm. Virtual addresses are now 3D position
vectors in V and physical addresses are 2D vectors in G.
The page table is a 3D table that returns 2D physical page
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Fig. 5. The virtual-to-physical address translation scheme in our multi-
dimensional virtual memory system. A 3D virtual address, VA, is first
translated to a virtual page number, VPN. A page table translates the VPN
to a physical page address, PPA. The PPA specifies the origin of the physical
page containing the physical address, PA. The offset is then computed based
on the virtual address and used to obtain the final 2D physical address, PA.

addresses. With these multi-dimensional definitions in mind,
Eq (4) still applies to the vector-valued quantities. Figure 5
shows an example multi-dimensional address translation.

For the level-set solver in this paper, the multi-dimensional
virtual memory system is implemented in part by the CPU and
in part by the GPU. The CPU manages the page table, handles
memory allocation/deallocation requests, and translates VPNs
to PPAs. The GPU issues memory allocation/deallocation re-
quests and computes physical addresses. We further divide the
GPU tasks between the various processors on the GPU. The
fragment processor creates memory allocation/deallocation re-
quests. The address translation implementation uses the vertex
processor and rasterizer to compute all PAs. Sections III-C
and III-D describe the architectural and efficiency reasons
for assigning the various virtual memory tasks to specific
processors.

C. Virtual-to-Physical Address Translation

This section explains the details of the virtual-to-physical
address scheme used in our GPU-based virtual memory sys-
tem. Because the translation algorithm is executed each time
the kernel accesses memory, its optimization is fundamental
to the success of our method.

The simplest and most general way to implement the
virtual-to-physical address translation for a GPU-based virtual
memory system is to directly implement the computation in
(4) and store the page table on the GPU as a 3D texture. A
significant benefit of this approach is that it is completely gen-
eral. Unfortunately, without dedicated memory-management
hardware to accelerate the translation, this scheme suffers from
several efficiency problems. First, the page table lookup means
that a dependent texture read is required for each memory
access. A dependent texture is defined as using the result
of one texture lookup to index into another. This may cause
a significant loss in performance on current GPUs. Second,
storing the page table on the GPU consumes limited texture
memory. The third problem is that a divide, modulus, and
addition operation are required for each memory access. This
consumes costly and limited fragment program instructions.
Note that Section III-D discusses other problems with storing
the page table on the GPU related to the limited capabilities
of current GPU architectures.

Interior
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Corner

Interior

Edge Corner

�

� � � �
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�
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Fig. 6. The substream boundary cases used to statically resolve the
conditionals arising from 3 × 3 × 3 neighbor accesses across memory page
boundaries. The nine substream cases are: interior, left edge, right edge, top
edge, bottom edge, lower-left corner, lower-right corner, upper-right corner,
and upper-left corner (a). The interior case accesses its neighbors from only
three memory pages (b). The edge cases require six pages (c), and the corner
cases require twelve memory pages (d). Note that for reasonably large page
sizes, the more cache-friendly interior case has by far the highest number of
data elements.

We can avoid the memory and computational inefficien-
cies that arise from storing the page table on the GPU by
examining the pattern of virtual addresses required by the
application’s fragment program. In the case of our level-set
solver, the fragment programs only use virtual addresses within
a 3 × 3 × 3 neighborhood of each active data element. This
means that each active memory page will only access adjacent
virtual memory pages (Figure 6). Moreover, we show that this
simplified translation case makes it possible to lift the entire
address translation from the fragment processor to the vertex
processor and rasterizer.

Once we resolve the virtual addresses used by a fragment
program, we can determine which virtual pages each active
page will access. With this relative page information, the
GPU can perform the virtual-to-physical address translation
without a page table in texture memory. The CPU makes this
possible by sending the PPAs for all required pages to the
GPU as texture coordinates. The GPU can then use the relative
neighbor offset vectors to decide which adjacent page contains
the requested value (see Figure 6(a)).

The GPU’s task of deciding which adjacent page contains
a specific neighbor value unfortunately requires a significant
amount of conditional logic. This logic must classify each
data element into one of nine boundary cases: one of the four
corners, one of the four edges, or an interior element (see
Figure 6). Unfortunately current fragment processors do not
support conditional execution. This logic could alternatively
be encoded into a texture; however, this would again force
the use of an expensive dependent texture read. Just as
statically resolving virtual addresses allowed us to optimize
the GPU computation, all active data elements can be pre-
classified into the nine boundary cases. The result is that all
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memory addresses used in each case will lie on the same
pages relative to each active page (see Figure 6). In other
words, the memory-page-locating logic has been statically
resolved by pre-classifying data elements into their respective
boundary cases. The data elements for these substream cases
are generated by drawing unique geometry for each case. The
corner substream cases are represented as points, the edges as
lines, and the interior regions as quadrilaterals.

Kapasi et al. [31] describe an efficient solution to con-
ditional execution in streaming architectures. Their solution
is to route stream elements to different processing elements
based on the code branch. Substreams are merely a static
implementation of this data routing solution to conditional
execution. The advantage is that the computation kernel run on
each substream contains no conditional logic and is optimized
specifically for that case. Our solution additionally gains from
optimized cache behavior for the most common, interior, case
(77% of the data points in a 16 × 16 page). The interior
data elements require only three memory pages to access all
neighbors (Figure 6(b)). In comparison, reading all neighbors
for an edge element requires loading six pages (Figure 6(c)).
The corner cases require twelve pages from disparate regions
of physical memory(Figure 6(d)). The corner cases account
for less than 2% of the active data elements.

With the use of substreams, the GPU can additionally
optimize the address computation by computing physical ad-
dresses with the vertex processor rather than the fragment
processor. Because all data elements (i.e. fragments) use
exactly the same relative memory addresses, the offset and
physical address computation steps of (4) can be generated by
interpolating between substream vertex locations. The vertex
processor and rasterizer can thus perform the entire address
translation. This optimization distributes computational load
to under-utilized processing units and reduces the number of
limited and expensive fragment instructions.

D. Bootstrapping the Virtual Memory System

This section describes the steps required to initialize the
GPU virtual memory system. To begin, the application speci-
fies the page size, S[P], the virtual page space size, S[VP], and
the fundamental data type to use (i.e. 32-bit floating point, 16-
bit fixed point, etc.). The virtual memory system then allocates
an initial physical memory buffer on the GPU. It also creates
a page table, an inverse page table, a geometry engine, and
a stack of free pages on the CPU. The decision to place the
aforementioned data structures on the CPU is based on the
efficiency concerns described in Section III-C as well as GPU
architectural restrictions. These restrictions include: the GPU’s
lack of random write access to memory, lack of writable 3D
textures, lack of dynamically sized output buffers, and limited
GPU memory.

The page table is defined to store a MemoryPage object
that contains the vertices and texture coordinates required by
the GPU to access the physical memory page. The inverse page
table is designed to store a VPN vector for each active physical
page. Figure 5 shows these mappings. Note that the page table
and inverse page table were referred to as the unpacked map
and packed map respectively in Lefohn et al. [32].

The vertices and texture coordinates stored in the
MemoryPage object are actually pointers into the geometry
engine. The geometry engine has the capability of quickly
rendering (i.e. processing) any portion of the physical mem-
ory domain. Thus the geometry engine must generate the
substreams for the set of active physical pages. The last
initialization step is the creation of the free-page stack. The
virtual memory system simply pushes all physical pages (i.e.
pointers to MemoryPage objects) defined by the geometry
engine onto a stack.

The application issues GPU physical memory allocation
and deallocation requests to the virtual memory system. Upon
receiving a virtual page request, the system pops a physical
page from the free-page stack, updates the page tables, and
returns a MemoryPage pointer to the application. The reverse
process occurs when the application deallocates a virtual
memory page.

The level-set solver generates memory page allocation and
deallocation requests after each solver iteration based on the
form of the current solution. Section IV-D describes how
the solver uses the GPU to efficiently create these memory
requests.

IV. SPARSE GPU LEVEL-SET SOLVER

This section now explains our GPU level-set solver im-
plementation using the virtual memory system and level-set
equations presented in Section III and Section II-A. Note that
the details of the level-set discretization are found in Lefohn
et al. [33].

A. Initialization of Computational Domain

The solver begins by initializing the sparse computational
domain (Step 1 in Figure 2). An initial level-set volume
is passed to the level-set solver by the host application.
The sparse domain initialization involves identifying active
memory pages in the input volume, allocating GPU memory
for each active page, then sending the initial data to the GPU.

The solver identifies active virtual pages by checking each
data element for a non-zero derivative value in any of the six
cardinal directions. If any element in a page contains non-
zero derivatives, the entire page is activated. The initialization
code then requests a GPU memory page from the virtual
memory system for each active page. The level-set data is
then drawn into GPU memory using the vertex locations in
each MemoryPage object.

This scheme is effective only because the input level-set
volume is assumed to be a clamped distance transform–
meaning that regions on or near the isosurface have non-
zero gradients while regions outside or inside the surface
have gradients of zero. The outside voxels have a value of
zero (black) and the inside ones have a value of one (white).
Section IV-B explains how the distance transform embedding
is maintained throughout the level-set computation.

The inactive virtual pages do not need to be represented in
physical memory. If an active data element queries an inactive
value, however, an appropriate value needs to be returned.
Because all inactive regions are either uniformly black or
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Fig. 7. The level-set solver’s use of the paged virtual memory system. All
active pages (i.e. those that contain non-zero derivatives) in the virtual page
space (a) are mapped to unique pages of physical memory (b). The inactive
virtual pages are mapped to the static inside or outside physical page. Note
that the only data stored on the GPU is that represented by (b).

white, we solve this boundary condition problem by defining
a special, inactive page state. A virtual page in this state is
mapped to one of two static physical pages. One of these
static pages is black, representing regions outside of the level-
set surface. The other static page is white and represents
regions inside the level-set surface. The page table contains
these many-to-one mappings, but the inverse page table does
not store a valid entry for the static pages. Note that we could
have alternatively solved this boundary problem using single
pixels instead of entire pages. We also could have solved the
problem by creating substreams for the active elements on the
boundary of the active set.

B. Distance Transform on the GPU

In order to take advantage of the sparse nature of level-
set solutions, algorithms must maintain a somewhat consistent
level-set density, which is defined as the number of level sets
per unit volume. If the level-set density becomes too low
(spread out) it can become difficult to efficiently isolate the
computation to the desired interface. Alternatively, a level-
set density that becomes too high (close together) can cause
aliasing and numerical problems. The most common way
of maintaining a desired level-set density is to keep the
embedding, φ, resembling a distance transform [6], [9], [34].

The new streaming level-set solver maintains the distance
transform by introducing an additional speed term, Gr, to the
level-set PDE (1) that controls the surface motion. This speed
term pushes the level sets of φ, either closer together or farther
apart, so that they resemble a clamped distance transform
(CDT). The CDT has a constant level-set density within a
predefined band and ensures that voxels near the isosurface
have finite derivatives while those farther away have gradient
magnitudes of zero. As described in Sections IV-A and IV-
D, the identification of zero-derivative regions is critical for
an efficient solver implementation. This rescaling speed term,
Gr, is computed as

Gr = φgφ − φ|∇φ|, (5)

where gφ is the target gradient magnitude within the compu-
tational domain, and |∇φ| is the gradient magnitude in the
direction of the level-set model isosurface. The target param-
eter, gφ, can be set based on the numerical precision of the

level-set data. By setting gφ sufficiently high, numerical errors
caused by underflow can easily be avoided. It is important to
note that Gr is strictly a numerical construct; it does not affect
the movement of the zero level set, i.e. the surface model. Also
note that the solver can be used to compute only the distance
transform (i.e. no surface movement) by setting gφ to one and
making Gr the only speed term.

C. Level-Set Computation

The GPU next performs the level-set computation (Step
2 of the sparse algorithm in Figure 2). The details of the
level-set discretization used by our solver are given in Lefohn
et al. [33]. This section gives a high-level overview of the
computation. The level-set update proceeds in the following
steps:

A. Compute 1st and 2nd partial derivatives.
B. Compute N level-set speed terms.
C. Update level-set PDE.

The derivative computation in Step A above uses the
substream-based, virtual-to-physical address scheme described
in Section III-C. The derivatives are computed in nine sub-
stream render passes, each of which outputs to the same four,
4-tuple buffers. The speed function computations in Step B
are application-dependent. Example speed terms include the
curvature computation described in (3), the rescaling term
described in (5), and the thresholding term described in (7).
There will be zero or more render passes for each speed
function. The level-set update (Step C) is the up-wind scheme
described in Lefohn et al. [33]. This is computed in a single
pass. Note that additional GPU memory must be allocated
to store the intermediate results accumulated in Steps A and
B before they are consumed in Step C. Our solver performs
register allocation of temporary buffers to minimize GPU
memory usage.

D. Update of Computational Domain

After each level-set update, the solver determines which
virtual pages need to be added-to or removed-from the active
domain. The solver accomplishes this by aggregating gradient
information from all elements in each active page. In our
solver, the GPU must compute this information because the
level-set solution exists only in physical memory. The active
set must be updated by the CPU, however, because the page
table and geometry engine exist in CPU main memory. In
addition, the amount of information passed from the GPU to
the CPU must be kept to a minimum because of the limited
bandwidth between the two processors. This section gives an
overview of an algorithm that works within these constraints.
Lefohn et al. [33] explains the full details of the algorithm.

The GPU creates a memory allocation/deallocation request
by producing a small image (of size S[GP]) with a single-byte
pixel per physical page. The value of each pixel is a bit code
that encapsulates the activation or deactivation state of each
page and its six adjacent neighbors (in VP). The CPU reads
this small (< 64kB) message, decodes it, and submits the
allocation/deallocation requests to the virtual memory system
(Figure 8).
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Fig. 8. The GPU’s creation of a memory allocation/deallocation request.
Step A uses solver-specific data to create two buffers containing the active
state of each data element and its adjacent neighbors. Step B uses automatic
mipmapping to reduce the buffers from size S[G] to the physical page space
size, S[GP]. Step C combines the information from the two down-sampled
state buffers into an eight-bit code for each pixel. This code encapsulates
whether or not each active virtual memory page and its adjacent neighbors
should be enabled. In step D, the CPU reads the bit-code buffer, decodes it,
and allocates/deallocates pages as requested.

The GPU creates the bit-code image by first computing two,
four-component neighbor information buffers of size S[G]
(Step A of Figure 8). This computation uses the previously-
computed, one-sided derivatives of φ to identify the required
active pages. A page must be activated if it contains elements
with non-zero gradient magnitudes. The automatic mipmap-
ping GPU feature is then used to down-sample the resulting
buffers (i.e. aggregate data samples) to the page-space image
(Step B in Figure 8). The final GPU operation combines the
active page information into the bit code (Step C in Figure 8).
A fragment program performs this step by emulating a bit-
wise OR operation via conditional addition of powers of two.
Finally, in step D of Figure 8, the CPU reads this message
from the GPU.

Note that the use of automatic mipmapping places some
restrictions on the maximum memory page size due to quan-
tization rounding errors that arise when down-sampling 8-bit
values. This limitation can be relaxed by using a 16-bit fixed-
point data type. Alternatively, floating-point values can be used
if the down-sampling is performed with fragment program
passes instead of automatic mipmapping.

E. GPU Implementation Details

The level-set solver and volume renderer are implemented
in programmable graphics hardware using vertex and frag-
ment programs on the ATI Radeon 9800 GPU. The pro-
grams are written in the OpenGL ARB vertex program and
ARB fragment program assembly languages.

There are several details related to render pass output buffers
that are critical to the performance of the level-set solver. First
is the ability to output multiple, high-precision 4-tuple results
from a fragment program. Writing sixteen scalar outputs from
a single render pass enables us to perform the expensive 3D
neighborhood reconstruction only once and use the gathered
data to compute the derivatives in a single pass. Second, we
avoid the expensive change between render targets [35] (i.e.
pixel buffers) by allocating a single pixel buffer with many
render surfaces (front, back, aux0, etc.) and using each surface
as a separate output buffer.

Lastly, there is a subtle speed-versus-memory trade-off that
must be carefully considered. Because the physical-memory
texture can be as large as 20482, storing intermediate results
(e.g. derivatives, speed values, etc.) during the computation
can require a large amount of GPU memory. This memory
requirement can be minimized by performing the level-set
computation in sub-regions. The intermediate buffers must
then be only the size of the sub-region. This partitioning
does reduce computational efficiency, however, and so the sub-
regions are made as large as possible. We currently use 5122

sub-regions when the level-set texture is 20482 and use a single
region when it is smaller.

V. VOLUME RENDERING OF PACKED DATA

The direct visualization of the level-set evolution is impor-
tant for a variety of level-set applications. For instance, in
the context of segmentation, direct visualization allows a user
to immediately assess the quality and accuracy of the pending
segmentation and steer the evolution toward the desired result.
Volume rendering is a natural choice for visualizing the level-
set surface model, because it does not require an intermediate
geometric extraction, which would severely limit interactivity.
If one were to use marching cubes, for instance, a distinct
triangle mesh would need to be created (and rendered) for each
iteration of the level-set solver. The proposed solver, therefore,
includes a volume renderer, which produces a full 3D (transfer-
function based) volume rendering of the evolving level set on
the GPU [28].

For rendering the evolving level-set model, we use a variant
of traditional 2D texture based volume rendering [25]. We
modify the conventional approach to render the level-set
solution directly from the packed physical memory layout,
which is physically stored in a single 2D texture. Because the
level-set data and physical page configuration are dynamic, it
would be inefficient to pre-compute and store three separate
versions of the data, sliced along cardinal views, as is typically
done with 2D texture approaches. Instead we reconstruct these
views each time the volume is rendered. This new technique
is thus both applicable to rendering compressed data as well
as traditional texture-based volume rendering from a single set
of 2D slices.

The volume rendering algorithm utilizes a two pass ap-
proach for reconstruction and rendering. Figure 9 illustrates
the steps involved. An additional off-screen buffer caches
two reconstructed neighboring slices containing the level-set
solution and its gradient (Figure 9 A). During the rendering
phase arbitrary slices along the preferred slice direction are
interpolated from these neighboring slices (Figure 9 B). Once
all interpolated slices between slice i and i−1 are rendered and
composited, the next slice (i+1) is reconstructed. This newly
reconstructed slice replaces the cached slice, i − 1. The GPU
then renders and composites the next set of interpolated slices
(i.e. those between slice i + 1 and i). This pattern continues
until all slices have been reconstructed and rendered.

When the preferred slice axis, based on the viewing angle, is
orthogonal to the virtual memory page layout, we reconstruct
2D slices of the level-set solution and its gradient using a
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Fig. 9. Two pass rendering of packed volume data. In step A, a 2D slice (i)
is reconstructed from the physical page (packed) layout, GP. In step B, one or
more intermediate slices between i and i−1 are interpolated, transformed into
optical properties (via the transfer function), lit, and rendered for the current
view. The next iteration begins by reconstructing slice i + 1, replacing i− 1,
and so on.
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Fig. 10. Reconstruction of a slice for volume rendering the packed level-set
model: (a) When the preferred slicing direction is orthogonal to the virtual
memory page layout, the pages (shown in alternating colors) are draw into a
pixel buffer as quadrilaterals. (b) For slicing directions parallel to the virtual
page layout, the pages are drawn onto a pixel buffer as either vertical or
horizontal lines.

textured quadrilateral for each page, as shown in Fig. 10 A.
On the other hand, if the preferred slice direction is parallel
to the virtual page layout, we render a row or column from
each page using textured line primitives, as in Fig. 10 B. In
both cases, slices are reconstructed into a pixel buffer which
is bound as a texture in the rendering pass. These slices are
reconstructed at the same resolution as level-set solution.

In the rendering phase, we leverage the hardware’s bilinear
filtering for in-plane interpolation of the reconstructed level-set
slice. Trilinear interpolation of an arbitrary slice between two
adjacent reconstructed slices is accomplished by combining
them, i.e. performing linear interpolation along the preferred
slice direction, in the fragment program. This same fragment
program also evaluates the transfer function and lighting
for the interpolated data. For efficiency, we also reuse data
wherever possible. For instance, lighting for the level-set
surface, evaluated in the rendering phase, uses gradient vectors
computed during the level-set update stage.

VI. APPLICATION AND RESULTS

This section describes an application for interactive volume
segmentation and visualization, which uses the level-set solver
and volume renderer described previously. We show pictures
from the system and present timing results relative to our

current benchmark for level-set deformations, which is a
highly optimized CPU solution [36].

A. Volume Segmentation With Level-Sets

For segmenting volume data with level sets, the speed
functions usually consists of a combination of two terms [4],
[37]

∂φ

∂t
= |∇φ|

[
αD(x̄) + (1 − α)∇ · ∇φ

|∇φ|
]

, (6)

where D is a data term that forces the model to expand or
contract toward desirable features in the input data (which
we also call the source data), the term ∇ · (∇φ/|∇φ|) is the
mean curvature H of the surface, which forces the surface
to have less area (and remain smooth), and α ∈ [0, 1] is a
free parameter that controls the degree of smoothness in the
solution.

This combination of a data-fitting speed function with the
curvature term is critical to the application of level sets to
volume segmentation. Most level-set data terms D from the
segmentation literature are equivalent to well-known algo-
rithms such as isosurfaces, flood fill, or edge detection when
used without the smoothing term (i.e. α = 1). The smoothing
term alleviates the effects of noise and small imperfections
in the data, and can prevent the model from leaking into
unwanted areas. Thus, the level-set surface models provide
several capabilities that complement volume rendering: local,
user-defined control; smooth surface normals for better ren-
dering of noisy data; and a closed surface model, which can
be used in subsequent processing or for quantitative shape
analysis.

For the work in this paper we have chosen a simple speed
function to demonstrate the effectiveness of interactivity and
real-time visualization in level-set solvers. The speed function
we use in this work depends solely on the greyscale value
input data I at the point x̄:

D(I) = ε − |I − T |, (7)

where T controls the brightness of the region to be segmented
and ε controls the range of greyscale values around T that
could be considered inside the object. In this way a model
situated on voxels with greyscale values in the interval T ± ε
will expand to enclose that voxel, whereas a model situated on
greyscale values outside that interval will contract to exclude
that voxel. The speed term is gradual, as shown in Fig. 11,
and thus the effects of D diminish as the model approaches
the boundaries of regions with greyscale levels within the
T ± ε range. This makes the effects of the curvature term
relatively larger. This choice of D corresponds to a simple,
one-dimensional statistical classifier on the volume intensity
[38].

To control the model a user specifies three free parameters,
T , ε, and α, as well as an initialization. The user generally
draws a spherical initialization inside the region to be seg-
mented. Note that the user can alternatively initialize the solver
with a pre-processed (thresholded, flood filled, etc.) version of
the source data.
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Fig. 11. A speed function based on image intensity causes the model to
expand over regions with greyscale values within the specified (positive) range
and contract otherwise.

Fig. 12. A depiction of the user interface for the volume analysis application.
Users interact via slice views, a 3D rendering, and a control panel.

B. Interface and Usage

The application in this paper consists of a graphical user in-
terface that presents the user with two slice viewing windows,
a volume renderer, and a control panel. (Fig. 12). Many of
the controls are duplicated throughout the windows to allow
the user to interact with the data and solver through these
various views. Two and three dimensional representations of
the level-set surface are displayed in real time as it evolves.

The first 2D window displays the current segmentation as a
yellow line overlaid on top of the source data. The second 2D
window displays a visualization of the level-set speed function
that clearly delineates the positive and negative regions. The
first window can be probed with the mouse to accomplish three
tasks: set the level-set speed function, set the volume rendering
transfer function, and draw 3D spherical initializations for
the level-set solver. The first two tasks are accomplished by
accumulating an average and variance for values probed with
the cursor. In the case of the speed function, the T is set to
the average and ε is set to the standard deviation. Users can
modify these values, via the GUI, while the level set deforms.
The spherical drawing tool is used to initialize and/or edit
the level-set surface. The user can add-to or subtract-from the
model by drawing white or black spheres, respectively. This
feature gives the user “3D paint” and “3D eraser” tools with
which to interactively edit the level-set solution.

The volume renderer displays a 3D reconstruction of the
current level set isosurface (see Section V) as well as the input
data. In addition, an arbitrary clipping plane, with texture-
mapped source data, can be enabled via the GUI (Figure 1).
Just as in the slice viewer, the speed function, transfer function,
and level-set initialization can be set through probing on this
clipping plane. The crossing of the level-set isosurface with
the clipping plane is also shown in bright yellow.

The volume renderer uses a 2D transfer function to render

Fig. 13. (top) Volume rendering of a 2563 MRI scan of a mouse thorax.
Note the level-set surface which is deformed to segment the liver. (bottom)
Volume rendering of the vasculature inside the liver using the same transfer
function as in (top) with the level-set surface is being used as a region-of-
interest specifier.

the level set surface and a 3D transfer function to render the
source data. The level-set transfer function axes are intensity
and distance from the clipping plane (if enabled). The transfer
function for rendering the original data is based on the source
data value, gradient magnitude, and the level-set data value.
The latter is included so that the level set model can function
as a region-of-interest specifier. All of the transfer functions
are evaluated on-the-fly in fragment programs rather than in
lookup tables. This approach permits the use of arbitrarily high
dimensional transfer functions, allows run-time flexibility, and
reduces memory requirements [39].

We demonstrate our interactive level-set solver and volume
rendering system with the following three data sets: a brain
tumor MRI (Fig. 1), an MRI scan of a mouse (Fig. 13)
and transmission electron tomography data of a gap junction
(Fig. 14). In all of these examples a user interactively controls
the level-set surface evolution and volume rendering via the
multi-view interface. The initializations for the tumor and
mouse were drawn via the user interface. The initialization
for Figure 14 was seeded with a thresholded version of the
source data.

C. Performance Analysis

Our GPU-based level-set solver achieves a speedup of ten
to fifteen times over a highly-optimized, sparse-field, CPU-
based implementation [36]. All benchmarks were run on an
Intel Xeon 1.7 GHz processor with 1 GB of RAM and an
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Fig. 14. Segmentation and volume rendering of 512 × 512 × 61 3D trans-
mission electron tomography data. The picture shows cytoskeletal membrane
extensions and connexins (pink surfaces extracted with the level-set models)
near the gap junction between two cells (volume rendered in cyan).

ATI Radeon 9800 Pro GPU. All timings include the complete
computation, i.e. both the virtual memory system update and
the level-set computation are included. For a 256× 256× 175
volume, the level-set solver runs at rates varying from 70 steps
per second for the tumor segmentation (Fig. 1) to 3.5 steps per
second for the final stages of the cortex segmentation from
the same data set. In contrast, the CPU-based, sparse field
implementation ran at 7 steps per second for the tumor and
0.25 steps per second for the cortex segmentation.

The speed of our solver is bound almost entirely by the
fragment stage of the GPU. In addition, the speed of our
solver scales linearly with the number of active voxels in
the computation. Creation of the bit vector message consumes
approximately 15% of the GPU arithmetic and texture instruc-
tions, but for most applications the speedup over a dense GPU-
based implementation far eclipses this additional overhead.

The amount of texture memory required for the level-set
computation is proportional to the surface area of the level-set
surface—i.e. the number of active pages. Our tests have shown
that for many applications, only 10%-30% of the volume is
active. To take full advantage of this savings, the total size
of physical memory, S[G], must increase when the number of
allocated pages grows beyond the physical memory’s capacity.
Our current implementation performs only static allocation
of the maximum physical memory space, but future versions
could easily realize the above memory savings. Section VII
discusses changes to GPU display drivers that will facilitate
the implementation of this feature.

In comparison to the depth-culling-based sparse volume
computation presented by Sherbondy et al. [21], our pack-
ing scheme guarantees that very few wasted fragments are
generated by the rasterization stage. This is especially im-
portant for sparse computations on large volumes—where the
rasterization and culling of unused fragments could consume
a significant portion of the execution time. In addition, the
packing strategy allows us to process the entire active data
set simultaneously, rather than slice-by-slice. This improves
the computationally efficiency by taking advantage of the
GPU’s deep pipelines and parallel execution. Our algorithm

should also be able to process larger volumes, due to the
memory savings discussed above. Our algorithm, however,
does incur overhead associated with maintaining the packed
tiles, and more experimentation is necessary to understand the
circumstances under which each approach is advantageous.
Furthermore, they are not mutually exclusive, and Sect. VII
discusses the possibility of using depth culling in combination
with our packed representation.

As with any sparse algorithm, it will be advantageous to
simply compute the entire (original) domain if the active do-
main becomes sufficiently large. Our experience with segmen-
tation thus far, however, has shown that the the computation
remains sufficiently sparse even for large structures such as
a cerebral cortex segmentation. The sparseness is due to the
fact that only the surface needs to represented, and the interior
regions need not be represented or computed.

VII. CONCLUSIONS AND FUTURE WORK

This papers demonstrates a new tool for interactive volume
exploration and analysis that combines the quantitative capa-
bilities of deformable isosurfaces with the qualitative power
of volume rendering. By relying on graphics hardware, the
level-set solver operates at interactive rates (approximately
15 times faster than previous solutions). This mapping relies
on an efficient multi-dimensional virtual memory system to
implement a time-dependent, sparse computation scheme. The
memory mappings are updated via a novel GPU-to-CPU
message passing algorithm. The GPU renders the level-set
surface model directly from a sparse, compressed texture
format. Future extensions and applications of the level-set
solver include the processing of multivariate data as well as
surface reconstruction and surface processing. Most of these
only involve changing only the speed functions.

There are a couple ways in which the memory and compu-
tational efficiency of our solver can be improved. First, it may
be worth achieving an even narrower band of computation
around the level-set model. This is possible by using depth
culling to avoid computation on inactive elements within each
active page [21]. Implementing this depth culling requires a
memory model in which an arbitrary number of data buffers
can access a single depth buffer. The second optimization is to
allow the total amount of physical memory to change at run
time and grow to the limits of GPU memory. This requires
spreading physical memory across multiple 2D textures (i.e.
creating a 3D physical memory space). The proposed super
buffer [40] OpenGL extension supports both of these proposed
optimizations.

The GPU virtual memory abstraction also indicate promis-
ing future research. We are currently beginning work on
a more general virtual memory implementation that fully
abstracts N -dimensional GPU memory. The goal is to provide
an API that allows a GPU application programmer to specify
an optimal physical and virtual memory layout for their prob-
lem, then write the computational kernels irrespective of the
physical layout. The kernels will specify memory accesses via
abstract memory access interfaces, and an operating-system-
like layer will replace these memory access calls with the
appropriate address translation code.
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APPENDIX A: DISCRETIZATION OF LEVEL-SET EQUATIONS

This appendix describes the discretization of equation 1 and
the curvature computation 3. We discretize equation 1 using
the up-wind scheme [1] and compute the curvature of the level-
set surface using the difference of normals method [41].

We begin by describing the finite difference derivatives re-
quired for the level-set update and curvature computation. The
neighborhood, u, from which these derivatives are computed
is specified with the numbering scheme

6 7 8
3 4 5
0 1 2

. (8)

Note that u4 denotes the center pixel, and u±z
i represents the

ith sample on the slice above or below the current one. The
derivatives of the level-set embedding, φ, are then defined as
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(9)
Curvature is then computed using the above derivatives. The

two normals, n+ and n−, are computed by
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and
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respectively. The components of the divergence from equa-
tion 3 are then computed as

∂nx

∂x
= n+

x − n−
x , (12)

∂ny

∂y
= n+

y − n−
y , (13)

and

∂nz

∂z
= n+

z − n−
z , (14)

Finally, we estimate H with

H =
1
2
(
∂nx

∂x
+

∂ny

∂y
+

∂nz

∂z
). (15)

The upwind approximation to ∇φ is then computed using
D+

x , D+
y , D+

z , D−
x , D−

y , and D−
z . To begin,

∇φmax =




√
max(D+

x , 0)2 + max(−D−
x , 0)2

√
max(D+

y , 0)2 + max(−D−
y , 0)2

√
max(D+

z , 0)2 + max(−D−
z , 0)2




(16)

is computed followed by

∇φmin =
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. (17)

The final choice of ∇φ is defined by

∇φ =
{ ‖∇φmax‖2 if F > 0

‖∇φmin‖2 otherwise
, (18)

where F is the linear combination of all speed functions (e.g.
mean curvature, the rescaling term Gr, etc). Section VI-A de-
scribes the speed terms used in our segmentation application.

The last step in the upwind scheme computes φ(t+�t) by

φ(t + �t) = φ(t) + �tF |∇φ|. (19)
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APPENDIX B: GPU MEMORY ALLOCATION REQUEST

GENERATION

This appendix describes the details of the GPU memory al-
location/deallocation request scheme used by the GPU virtual
memory system. The algorithm is described first in terms of
an abstract client solver. Section IV and the B subsection of
this appendix describe the client-specific details.

A. General Allocation Request Algorithm

The allocation request algorithm consists of the following
steps (see the corresponding steps in Figure 8):

A. GPU computes VPN of requested active pages.
B,C. GPU compresses active-page request.
D. CPU processes memory request.

1. Reads compressed request image from GPU.
2. Decodes memory allocation/deallocation requests.
3. Releases newly deactivated pages.
4. Allocates/initializes newly activated pages.

Steps A, B, and C create the set of requested ac-
tive virtual pages. This set serves as the memory alloca-
tion/deallocation request to the CPU. The CPU then calls the
client’s ReleasePage function for each newly deallocated
page before deallocating the page. Similarly, the CPU calls
the client’s InitNewPage function for each newly activated
page.

In Step A, the GPU uses client-specific data to create two
RGBA (i.e. 4-tuple) buffers that hold eight true or false (e.g.
255 or 0) values for each active data element (Figure 8). The
first six values represent whether or not the virtual page in
each of the six cardinal directions should be active for the
next pass. The seventh value indicates if the active page itself
should be active, and the eighth value is free to be used by the
client. This eight-dimensional, active-page information vector,
J, is thus J = (+x,−x,+y,−y,+z,−z, self , clientSpecific),
where the first six elements refer to relative neighbor offsets
in the virtual page space, VP.

The eight-value code, J, is computed in eight substream
passes followed by a single standard (i.e. entire memory
page) pass. The substream passes compute whether the in-
plane adjacent memory pages need to be active (i.e. the
edge-adjacent pages (+x,−x,+y,−y)). Each substream pass
computes a client-specified function, IsNeighborActive,
across the page boundary orthogonal to the page edge being
rendered and writes the boolean result to the correspond-
ing output component of J. The second computation calls
IsNeighborActive for the pages above and below the
active one. Note, however, that because the neighboring pages
are face-adjacent, this computation is performed at all data
elements in the page instead of just the edges. The computation
also writes a true value to the J component representing the
active page itself if the client’s IsSelfActive function
returns true. The value of the eighth bit is filled by the result
of the client’s IsEighthBitTrue function.

Steps B and C of the allocation-request algorithm com-
press the two, J buffers into a small (≤ 64kB) active-page
message. This compressed message serves as the memory
allocation/deallocation request that is sent to the CPU. The

compression is accomplished by rendering a quadrilateral of
size S[GP] with the automatic mipmapping option enabled on
the neighbor-information buffers (Step B). The render pass
also uses a fragment program designed to create a bit code at
each pixel value (Step C). Each pixel in the resulting small
image corresponds to a physical memory page. The value of
each pixel contains an eight-bit code of the same form as
the eight-value code produced in step A (i.e. the J vector).
This eight-bit code completely determines if the memory page
and/or any of its six cardinal neighbors in virtual page space
are to be active on the next pass.

The automatic mipmapping performs a box-filter averaging
of the values written in Step A. The result is that if any data
element in the memory page set a value to true in Step A, the
down-sampled value will also be true. The fragment program
inspects these down-sampled values. It sets the corresponding
bit in the output value to true for each non-zero input. The
bits are set via an emulated bitwise OR operation. Current
fragment processors do not support bitwise operations, but an
OR is emulated by conditionally adding power-of-two values
to the output value.

In Step D.1, the CPU reads the bit-code message from the
GPU. Step D.2 begins by the CPU wrapping the message
buffer with a bit-vector accessor. The resulting bit vector
is a linear representation of the physical page space, GP,
where each byte represents the information for a page. Two
auxiliary bit-vectors are allocated–each a bit-addressed, linear
representation of the virtual memory page space, VP. The first
is the newActiveSet bit vector, and the second is the client-
specific eighthBitSet bit vector. After the allocation mes-
sage is decoded, a true bit in the newActiveSet bit vector
will denote an active virtual page.

In the next stage of Step D.2, the CPU decodes the bit-vector
message. For each 8-bit sequence, the current linear index
is converted to a physical page number (PPN). The inverse
page table then converts the PPN to a VPN. Because each
bit in the bit-code message represents an offset direction from
the current virtual page, the decoder can easily reconstruct
the VPN for each neighbor of each active page. The decoder
then reads the seven spatial page bits. It then computes the
VPN for the page represented by each true bit and sets the
corresponding bit in the newActiveSet bit vector to true.
If the eighth bit is true, the eighthBitSet is set to true for
the corresponding virtual page.

The virtual memory system next determines which virtual
memory pages to deallocate and which to allocate (Steps D.3
and D.4). The set of newly deactivated pages is constructed by
performing a set-subtraction of the newActiveSet from the
oldActiveSet. The set of pages that need to be allocated
for the next pass is created by computing the opposite set dif-
ference. Each deallocated memory page is pushed onto a stack
of free memory pages. The page table are updated based on
the client’s implementation of ReleasePage function. Each
newly activated page is mapped to a physical memory location
by popping a page from the free page stack. The physical
page is mapped in the page tables and the geometry engine
is appropriately updated. The new physical memory is then
initialized via the client’s InitNewPage implementation.
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B. Level-Set Solver Implementation Details

For Step A of the update algorithm described in Section IV-
D and the preceding subsection, the level-set solver defines the
functions IsNeighborActive and IsSelfActive. The
IsNeighborActive reads the previously computed, one-
side derivative that crosses a page boundary onto a specific
neighbor. The function returns true if the derivative is non-
zero. The IsSelfActive function returns true if any of the
six, cardinal, one-sided derivatives are non-zero. The level-
set solver simply writes the value of the level-set embedding
to the eighth data value. This is used to determine if a
newly deactivated page is inside or outside of the level-
set surface. The IsEigthBitTrue function used by the
fragment program in Step B returns true if the eighth data
value is greater than zero. If a page becomes inactive, it is
guaranteed to be either all black or all white. The down-
sampled level-set embedding for the page will thus be either
pure black or pure white.

The eighthBitSet used in the bit-code message decod-
ing stage (Step D.2) is used to determine if a newly deactivated
memory page is inside or outside the level-set surface. If the
bit for the page is true, then the page is inside the surface.
Otherwise it is outside. This information is used by the solver’s
ReleasePage function to map deactivated pages to the
correct static physical page (white or black). As described
in Section IV-A, these static mappings ensure that derivatives
across boundaries of the active domain are correct.

The solver’s InitNewPage function initializes newly al-
located physical memory. The memory is initialized to either
white or black depending on the inside/outside setting in the
page table entry. Note that no level-set data is transferred to
accomplish the update. The entire level-set solution resides
only on the GPU for the duration of the computation. Our
current implementation also has to send pre-computed speed
pages to the GPU when new pages are added. This could be
optimized for many speed functions, however, by computing
the function on the GPU.
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Image Inpainting:
An Overview

Image Image InpaintingInpainting ::
An OverviewAn Overview

Guillermo SapiroGuillermo Sapiro

Electrical and Computer EngineeringElectrical and Computer Engineering

University of MinnesotaUniversity of Minnesota

guille@ece.umn.eduguille@ece.umn.edu

mountains.ece.umn.edu/~guille/inpainting.htmmountains.ece.umn.edu/~guille/inpainting.htm

OverviewOverview

•• Goal and backgroundGoal and background
• Art, biology, math, and engineering come together

•• Related workRelated work
•• InpaintingInpainting

•• FillingFilling --inin
•• InpaintingInpainting and image decompositionand image decomposition

•• 3D surface filling3D surface filling --inin

What is inpainting?What is inpainting?

•• Modifying an image in a nonModifying an image in a non --detectable formdetectable form

"Cornelia, Mother of the "Cornelia, Mother of the GracchiGracchi " by J. " by J. SuveeSuvee ((LouvreLouvre ).  Emile).  Emile --Male “The Restorer’s Handbook of easel painting”. Male “The Restorer’s Handbook of easel painting”. 

Another exampleAnother example

From Geary GalleryFrom Geary Gallery

Real world example:
Photo restoration
Real world example:
Photo restoration

•• Restorations courtesy of Photo Imaging Studio, Imag e Enigma, Restorations courtesy of Photo Imaging Studio, Imag e Enigma, AlleycatAlleycat DesignsDesigns

Real world example:
Object removal
Real world example:
Object removal

•• From D. King, “The Commissar vanishes”.From D. King, “The Commissar vanishes”.
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Real world example:
Object removal
Real world example:
Object removal

•• From D. King, “The Commissar vanishes”.From D. King, “The Commissar vanishes”.

Real world example:
Object removal
Real world example:
Object removal

•• From From www.newseum.orgwww.newseum.org

Lenin and friend Trotsky Where is Trotsky?

Biological inpaintingBiological inpainting Biological inpaintingBiological inpainting

Biological inpaintingBiological inpainting

From Ramachandran et el.

Human Blind SpotHuman Blind Spot

http://info.med.yale.edu/neurobio/mccormick/fill_in_seminar/figure16.html
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Real world example:
Object removal and missing 
information

Real world example:
Object removal and missing 
information

•• From From ProSpecProSpec --UK.UK.

The goalThe goal

Related work: FilmsRelated work: Films

•• e.g. e.g. KokaramKokaram et al., et al., GemanGeman et al.et al.

•• Doesn’t work for stills or static objectsDoesn’t work for stills or static objects

n-1 n+1 n 

Related work: Texture synthesisRelated work: Texture synthesis

•• HiraniHirani , , EfrosEfros , , HeegerHeeger , , 
DeBonetDeBonet , , SimoncelliSimoncelli , Zhu, , Zhu, 
etc.etc.

•• Not practical for rich Not practical for rich 
regionsregions

•• Not (originally) designed Not (originally) designed 
for structured regionsfor structured regions

•• “Copy” information “Copy” information 
instead of “see and instead of “see and 
interpolate”interpolate”

Related work: DisocclusionRelated work: Disocclusion

•• MasnouMasnou --Morel, Morel, NitzbergNitzberg --MumfordMumford , etc., etc.

•• Limitations: Topology, anglesLimitations: Topology, angles

See also Jacobs, Basri, Zucker, etc, and Chan-Shen ‘00, Zhu-Mumford

Our ContributionOur Contribution

•• User only selects region to User only selects region to inpaintinpaint
•• Rich background  and topology not an issueRich background  and topology not an issue
•• Less than 1 minute on a PCLess than 1 minute on a PC

+ =
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How conservators inpaintHow conservators inpaint

•• Minneapolis Institute of ArtMinneapolis Institute of Art

Approach 1Approach 1

Bertalmio, Sapiro, Caselles, Ballester,
SIGGRAPH 2000

Automatic digital inpaintingAutomatic digital inpainting

•• Propagate informationPropagate information

•• Evolutionary formEvolutionary form

0NL ====••••∇∇∇∇
→→→→

→→→→
••••∇∇∇∇====

∂∂∂∂
∂∂∂∂

NL
t 
I 

Digital inpainting (cont’d)Digital inpainting (cont’d)

•• L = smoothness estimator (L = smoothness estimator ( LaplacianLaplacian ))

•• N = N = isophoteisophote direction (time variant)direction (time variant)

The equationThe equation

•• Plus numerical schemes (Plus numerical schemes ( OsherOsher --MarquinaMarquina ))

•• Boundary conditionsBoundary conditions
• Gray values (in a band)

• Directions (in a band)

II)
�

(
 t

I ⊥∇•∇=
∂
∂

ExampleExample
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Example: Text removalExample: Text removal Example: Photo restorationExample: Photo restoration

Example: Special effectsExample: Special effects Example: Special effectsExample: Special effects

Example: Special effectsExample: Special effects Example: Scratch removalExample: Scratch removal



6

Russian Venus Mission
Venera 9
Russian Venus Mission
Venera 9

From Don Mitchell

Russian Venus Mission
Venera 10
Russian Venus Mission
Venera 10

From Don Mitchell

Automatic image inpainting/interpolation for 

compression and  wireless transmission
(Rane-Sapiro-Bertalmio) JPEG and/or JPEG-2000 compa tible

Automatic image inpainting/interpolation for 

compression and  wireless transmission
((RaneRane--SapiroSapiro --BertalmioBertalmio ) JPEG and/or JPEG) JPEG and/or JPEG --2000 compatible2000 compatible

Transmitted

Transmitted

Automatic
reconstruction

Automatic
reconstruction

Automatic image inpainting/interpolation for 

compression and  wireless transmission
(Rane-Sapiro-Bertalmio) JPEG and/or JPEG-2000 compa tible

Automatic image inpainting/interpolation for 

compression and  wireless transmission
((RaneRane--SapiroSapiro --BertalmioBertalmio ) JPEG and/or JPEG) JPEG and/or JPEG --2000 compatible2000 compatible

Transmitted

Automatic image inpainting/interpolation for 

compression and  wireless transmission
(Rane-Sapiro-Bertalmio) JPEG and/or JPEG-2000 compa tible

Automatic image inpainting/interpolation for 

compression and  wireless transmission
((RaneRane--SapiroSapiro --BertalmioBertalmio ) JPEG and/or JPEG) JPEG and/or JPEG --2000 compatible2000 compatible

Automatic
reconstruction

Approach 1: 
Concluding remarks
Approach 1: 
Concluding remarks

•• Technique imitates professionalsTechnique imitates professionals

•• Key conceptsKey concepts
• Information propagation

• Both gray values and directions are needed

• Use a band surrounding the region

•• Sharp resultsSharp results

•• Low complexityLow complexity
•• Texture is not (yet) reproduced Texture is not (yet) reproduced 
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Concluding remarks (cont.)Concluding remarks (cont.)

•• Connected to fluid dynamics (see Connected to fluid dynamics (see BertalmioBertalmio --
BertozziBertozzi --SapiroSapiro CVPR 2001)CVPR 2001)

•• Opens then door to high order Opens then door to high order PDE’sPDE’s
•• Extended to a Extended to a variationalvariational formulation:    formulation:    

Approach 2...Approach 2...

Approach 2Approach 2

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, 
IMA Report 2000, IEEE Trans. IP 2001

How conservators fill-in 
(Minneapolis Institute of Art)

How conservators fill-in 
(Minneapolis Institute of Art)

Our approachOur approach

•• Jointly continue/interpolate levelJointly continue/interpolate level --lines lines 
(geometry) and gray values (photometry) (geometry) and gray values (photometry) 
in a smooth fashionin a smooth fashion

Interpolate the gray values 
given the edges
Interpolate the gray values 
given the edges
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Theorem: The minimizer exists in BV space
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The full functionalThe full functional

•• Solved via ESolved via E --L: Coupled 2nd order L: Coupled 2nd order PDE’sPDE’s

•• Implicit Implicit discretizationdiscretization usedused
•• Connected to Euler’s Connected to Euler’s elasticaelastica ((MumfordMumford ))

•• Theorem:Theorem: For p>1 the For p>1 the minimizerminimizer existsexists

)()()(),min( IIcIGbadivI
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ExamplesExamples

Ours

TV

ExamplesExamples ExamplesExamples

ExamplesExamples Approach 2:
Concluding remarks
Approach 2:
Concluding remarks

•• Technique imitates professionalsTechnique imitates professionals

•• Key conceptsKey concepts
• Information propagation

• Both gray values and directions are needed

• Use a band surrounding the region

•• Sharp resultsSharp results

•• Low complexityLow complexity
•• Texture is not (yet) reproducedTexture is not (yet) reproduced
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Inpainting and Image DecompositionInpainting and Image Decomposition

BertalmioBertalmio , , VeseVese, Sapiro, , Sapiro, OsherOsher , July 2002, July 2002
IEEE Trans. IP, 2003IEEE Trans. IP, 2003

Basic IdeaBasic Idea

Image decompositionImage decomposition ExampleExample

ExampleExample

OursTexture only
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Filling surface holesFilling surface holes

VerderaVerdera , , BertalmioBertalmio , , CasellesCaselles , Sapiro, , Sapiro, 
IEEE ICIP 2003IEEE ICIP 2003

Data and inspiration from Data and inspiration from LevoyLevoy and the and the 
Michelangelo ProjectMichelangelo Project

Inpainting from Sensor ArraysInpainting from Sensor Arrays

YatzivYatziv , Sapiro, , Sapiro, LevoyLevoy

\\

ConclusionConclusion

•• InpaintingInpainting 2D and 3D via 2D and 3D via PDEsPDEs (flows)(flows)

•• InpaintingInpainting in a decomposition spacein a decomposition space
•• Connections with biology and artConnections with biology and art

•• See also recent works such as Tensor Voting See also recent works such as Tensor Voting 
(CVPR’03), Edge directed (CVPR’03), Edge directed EfrosEfros (CVPR’03), Global (CVPR’03), Global 
inpaintinginpainting (ICCV’03).(ICCV’03).
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OverviewOverview

•• MotivationMotivation

•• Background on fast/accurate geodesic Background on fast/accurate geodesic 
computationscomputations

•• Distance functions and geodesics on Distance functions and geodesics on 
implicit hyperimplicit hyper --surfacessurfaces

•• Unorganized pointsUnorganized points
•• Generalized geodesicsGeneralized geodesics

•• The future and concluding remarksThe future and concluding remarks

Motivation: A Few ExamplesMotivation: A Few Examples

Show me!!!

Motivation: A Few Examples (cont.)Motivation: A Few Examples (cont.)

noisy cleaned

Motivation: What is a Geodesic?Motivation: What is a Geodesic?
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•• Complexity: Complexity: O(n log n)O(n log n)

•• Advantage:Advantage: Works in any Works in any 
dimension and with any dimension and with any 
geometry (graphs)geometry (graphs)

•• Problems:Problems:
• Not consistent

• Unorganized points?

• Noise?

• Implicit surfaces?
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Computation via Dijkstra
Background: Distance and Geodesic 
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Background: Distance Functions as 
Hamilton-Jacobi Equations
Background: Distance Functions as 
Hamilton-Jacobi Equations

•• g g = weight on the hyper= weight on the hyper --surfacesurface

•• The The gg--weighted distance function between weighted distance function between 
two points two points pp and and xx on the hyperon the hyper --surface surface SS
is: is: 

gxpd g
SS ====∇∇∇∇ ),(
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gxpd g
SS ====∇∇∇∇ ),(

d

Slope = 1

Background: Computing Distance 
Functions as Hamilton-Jacobi
Equations

Background: Computing Distance 
Functions as Hamilton-Jacobi
Equations
•• Solved in O(n log n)  by Solved in O(n log n)  by TsitsiklisTsitsiklis , by , by 

SethianSethian , and by , and by HelmsenHelmsen , , onlyonly for for 
Euclidean spaces and Cartesian gridsEuclidean spaces and Cartesian grids

•• Solved Solved onlyonly for acute 3D triangulations by for acute 3D triangulations by 
Kimmel and Kimmel and SethianSethian

gxpd
g

====∇∇∇∇ ),(

A real time exampleA real time example

The ProblemThe Problem

•• How to compute intrinsic distances and How to compute intrinsic distances and 
geodesics forgeodesics for
• General dimensions

• Implicit surfaces

• Unorganized noisy points (hyper-surfaces just given 
by examples)

Intermezzo: 
Tenenbaum, de Silva, et al...
Intermezzo: 
Tenenbaum, de Silva, et al...

Intermezzo: 
Tenenbaum, de Silva, et al...
Intermezzo: 
Tenenbaum, de Silva, et al...
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•• Problems:Problems:
• Doesn’t address noisy examples/measurements

• Restriction on sampling density and manifolds

• Uses Dijkestra (back to non consistency)

• Doesn’t work for implicit surface representations

Intermezzo: 
Tenenbaum, de Silva, et al...
Intermezzo: 
Tenenbaum, de Silva, et al... Our ApproachOur Approach

•• We have to solve We have to solve 

gxpd g
SS ====∇∇∇∇ ),(

Basic IdeaBasic Idea Basic IdeaBasic Idea

Basic IdeaBasic Idea

Theorem (Memoli-Sapiro): 0→→→→−−−−
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g
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Basic ideaBasic idea

����
����

����
����

����

>>>>

→→→→−−−−

metric smart""    ,

analytic local               
general           /

1

21

γγγγγγγγh

h

h

dd g
S

g



5

Why is this good?Why is this good?

gxpd g
SS ====∇∇∇∇ ),(

gxpd
g

====∇∇∇∇ ),(
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Implicit Form RepresentationImplicit Form Representation

})(:{: ofset levelS 0====ΨΨΨΨ====→→→→ΨΨΨΨ−−−−==== xxRRn

Figure from G. Turk
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}0)(:{M =Ψ= xx

Data extensionData extension

•• Embed M:Embed M:

•• Extend I outside M:Extend I outside M:

RM:I →→→→ M II

II

II

ExamplesExamples

ExamplesExamples ExamplesExamples
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ExamplesExamples ExamplesExamples

Unorganized pointsUnorganized points Unorganized points (cont.)Unorganized points (cont.)

Unorganized pointsUnorganized points Is this a geodesic?Is this a geodesic?

noisy cleaned
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Generalized geodesics: 
Harmonic maps
Generalized geodesics: 
Harmonic maps

•• Find a smooth map from two manifolds Find a smooth map from two manifolds 
(M,g)(M,g) and and (N,h) (N,h) such thatsuch that

M

p

MNMC dvolC  min : ����
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ExamplesExamples

•• M is an Euclidean space and N the real lineM is an Euclidean space and N the real line

•• M = [0,1], M = [0,1], geodesics!geodesics!
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Color Image EnhancementColor Image Enhancement Implicit surfacesImplicit surfaces

•• Domain and target are implicitly Domain and target are implicitly 
represented: Simple Cartesian represented: Simple Cartesian numericsnumerics
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Example: Chroma denoising on 
a surface
Example: Chroma denoising on 
a surface

original

noisy enhanced

Example: Direction denoisingExample: Direction denoising

noisy cleaned



8

Application (with G. Gorla and V. Interrante)Application (with G. Gorla and V. Interrante) ExamplesExamples

Vector field visualization (e.g., 
principal directions)
Vector field visualization (e.g., 
principal directions) Texture mapping denoisingTexture mapping denoising

Texture mapping denoisingTexture mapping denoising Concluding remarksConcluding remarks

•• A general computational framework for A general computational framework for 
distance functions, geodesics, and distance functions, geodesics, and 
generalized geodesicsgeneralized geodesics

•• Implicit hyperImplicit hyper --surfaces and unsurfaces and un --organized organized 
pointspoints
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Sulcii extraction on meshes
(with A. Bartesaghi)

Sulcii extraction on meshes
(with A. Bartesaghi)
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Distance Functions and 
Geodesics on Point Clouds

Distance Functions and 
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Goal and motivationGoal and motivation

OutlineOutline

•• Background on fast/accurate geodesic Background on fast/accurate geodesic 
computationscomputations

•• Distance functions and geodesics on Distance functions and geodesics on 
implicit hyperimplicit hyper --surfacessurfaces

•• Point cloudsPoint clouds

•• The future and concluding remarksThe future and concluding remarks

Motivation: What is a Geodesic?Motivation: What is a Geodesic?
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•• Complexity: Complexity: O(n log n)O(n log n)

•• Advantage:Advantage: Works in any Works in any 
dimension and with any dimension and with any 
geometry (graphs)geometry (graphs)

•• Problems:Problems:
• Not consistent

• Unorganized point clouds?

• Noise?

• Implicit surfaces?

Background: Distance and Geodesic 
Computation via Dijkstra
Background: Distance and Geodesic 
Computation via Dijkstra
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Background: Computing Distance 
Functions as Hamilton-Jacobi
Equations

Background: Computing Distance 
Functions as Hamilton-Jacobi
Equations
•• Solved in O(n log n)  by Solved in O(n log n)  by TsitsiklisTsitsiklis , by , by 

SethianSethian , and by , and by HelmsenHelmsen , , onlyonly for for 
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•• Solved for acute 3D triangulations by Solved for acute 3D triangulations by 
Kimmel and Kimmel and SethianSethian
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The ProblemThe Problem

•• How to compute intrinsic distances and How to compute intrinsic distances and 
geodesics forgeodesics for
• General dimensions

• Implicit surfaces

• Unorganized noisy points (hyper-surfaces just given 
by samples/examples)

Our Approach: The GeometryOur Approach: The Geometry

•• We have to solve We have to solve 
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Basic IdeaBasic Idea Basic IdeaBasic Idea
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The resultThe result

Theorem (Memoli - S.  2001):
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ExamplesExamples Unorganized point cloudsUnorganized point clouds

Unorganized points (cont.)Unorganized points (cont.) Unorganized pointsUnorganized points

Randomly sampled manifolds
(with noise)
Randomly sampled manifolds
(with noise)

Theorem (Memoli - S.  2002):

Examples (VRML)Examples (VRML)
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ExamplesExamples Intrinsic Voronoi of Point CloudsIntrinsic Voronoi of Point Clouds

Intermezzo: 
de Silva, Tenenbaum, et al...
Intermezzo: 
de Silva, Tenenbaum, et al...

Intermezzo: 
Tenenbaum, de Silva, et al...
Intermezzo: 
Tenenbaum, de Silva, et al...

•• Main Problem:Main Problem:
• Doesn’t address noisy examples/measurements: 

Much less robust to noise!

Error increases with the number of samples!
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Intermezzo: 
de Silva, Tenenbaum, et al...
Intermezzo: 
de Silva, Tenenbaum, et al...

•• Problems:Problems:
• Doesn’t address noisy examples/measurements: 

Much less robust to noise!

• Only convex surfaces

• Uses Dijkestra (back to non consistency)

• Doesn’t work for implicit surface representations

Comparing Point CloudsComparing Point Clouds Comparing Point CloudComparing Point Cloud

Concluding remarksConcluding remarks

•• A general computational framework for A general computational framework for 
distance functions and geodesicsdistance functions and geodesics

•• Implicit hyperImplicit hyper --surfaces and points cloudssurfaces and points clouds

•• See also …See also …

ThanksThanks
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geodesics on implicit hypergeodesics on implicit hyper --surfaces,” surfaces,” Journal of Computational PhysicsJournal of Computational Physics 173:2, pp. 173:2, pp. 
730730--764, November 2001.764, November 2001.

F. F. MemoliMemoli and G. Sapiro, “Distance functions and geodesics on  point cloudand G. Sapiro, “Distance functions and geodesics on  point cloud s,” s,” IMA IMA 
TR (TR (www.ima.umn.eduwww.ima.umn.edu),), Dec. 2002; May 2003.Dec. 2002; May 2003.



Level Set Surface Editing Operators

Ken Museth� David E. Breen� Ross T. Whitakery Alan H. Barr�
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Figure 1: Surfaces edited with level set operators. Left: A damaged Greek bust model is repaired with a new nose, chin and sharpened hair.
Right: An edited model is constructed from models of a griffin and dragon (small figures), producing a two-headed, winged dragon.

Abstract

We present a level set framework for implementing editing oper-
ators for surfaces. Level set models are deformable implicit sur-
faces where the deformation of the surface is controlled by a speed
function in the level set partial differential equation. In this paper
we define a collection of speed functions that produce a set of sur-
face editing operators. The speed functions describe the velocity
at each point on the evolving surface in the direction of the sur-
face normal. All of the information needed to deform a surface
is encapsulated in the speed function, providing a simple, unified
computational framework. The user combines pre-defined building
blocks to create the desired speed function. The surface editing op-
erators are quickly computed and may be applied both regionally
and globally. The level set framework offers several advantages. 1)
By construction, self-intersection cannot occur, which guarantees
the generation of physically-realizable, simple, closed surfaces. 2)
Level set models easily change topological genus, and 3) are free
of the edge connectivity and mesh quality problems associated with
mesh models. We present five examples of surface editing opera-
tors: blending, smoothing, sharpening, openings/closings and em-
bossing. We demonstrate their effectiveness on several scanned ob-
jects and scan-converted models.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Surface and object representations; I.3.4 [Computer Graphics]: Graphics
Utilities—Graphics Editors;

Keywords: Deformations, geometric modeling, implicit surfaces, shape blending.

1 Introduction

The creation of complex models for such applications as movie
special effects, graphic arts, and computer-aided design can be a
time-consuming, tedious, and error-prone process. One of the so-
lutions to the model creation problem is 3D photography [Bouguet
and Perona 1999], i.e. scanning a 3D object directly into a digital
representation. However, the scanned model is rarely in a final de-
sired form. The scanning process is imperfect and introduces errors
and artifacts, or the object itself may be flawed.

3D scans can be converted to polygonal and parametric surface
meshes [Edelsbrunner and Mücke 1994; Bajaj et al. 1995; Amenta
et al. 1998]. Many algorithms and systems for editing these polyg-
onal and parametric surfaces have been developed [Cohen et al.
2001], but surface mesh editing has its limitations and must ad-
dress several difficult issues. For example, it is difficult to guar-
antee that a mesh model will not self-intersect when performing a
local editing operation based on the movement of vertices or con-
trol points, producing non-physical, invalid results. See Figure 2.
If self-intersection occurs, it must be fixed as a post-process. Also,
when merging two mesh models the process of clipping individual
polygons and patches may produce errors when the elements are
small and/or thin, or if the elements are almost parallel. In addition
while it is not impossible to change the genus of a surface mesh
model [Biermann et al. 2001], it is certainly difficult and requires
significant effort to maintain the consistency/validity of the under-
lying vertex/edge connectivity structure.

1.1 New Surface Editing Operators
In order to overcome these difficulties we present a level set ap-
proach to implementing operators for locally and globally editing
closed surfaces. Level set models are deformable implicit surfaces
that have a volumetric representation [Osher and Sethian 1988].
They are defined as an iso-surface, i.e. a level set, of some im-
plicit function �. The surface is deformed by solving a partial dif-
ferential equation (PDE) on a regular sampling of �, i.e. a vol-
ume dataset. To date level set methods have not been developed for
adaptive grids, a limitation of current implementations, but not of
the mathematics. It should be emphasized that level set methods do
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Figure 2: (left) A cross-section of the teapot model near the spout.
(middle) No self-intersection occurs, by construction, when per-
forming a level set (LS) offset, i.e. dilation, of the surface. (right)
Self-intersections may occur when offsetting a mesh model.

not manipulate an explicit closed form representation of �, but only
a sampling of it. Level set methods provide the techniques needed
to change the voxel values of the volume in a way that deforms the
embedded iso-surface to meet a user-defined goal. The user con-
trols the deformation of the level set surface by defining a speed
function F(x; : : :), the speed of the level set at point x in the direc-
tion of the normal to the surface at x. Therefore all the information
needed to deform a level set model may be encapsulated in a sin-
gle speed function F(), providing a simple, unified computational
framework.

We have developed a number of surface editing operators within
the level set framework by defining a collection of new level set
speed functions. The cut-and-paste operator (Section 5.1) gives the
user the ability to copy, remove and merge level set models (using
volumetric CSG operations) and automatically blends the intersec-
tion regions (See Section 5.2). Our smoothing operator allows a
user to define a region of interest and smooths the enclosed surface
to a user-defined curvature value. See Section 5.3. We have also de-
veloped a point-attraction operator. See Section 5.4. Here, a region-
ally constrained portion of a level set surface is attracted to a single
point. By defining line segments, curves, polygons, patches and
3D objects as densely sampled point sets, the single point attraction
operator may be combined to produce a more general surface em-
bossing operator. As noted by others, the opening and closing mor-
phological operators may be implemented in a level set framework
[Sapiro et al. 1993; Maragos 1996]. We have also found them useful
for performing global blending (closing) and smoothing (opening)
on level set models. Since all of the operators accept and produce
the same volumetric representation of closed surfaces, the operators
may be applied repeatedly to produce a series of surface editing op-
erations. See Figure 11.

1.2 Benefits and Issues
Performing surface editing operations within a level set framework
provides several advantages and benefits. Many types of surfaces
may be imported into the framework as a distance volume, a vol-
ume dataset that stores the signed shortest distance to the surface
at each voxel. This allows a number of different types of surfaces
to be modified with a single, powerful procedure. By construc-
tion, the framework always produces non-self-intersecting surfaces
that represent physically-realizable objects, an important issue in
computer-aided design. Level set models easily change topologi-
cal genus, and are free of the edge connectivity and mesh quality
problems associated with deforming and modifying mesh models.
Additionally, some reconstruction algorithms produce volumetric
models [Curless and Levoy 1996; Whitaker 1998; Zhao et al. 2001]
and volumetric scanning systems are increasingly being employed
in a number of diverse fields. Therefore volumetric models are be-
coming more prevalent and there is a need to develop powerful edit-
ing operators that act on these types of models directly.

There are implementation issues to be addressed when using

level set models. Given their volumetric representation, one may
be concerned about the amount of computation time and memory
needed to process level set models. Techniques have been devel-
oped to limit level set computations to only a narrow band around
the level set of interest [Adalsteinsson and Sethian 1995; Whitaker
1998; Peng et al. 1999] making the computational complexity pro-
portional to the surface area of the model. We have also developed
computational techniques that allow us to perform the narrow band
calculations only in a portion of the volume where the level set is
actually moving. Additionally, fast marching methods have been
developed to rapidly evaluate the level set equation under certain
circumstances [Tsitsiklis 1995; Sethian 1996]. Memory usage has
not been an issue when generating the results in this paper. The
memory needed for our results (512 MB) is available on standard
workstations and PCs. We have implemented our operators in an
interactive environment that allows us to easily edit a number of
complex surfaces. Additionally, concerns have been raised that
volume-based models cannot represent fine or sharp features. Re-
cent advances [Frisken et al. 2000; Kobbelt et al. 2001] have shown
that is is possible to model these kinds of structures with volume
datasets, without excessively sampling the whole volume. These
advances will also be available for our operators once adaptive level
set methods, an active research area, are developed.

1.3 Contributions
The major contributions of our work are the following.

� The introduction of a unified approach to surface editing
within a level set framework.

– Editing operators defined by speed functions.

– Results produced by solving a PDE.

� The definition of level set speed functions that implement
blending, smoothing and embossing surface editing operators.

– Blending is automatic and is constrained to only occur
within a user-specified distance to an arbitrarily com-
plex intersection curve.

– Smoothing and embossing are constrained to occur
within a user-specified region.

– The user specifies the local geometric properties of the
resulting surface modifications.

– The user specifies if material should be added and/or
removed during editing operations.

� The new techniques used to localize level set calculations.

� In Appendix B we present a new, numerically-stable curvature
measure for level set surfaces.

2 Previous Work
Three areas of research are closely related to our level set sur-
face editing work; volumetric sculpting, mesh-based surface edit-
ing/fairing and implicit modeling. Volumetric sculpting provides
methods for directly manipulating the voxels of a volumetric model.
CSG Boolean operations [Hoffmann 1989; Wang and Kaufman
1994] are commonly found in volume sculpting systems, providing
a straightforward way to create complex solid objects by combining
simpler primitives. One of the first volume sculpting systems is pre-
sented in [Galyean and Hughes 1991]. [Wang and Kaufman 1995]
improved on this work by introducing tools for carving and sawing.
More recently [Perry and Frisken 2001] implemented a volumet-
ric sculpting system based on the Adaptive Distance Fields (ADF)
[Frisken et al. 2000], allowing for models with adaptive resolution.



Performing CSG operations on mesh models is a long-standing
area of research [Requicha and Voelcker 1985; Laidlaw et al. 1986].
Recently CSG operations were developed for multi-resolution sub-
division surfaces by [Biermann et al. 2001], but this work did not
address the problem of blending or smoothing the sharp features of-
ten produced by the operations. However, the smoothing of meshes
has been studied on several occasions [Welch and Witkin 1994;
Taubin 1995; Kobbelt et al. 1998]. [Desbrun et al. 1999] have de-
veloped a method for fairing irregular meshes using diffusion and
curvature flow, demonstrating that mean-curvature based flow pro-
duces the best results for smoothing.

There exists a large body of surface editing work based on im-
plicit models [Bloomenthal et al. 1997]. This approach uses im-
plicit surface representations of analytic primitives or skeletal off-
sets. The implicit modeling work most closely related to ours is
found in [Wyvill et al. 1999]. They describe techniques for per-
forming blending, warping and boolean operations on skeletal im-
plicit surfaces. [Desbrun and Gascuel 1995] address the converse
problem of preventing unwanted blending between implicit primi-
tives, as well as maintaining a constant volume during deformation.

Level set methods have been successfully applied in computer
graphics, computer vision and visualization [Sethian 1999; Sapiro
2001], for example medical image segmentation [Malladi et al.
1995; Whitaker et al. 2001], shape morphing [Breen and Whitaker
2001], 3D reconstruction [Whitaker 1998; Zhao et al. 2001], and
recently for the animation of liquids [Foster and Fedkiw 2001]

Our work stands apart from previous work in several ways. We
have not developed volumetric modeling tools. Our editing opera-
tors act on surfaces that happen to have an underlying volumetric
representation, but are based on the mathematics of deforming im-
plicit surfaces. Our editing operators share several of the capabil-
ities of mesh-based tools, but are not hampered by the difficulties
of maintaining vertex/edge information. Since level set models are
not tied to any specific implicit basis functions, they easily represent
complex models to within the resolution of the sampling. Our work
is the first to utilize level set methods to perform user-controlled
editing of complex geometric models.

Figure 3: Our level set surface editing operators (red) fit into a
larger editing framework. The pipeline consists of: input models
(blue), pre-processing (yellow), CSG operations (orange), local LS
operators (red), global LS operators (purple) and rendering (green).

3 Overview of the Editing Pipeline
The level set surface editing operators should be viewed as com-
ponents of a larger modeling framework. The pipeline for this
framework is presented in Figure 3. The red components contain
the level set speed functions that we have developed for localized
surface editing. The remaining components contain the data and
operations needed for level set modeling, input models (blue), pre-
processing (yellow), CSG operations (orange), global LS operators
(purple) and rendering (green). The pipeline provides the context
for the details of our speed functions.

3.1 Input and Output Models
We are able to import a wide variety of closed geometric models
into the level set environment. We represent a level set model as an
iso-surfaces embedded in a distance volume. Frequently we only
store distance information in a narrow band of voxels surround-
ing the level set surface. As illustrated in Figure 3 we have devel-
oped and collected a suite of scan conversion methods for convert-
ing polygonal meshes, CSG models [Breen et al. 2000], implicit
primitives, and NURBS surfaces into distance volumes. Addition-
ally many types of scanning processes produce volumetric mod-
els directly, e.g. MRI, CT and laser range scan reconstruction.
These models may be brought into our level set environment as
is or with minimal pre-processing. We frequently utilize Sethian’s
Fast Marching Method [Sethian 1996] to convert volume datasets
into distance volumes. The models utilized in this paper and their
original form are listed in Table 1.

Table 1: Native representations of the input models and dimensions
of the corresponding scan converted distance volumes.

Model Representation Dimensions
Dragon volumetric reconstruction 356� 161 � 251
Griffin volumetric reconstruction 312� 148 � 294
Greek bust polygonal reconstruction 221� 221� 161
Human head polygonal reconstruction 256� 246 � 193
Utah teapot NURBS surface 156� 232� 124
Supertoroid implicit primitive 91� 91 � 31

In the final stage of the pipeline we can either volume render
the surface directly or render a polygonal mesh extracted from the
volume. While there are numerous techniques available for both
approaches, we found extracting and rendering Marching Cubes
meshes [Lorensen and Cline 1987] to be satisfactory.

4 Level Set Surface Modeling
The Level Set Method, first presented in [Osher and Sethian 1988],
is a mathematical tool for modeling surface deformations. A de-
formable (i.e. time-dependent) surface is implicitly represented as
an iso-surface of a time-varying scalar function, �(x; t). A detailed
description of level set models is presented in Appendix A.

4.1 LS Speed Function Building Blocks
Given the definition

F(x;n; �; : : : ) � n �
dx

dt
; (1)

the fundamental level set equation, Eq. (12), can be rewritten as

@�

@t
= jr�j F(x;n; �; : : : ) (2)

where dx=dt and n � �r�=jr�j are the velocity and normal
vectors at x on the surface. We assume a positive-inside/negative-
outside sign convention for �(x; t), i.e. n points outward. Eq. (1)
introduces the speed function F , which is a user-defined scalar
function that can depend on any number of variables including x,
n, � and its derivatives evaluated at x, as well as a variety of ex-
ternal data inputs. F() is a signed scalar function that defines the
motion (i.e. speed) of the level set surface in the direction of the
local normal n at x.

The speed function is usually based on a set of geometric mea-
sures of the implicit level set surface and data inputs. The chal-
lenge when working with level set methods is determining how to
combine the building blocks to produce a local motion that creates
a desired global or regional behavior of the surface. The general
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(d) Function, C(), of geomet-
ric measure, , cf. Eq. (7).

Figure 4: Graph of region-of-influence (ROI) functions used to de-
fine the speed functions for our local level set operations, cf. Eq. (3).

structure for the speed functions used in our surface editing opera-
tors is

F(x;n; �) = Dq(d)C()G() (3)

whereDq(d) is a distance-based cut-off function which depends on
a distance measure d to a geometric structure q. C() is a cut-off
function that controls the contribution of G() to the speed func-
tion. G() is a function that depends on geometric measures  de-
rived from the level set surface, e.g. curvature. Thus, Dq(d) acts
as a region-of-influence function that regionally constrains the LS
calculation. C() is a filter of the geometric measure and G() pro-
vides the geometric contribution of the level set surface. In general
 is defined as zero, first, or second order measures of the LS sur-
face.

4.2 Regionally Constraining LS Deformations
Most of our surface operators may be applied locally in a small
user-defined region on the edited surface. In order to regionally re-
strict the deformation during the level set computation, a technique
is needed for driving the value of F() to zero outside of the region.
This is accomplished in three steps. The first step involves defining
the region of influence (ROI), i.e. the region where F() should be
non-zero. This is done by either the user interactively placing a 3D
object around the region, or by automatically calculating a region
from properties of the surface. Both cases involve defining a ge-
ometric structure that we refer to as a “region-of-influence (ROI)
primitive”. The nature of these primitives will vary for the differ-
ent LS operations and will explicitly be defined in Section 5. The
second step consists of calculating a distance measure to the ROI
primitive. The final step involves defining a function that smoothly
approaches zero at the boundary of the ROI.

We define a region-of-influence functionDq(d) in Eq. (3), where
d is a distance measure from a point on the level set surface to the
ROI primitive q. The functional behavior of Dq(d) clearly depends
on the specific ROI primitive, q, but we found the following piece-
wise polynomial function to be useful as a common speed function
building block:

P (�) =

8>>><
>>>:
0 for � � 0

2�2 for 0 < � � 0:5

1� 2(� � 1)2 for 0:5 < � < 1

1 for � � 1:

(4)

P (�) and its derivatives are continuous and relatively inexpensive
to compute. See Figure 4(a). Other continuous equations with the
same basic shape would also be satisfactory. We then define

P(d; dmin; dmax) � P

�
d� dmin

dmax � dmin

�
(5)

where dmin and dmax are user-defined parameters that define the
limits and sharpness of the cut-off. Let us finally define the follow-
ing region-of-influence functions

Dp(d) = 1�P(d; dmin; dmax) (6a)

Ds(d) = P(d; 0; dmax) (6b)

for a point-set, p, and a closed surface, s.
In Eq. (6a) d denotes the distance from a point on the level set

surface to the closet point in the point-set p. In Eq. (6b) d denotes
a signed distance measure from a point on the level set surface to
the implicit surface s. The signed distance measure does not nec-
essarily have to be Euclidean distance - just a monotonic distance
measure following the positive-inside/negative-outside convention.
Note that Dp(d) is one when the shortest distance, d, to the point-
set is smaller than dmin, and decays smoothly to zero as d increases
to dmax, after which it is zero. Ds(d), on the other hand, is zero
everywhere outside, as well as on, the surface s (d � 0), but one
inside when the distance measure d is larger than dmax.

An additional benefit of the region-of-influence functions is that
they define the portion of the volume where the surface cannot
move. We use this information to determine what voxels should
be updated during the level set deformation, significantly lowering
the amount of computation needed when performing editing opera-
tions. This technique allows our operators to be rapidly computed
when modifying large models.

4.3 Limiting Geometric Property Values
We calculate a number of geometric properties from the level set
surface. The zero order geometric property that we utilize is short-
est distance from the level set surface to some ROI primitive. The
first order property is the surface normal, n � �r�=jr�j. Sec-
ond order information includes a variety of curvature measures of
the LS surface. In Appendix B we outline a new numerical ap-
proach to deriving the mean, Gaussian and principle curvatures of a
level set surface. Our scheme has numerical advantages relative to
traditional central finite difference schemes for computing the sec-
ond order derivatives. We found the mean curvature to be a useful
second order measure [Evans and Spruck 1991].

Another desirable feature of our operators is that they allow the
user to control the geometric properties of surface in the region be-
ing edited. This feature is implemented with another cut-off func-
tion, C(), within the level set speed function. C() allows the user
to slow and then stop the level set deformation as a particular sur-
face property approaches a user-specified value. We reuse the cut-
off function, Eq. (5), defined in the previous section, as a building
block for C(). We define

C() =

(
P(; lowmin; 

low
max) for  � 

1�P(; highmin ; 
high
max ) for  > 

(7)

where  � (lowmax + highmin )=2. The four parameters lowmin, lowmax,
highmin , and highmax define respectively the upper and lower support
of the filter, see Figure 4(d).

4.4 Constraining the Direction of LS Motions
Another important feature of the level set framework is its ability
to control the direction of the level set deformation. We are able



Figure 5: Left: Positioning the (red) wing model on the dragon model. Middle: The models are pasted together (CSG union operation),
producing sharp, undesirable creases, a portion of which is expanded in the box. Right: Same region after automatic blending based on mean
curvature. The blending is constrained to only move outwards. The models are rendered with flat-shading to highlight the details of the
surface structure.

to restrict the motion of the surface to only add or remove material
during the level set editing operations. At any point the level set
surface can only move in the direction of the local surface normal.
Hence, we can simply redefine the speed function as min(G; 0) to
remove material (inward motion only) and max(G; 0) to add mate-
rial (outward motion only). In the case of curvature driven speed
functions this produces min/max flows [Sethian 1999]. Of course
no restriction on the direction of the motion need be imposed.

5 Definition of Surface Editing Operators
Given the building blocks described in the previous section, the
level set surface editing operators outlined in Figure 3 may be de-
fined. We begin by defining the well-known CSG operations that
are essential to most editing systems. We then define the new level
set speed functions that implement our surface editing operators by
combining the geometric measures with the region-of-influence and
cut-off functions.

5.1 CSG Operations
Since level set models are volumetric, the constructive solid geome-
try (CSG) [Hoffmann 1989] operations of union, difference and in-
tersection may be applied to them. This provides a straightforward
approach to copy, cut and paste operations on the level set surfaces.
In our level set framework with a positive-inside/negative-outside
sign convention for the distance volumes these are implemented as
min/max operations [Wang and Kaufman 1994] on the voxel val-
ues as summarized in Table 2. Any two closed surfaces represented
as signed distance volumes can be used as either the main edited
model or the cut/copy primitive. In our editing system the user is
able to arbitrarily scale, translate and rotate the models before a
CSG operation is performed.

Table 2: Implementation of CSG operations on two level set mod-
els, A and B, represented by distance volumes VA and VB with
positive inside and negative outside values.

Action CSG Operation Implementation
Copy Intersection, A \B Min(VA; VB)
Paste Union, A [B Max(VA; VB)
Cut Difference, A�B Min(VA;�VB)

5.2 Automatic Localized LS Blending
The surface models produced by the CSG paste operation typically
produces sharp and sometimes jagged creases at the intersection of

the two surfaces. We can dramatically improve this region of the
surface by applying an automatic localized blending. The method
is automatic because it only requires the user to specify a few pa-
rameter values. It is localized because the blending operator is only
applied near the surface intersection region. One possible solution
to localizing the blending is to perform the deformation in regions
near both of the input surfaces. However, this naive approach would
result in blending the two surfaces in all regions of space where
the surfaces come within a user-specified distance of each other,
creating unwanted blends. A better solution, and the one we use,
involves defining the region of influence based on the distance to
the intersection curve shared by both input surfaces. A sampled
representation of this curve is the set of voxels that contains a zero
distance value (within some sub-voxel value �) to both surfaces. We
have found this approximate representation of the intersection curve
as a point-set to be sufficient for defining a shortest distance d for
the region-of-influence function, Dp(d), cf. Eq. (3). Representing
the intersection curve by a point-set allows the curve to take an ar-
bitrary form - it can even be composed of multiple curve segments
without introducing any complication to the computational scheme.

The blending operator moves the surface in a direction that min-
imizes a curvature measure, K, on the level set surface. This is
obtained by making the speed function, G, Eq. (3), proportional to
K, leading to the following blending speed function:

Fblend(x;n; �) = � Dp(d) C(K) K (8)

where � is a user-defined positive scalar that is related to the rate
of convergence of the LS calculation, Dp(d) is defined in Eq. (6a)
where d is the shortest distance from the level set surface to the
intersection curve point set, and C(K) is given by Eq. (7) whereK is
one of the curvatures define in Appendix B. Through the functions
Dp and C the user has full control over the region of influence of
the blending (dmin and dmax) and the upper and lower curvature
values of the blend (lowmin, lowmax and highmin , highmax ). Furthermore
we can control if the blend adds or removes material, or both as
described in Section 4.4.

Automatic blending is demonstrated in Figure 5. A wing model
is positioned relative to a dragon model. The two models are pasted
together and automatic mean curvature-based blending is applied to
smooth the creased intersection region.

5.3 Localized LS Smoothing/Sharpening
The smoothing operator smooths the level set surface in a user-
specified region. This is accomplished by enclosing the region of
interest by a geometric primitive. The “region-of-influence prim-



Figure 6: (left) Scan conversion errors near the teapot spout. (middle) Placing a (red) superellipsoid around the errors. (right) The errors are
smoothed away in 15 seconds. The surface is constrained to only move outwards.

Figure 7: Regionally constrained smoothing. Left: Laser scan re-
construction with unwanted, pointed artifacts in the eye. Middle:
Defining the region to be smoothed with a (red) superellipsoid.
Right: Smoothing the surface within the superellipsoid. The sur-
face is constrained to only move inwards.

itive” can be any closed surface for which we have signed in-
side/outside information, e.g. a level set surface or an implicit prim-
itive. We use superellipsoids [Barr 1981] as a convenient ROI prim-
itive, a flexible implicit primitive defined by two shape parameters.
The surface is locally smoothed by applying motions in a direction
that reduces the local curvature. This is accomplished by moving
the level set surface in the direction of the local normal with a speed
that is proportional to the curvature. Therefore the speed function
for the smoothing operator is

Fsmooth(x;n; �) = �Ds(d)C(K)K: (9)

Here d denotes the signed value of the monotonic inside/outside
function of the ROI primitive s evaluated at x. As before, Cs(d) en-
sures that the speed function smoothly goes to zero as x approaches
the boundary of the ROI primitive.

Figure 7 demonstrates our smoothing operator applied to a laser
scan reconstruction. Unwanted artifacts are removed from an eye
by first placing a red superellipsoid around the region of interest.
A smoothing operator constrained to only remove material is ap-
plied and the spiky artifacts are removed. Figure 6 demonstrates
our smoothing operator applied to a preliminary 3D scan conver-
sion of the Utah teapot. Unwanted artifacts are removed from the
region where the spout meets the body of the teapot by first placing
a superellipsoid around the region of interest. A smoothing oper-
ator constrained to only add material is applied and the unwanted
artifacts are removed. In our final, artificial smoothing example in
Figure 9 a complex structure is completely smoothed away. This
examples illustrates that changes of topological genus and number
of disconnected components are easily handled within a level set
framework during smoothing.

We obtain a sharpening operator by simply inverting the sign of
� in Eq. (9) and applying an upper cut-off to the curvature in C() in
order to maintain numerical stability. The sharpening operator has
been applied to the hair of the Greek bust in Figure 1.

5.4 Point-Set Attraction and Embossing
We have developed an operator that attracts and repels the surface
towards and away from a point set. These point sets can be sam-
ples of lines, curves, planes, patches and other geometric shapes,
e.g. text. By placing the point sets near the surface, we are able to

Figure 8: Left: Three types of single point attractions/repulsions
using different ROI primitives and  values. Right: Utah teapot
embossed with 7862 points sampling the ”SIGGRAPH 2002” logo.

emboss the surface with the shape of the point set. Similar to the
smoothing operator, the user encloses the region to be embossed
with a ROI primitive e.g. a superellipsoid. The region-of-interest
function for this operator is Ds(d), Eq. (6b).

First, assume that all of the attraction points are located outside
the LS surface. pi denotes the closest attraction point to x, a point
on the LS surface. Our operator only allows the LS surface to move
towards pi if the unit vector, ui � (pi�x)=jpi�xj, is pointing in
the same direction as the local surface normal n. Hence, the speed
function should only be non-zero when 0 < n � ui � 1. Since
the sign of n � ui is reversed if pi is instead located inside the LS
surface we simply require  = �sign[�(pi; t)]n �ui to be positive
for any closest attraction point pi. This amounts to having only
positive cut-off values for C(). Finally we let G = ���(pi; t)
since this will guarantee that the LS surface, x, actually stops once
it reaches pi. The following speed function implements the point-
set attraction operator:

Fpoint(x;n; �) = ��Ds(d)C(�sign[�(pi; t)]n � ui)�(pi; t);
(10)

where d is a signed distance measure to a ROI primitive evaluated at
x on the LS surface, and pi is the closest point in the set to x. The
shape of the primitive and the values of the four positive parameters
in Eq. (7) define the footprint and sharpness of the embossing. See
Figure 8, left. Point-repulsion is obtained by making � negative.
Note that Eq. (10) is just one example of many possible point-set
attraction speed functions.

In Figure 8, right, the Utah teapot is embossed with 7862 points
that have been acquired by scanning an image of the SIGGRAPH
2002 logo and warping the points to fit the shape of the teapot.

5.5 Global Morphological Operators
The new level set operators presented above were designed to per-
form localized deformations of a level set surface. However, if
the user wishes to perform a global smoothing of a level set sur-
face, it is advantageous to use an operator other than Fsmooth. For



Figure 9: Changes in topological genus and the number of discon-
nected components are easily handled within a level set framework
during smoothing. The superellipsoid defines the portion of the
surface to be smoothed. The surface is constrained to move only
inwards.

a global smoothing the level set propagation is computed on the
whole volume, which can be slow for large volumes. However,
in this case morphological opening and closing operators [Serra
1982] offer faster alternatives to global smoothing of level set sur-
faces. While we are not the first to explore morphological operators
within a level set framework [Sapiro et al. 1993; Maragos 1996],
we have implemented them and find them useful. Morphological
openings and closings consist of two fundamental operators, dila-
tions D! and erosions E! . Dilation creates an offset surface a dis-
tance ! outward from the original surface, and erosion creates an
offset surface a distance ! inwards from the original surface. The
morphological opening operator O! is an erosion followed by a di-
lation, i.e. O! = D! Æ E! , which removes small pieces or thin
appendages. A closing is defined as C!� = E! Æ D!�, and closes
small gaps or holes within objects. Morphological operators may be
implemented by solving a special form of the level set equation, the
Eikonal equation, @�=@t = �jr�j, up to a certain time t, utiliz-
ing Sethian’s Fast Marching Method [Sethian 1996]. The value of
t controls the offset distance from the original surface of �(t = 0).
Figure 10 contains a model from a laser scan reconstruction that has
been smoothed with an opening operator with ! equal to 3.

Figure 10: Applying a morphological opening to a laser scan recon-
struction of a human head. The opening performs global smooth-
ing by removing protruding structures smaller than a user-defined
value.

5.6 Editing Session Details
Figure 11 contains a series of screen shots taken of our level
set modeling program while constructing the two-headed winged
dragon. The first shows the original dragon model loaded into the

system. A cylindrical primitive is placed around its head and it is
cut off. The model of the head is duplicated and the two heads
are positioned relative to each other. Once the user is satisfied with
their orientation, they are pasted together and an automatic blending
is performed at the intersection seam. The combined double head
model is positioned over the cropped neck of the dragon body. The
double head is pasted and blended onto the body. The griffin model
is loaded into the LS modeling system. A primitive is place around
one of its wings. The portion of the model within the primitive is
copied, being stored in a buffer. Several cutting operations are used
to trim the wing model (not shown). The double-headed dragon
model is loaded, and the wing is positioned, pasted and blended
onto it. A mirror copy of the wing model is created. It is also posi-
tioned, pasted and blended onto the other side of the double-headed
dragon. We then added a loop onto the dragon’s back as if designing
a bracelet charm. This is accomplished by positioning, pasting, and
blending a scan-converted supertoroid, producing the final model
seen in the bottom right.

The Greek bust model was repaired by copying the nose from
the human head model of Figure 10, and pasting and blending the
copied model onto the broken nose. A piece from the right side of
the bust was copied, mirrored, pasted and blended onto the left side
of her face. Local smoothing operators were applied to various por-
tions of her cheeks to clean minor cracks. Finally, the sharpening
operator was applied within a user-defined region around her hair.

Table 3: Typical operator execution times on a R10K 250MHz
MIPS processor.

Operation Objects sub-volume Time
Paste wing on dragon 316 � 172� 215 33 sec.
Blend wing on dragon 82� 48� 63 98 sec.
Smooth teapot spout 60� 55� 31 15 sec.
Opening human head 256� 246� 193 22 sec.
Emboss single point 21� 29� 29 1.5 sec.

Table 4: Parameters used in examples. highmin and highmin are only
used during sharpening. Their values are 0.8 and 0.9. No upper
limit is placed on  in the other examples.

Example dmin dmax lowmin lowmax

Wing Blending 7 9 0.04 0.06
Eye Smoothing 0.9 1 0.04 0.07
Spout Smoothing 0.9 1 0.1 0.13
Hair Sharpening 0.9 1 0.01 0.013
Teapot Embossing 0.9 1 0.8 0.9

6 Conclusion and Future Work
We have presented an approach to implementing surface editing
operators within a level set framework. By developing a new set
of level set speed functions automatic blending, localized smooth-
ing and embossing may be performed on level set models. Addi-
tionally we have implemented morphological and volumetric CSG
operators to fill out our modeling environment. All of the infor-
mation needed to deform a level set surface is encapsulated in the
speed function, providing a simple, unified computational frame-
work. The level set framework offers several advantages. By con-
struction, self-intersection cannot occur, which guarantees the gen-
eration of physically-realizable, simple, closed surfaces. Addition-
ally, level set models easily change topological genus, and are free
of the edge connectivity and mesh quality problems associated with
mesh models.

Several issues still must be addressed to improve our work. Cur-
rently level set implementations are based on uniform samplings of



Figure 11: Series of operations used to create the winged two-headed dragon of Figure 1. First the head is cut off, pasted and blended back
onto the body. Next a wing is copied from a different model and blended onto one side of the dragon. The same wing is then mirrored and
blended onto the other side. Finally a scan converted supertoroid is blended onto the dragon’s back to form the loop of a bracelet charm.

space, a fact that effectively limits the resolution of the objects that
can be modeled. The development of adaptive level set methods
would allow our operators to be applied to adaptive distance fields.
It is possible to shorten the time needed to edit level set surfaces.
Incrementally updating the mesh used to view the edited surface,
utilizing direct volume rendering hardware, parallelizing the level
set computations, and exploring multiresolution volumetric repre-
sentations will lead to editing operations that require only a fraction
of a second, instead of tens of seconds.

We have presented five example level set surface editing oper-
ators. Given the generality and flexibility of our framework many
more can be developed. We intend to explore operators that uti-
lize Gaussian and principal curvature, extend embossing to work
directly with lines, curves and solid objects, and ones that may be
utilized for general surface manipulations, such as dragging, warp-
ing, and sweeping.
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DESBRUN, M., MEYER, M., SCHR ÖDER, P., AND BARR, A. 1999. Implicit fairing
of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH ’99,
317–324.

DO CARMO, M. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall,
Englewood Cliffs, NJ.
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A Level Set Models
A deformable (i.e. time-dependent) surface, S(t), is implicitly represented
as an iso-surface of a time-varying1 scalar function, �(x; t), embedded in
3D, i.e.

S(t) = fx(t) j �(x(t); t) = kg ; (11)

1Our work uses the dynamic level set equation, which is more flexi-
ble than the corresponding stationary equation, �(x) = k(t), see [Sethian
1999] for more details.

where k 2 < is the iso-value, t 2 <+ is time, and x(t) 2 <3 is a point in
space on the iso-surface. It might seem inefficient to implicitly represent a
surface with a 3D scalar function; however the higher dimensionality of the
representation provides one of the major advantages of the LS method: the
flexible handling of changes in the topology of the deformable surface. This
implies that LS surfaces can easily represent complicated surface shapes that
can, form holes, split to form multiple objects, or merge with other objects
to form a single structure.

The fundamental level set equation of motion for �(x(t); t) is derived
by differentiating both sides of Eq. (11) with respect to time t, and applying
the chain rule giving:

@�

@t
= �r� �

dx

dt
; (12)

where dx=dt denotes the speed vectors of the level set surface. A number
of numerical techniques by [Osher and Sethian 1988; Adalsteinsson and
Sethian 1995] make the initial value problem of Eq. (12) computationally
feasible. A complete discussion of the details of the level set method is
beyond the scope of this paper. We instead refer the interested reader to
[Sethian 1999; Osher and Fedkiw 2001]. However, we will briefly mention
two of the most important techniques: the first is the so called “up-wind
scheme” which addresses the problem of overshooting when trying to solve
Eq. (12) by a simple finite forward difference scheme. The second is related
to the fact that one is typically only interested in a single solution to Eq. (12),
say the k = 0 level set. This implies that the evaluation of � is important
only in the vicinity of that level set. This forms the basis for “narrow-band”
schemes [Adalsteinsson and Sethian 1995; Whitaker 1998; Peng et al. 1999]
that solve Eq. (12) in a narrow band of voxels containing the surface. The
“up-wind scheme” makes the level set method numerically robust, and the
“narrow-band scheme” makes its computational complexity proportional to
the level set’s surface area rather than the size of the volume in which it is
embedded.

B Curvature of Level Set Surfaces
The principle curvatures and principle directions are the eigenvalues and
eigenvectors of the shape matrix [do Carmo 1976]. For an implicit surface,
the shape matrix is the derivative of the normalized gradient (surface nor-
mals) projected onto the tangent plane of the surface. If we let the normals
be n = r�=jr�j, the derivative of this is the 3� 3 matrix

N =

�
@n

@x

@n

@y

@n

@z

�T
: (13)

The projection of this derivative matrix onto the tangent plane gives the
shape matrix [do Carmo 1976] B = N(I � n 
 n), where 
 is the
exterior product. The eigenvalues of the matrixB are k1; k2 and zero, and
the eigenvectors are the principle directions and the normal, respectively.
Because the third eigenvalue is zero, we can compute k1; k2 and various
differential invariants directly from the invariants ofB. Thus the weighted
curvature flow is computing fromB using the identities D = jjBjj2, H =
Tr(B)=2, and K = 2H2 �D2=2. The choice of numerical methods for
computingB is discussed in the following section. The principle curvature
are calculated by solving the quadratic

k1;2 = H �

s
D2

2
�H2: (14)

In many circumstances, the curvature term, which is a kind of directional
diffusion, which does not suffer from overshooting, can be computed di-
rectly from first- and second-order derivatives of � using central difference
schemes. However, we have found that central differences do introduce in-
stabilities when computing flows that rely on quantities other than the mean
curvature. Therefore we use the method of differences of normals [Rudin
et al. 1992; Whitaker and Xue 2001] in lieu of central differences. The strat-
egy is to compute normalized gradients at staggered grid points and take the
difference of these staggered normals to get centrally located approxima-
tions toN . The shape matrix B is computed with gradient estimates from
central differences. The resulting curvatures are treated as speed functions
(motion in the normal direction), and the associated gradient magnitude is
computed using the up-wind scheme.
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Abstract

Level set models combine a low-level volumetric representation,
the mathematics of deformable implicit surfaces, and powerful, ro-
bust numerical techniques to produce a novel approach to shape de-
sign. While these models offer many benefits, their large-scale rep-
resentation and their numerical requirements create significant chal-
lenges when developing an interactive system. This paper describes
the collection of techniques and algorithms (some new, some pre-
existing) needed to overcome these challenges and to create an in-
teractive editing system for this new type of geometric model. We
summarize the algorithms for producing level set input models and,
more importantly, for localizing/minimizing computation during
the editing process. These algorithms include distance calculations,
scan conversion, closest point determination, fast marching meth-
ods, bounding box creation, fast and incremental mesh extraction,
numerical integration, and narrow band techniques. Together these
algorithms provide the capabilities required for interactive editing
of level set models.

1 Introduction

Level set models are a new type of geometric model for creating
complex, closed objects. They combine a low-level volumetric rep-
resentation, the mathematics of deformable implicit surfaces, and
powerful, robust numerical techniques to produce a novel approach
to shape design. During an editing session a user focuses on and
conceptually interacts with the shape of a level set surface, while
the level set methods “under the hood” calculate the appropriate
voxel values for a particular editing operation, completely hiding
the volumetric representation of the surface from the user.

More specifically, level set models are defined as an iso-surface,
i.e. a level set, of some implicit functionφ. The surface is deformed
by solving a partial differential equation (PDE) on a regular sam-
pling of φ, i.e. a volume dataset [Osher and Sethian 1988]. Thus,
it should be emphasized that level set methods do not manipulate
an explicit closed form representation ofφ, but only a sampling
of it. Level set methods provide the techniques needed to change
the voxel values of the volume in a way that moves the embedded
iso-surface to meet a user-defined goal.

Defining a surface with a volume dataset may seem unusual and
inefficient, but level set models do offer numerous benefits in com-
parison to other types of geometric surface representations. They
are guaranteed to define simple (non-self-intersecting) and closed
surfaces. Thus level set editing operations will always produce a
physically-realizable (and therefore manufacturable) object. Level
set models easily change topological genus, making them ideal for
representing complex structures of unknown genus. They are free
of the edge connectivity and mesh quality problems common in
surface mesh models. Additionally, they provide the advantages
of implicit models, e.g. supporting straightforward solid model-
ing operations and calculations, while offering a powerful surface
modeling paradigm.

Figure 1: Level set modeling system modules. The system consists
of: input models (blue), pre-processing (yellow), CSG operations
(orange), local LS operators (red), global LS operators (purple) and
rendering (green).

1.1 Level Set Model Editing System

We have developed an interactive system for editing level set mod-
els. The modules and the data flow of the system is diagramed in
Figure 1. The blue modules contain the types of models that may
be imported into the system. The yellow modules contain the algo-
rithms for converting the input models into level set models. The
orange, red and purple modules are the editing operations that can
be performed on the models. The final (green) module renders the
model for interactive viewing.

In a previous paper [Museth et al. 2002a] described the mathe-
matical details of the editing operators, some of which were based
on concepts proposed in [Whitaker and Breen 1998]. The cut-and-
paste (orange) operators give the user the ability to copy, remove
and merge level set models (using volumetric CSG operations) and
automatically blend the intersection regions (1st red module). Our
smoothing operator (2nd red module) allows a user to define a re-
gion of interest and smooths the enclosed surface to a user-defined
curvature value. We have also developed a point-attraction opera-
tor. A regionally constrained portion of a level set surface may be
attracted to a set of points to produce a surface embossing opera-
tor (3rd red operator). As noted by others, the opening and closing
morphological (purple) operators [Serra 1982] may be implemented
in a level set framework [Sapiro and Tannenbaum 1993; Maragos
1996]. We have also found them useful for global blending (clos-
ing) and smoothing (opening).

1.2 Challenges and Solutions

The volumetric representation and the mathematics of level set
models create numerous challenges when developing an interac-
tive level set editing system. Together they indicate the need for
an enormous amount of computation on large-scale datasets, in or-
der to numerically solve the level set equation at each voxel in the
volume. In this paper, we address these issues, focusing on the im-
plementation details of our level set editing work and describing
the collection of algorithms (some new, some pre-existing) needed
to create an interactive level set model editing system.



The first challenge encountered when editing level set models is
converting conventional surface representations into the volumet-
ric format needed for processing with level set methods. Our goal
has been to connect level set editing with other forms of geometric
modeling. The user may utilize pre-existing modeling tools to cre-
ate a variety of models. Creating a suite of model conversion tools
allows those models to be imported into our system for additional
modifications using editing operations unique to level set models.
We therefore have implemented several 3D scan conversion algo-
rithms. The essential computation for most of these algorithms in-
volves calculating a closest point (and therefore the shortest dis-
tance) from a point to the model.

The second major challenge of interactive level set model edit-
ing is minimizing the amount of computation needed to perform
the individual operations. The mathematics of level set models is
defined globally, but in practice most level set operators only mod-
ify a small portion of the model. We therefore employ a variety of
techniques to localize the level set computations in order to make
the editing system interactive. Since we are only interested in one
level set (iso-surface) in the volume, narrow band techniques [Adal-
steinsson and Sethian 1995; Whitaker 1998; Peng et al. 1999] may
be used to make the computation proportional to the surface area of
the model. Additionally, the extensive use of bounding boxes fur-
ther limits the region of computation on the surface. Some of our
operators require a closest-point-in-set calculation. Here K-D trees
[de Berg et al. 1997; Arya et al. 1998] are utilized. Finally, inter-
active viewing is made possible by an incremental, optimized mesh
extraction algorithm. Brought together, all of these techniques and
data structures allow us to import a variety of models and interac-
tively edit them with level set surface editing operators.

1.3 Related Work

Two areas of research are closely related to our level set surface
editing work; volumetric sculpting, and implicit modeling. Vol-
umetric sculpting provides methods for directly manipulating the
voxels of a volumetric model. CSG Boolean operations [Hoff-
mann 1989; Wang and Kaufman 1994] are commonly found in
volume sculpting systems, providing a straightforward way to cre-
ate complex solid objects by combining simpler primitives. One
of the first volume sculpting systems is presented in [Galyean and
Hughes 1991]. Incremental improvements to the concept of vol-
ume sculpting soon followed. [Wang and Kaufman 1995] intro-
duced tools for carving and sawing, [Avila and Sobierajski 1996]
developed a haptic interface for sculpting, [Ferley et al. 2000] in-
troduced new sculpting tools and improved interactive rendering,
and [Cutler et al. 2002] provide procedural methods for defining
volumetric models. Physical behavior has been added to the un-
derlying volumetric model in order to produce virtual clay [Arata
et al. 1999]. [McDonnell et al. 2001] improved upon this work by
representing the virtual clay with subdivision solids [MacCracken
and Roy 1996]. More recently sculpting systems [Perry and Frisken
2001; Ferley et al. 2001] have been based on octree representations
[Meagher 1982; Frisken et al. 2000], allowing for volumetric mod-
els with adaptive resolution.

There exists a large body of surface editing work based on im-
plicit models [Bloomenthal et al. 1997]. This approach uses im-
plicit surface representations of analytic primitives or skeletal off-
sets. The implicit modeling work most closely related to ours is
found in [Wyvill et al. 1999]. They describe techniques for per-
forming blending, warping and boolean operations on skeletal im-
plicit surfaces. An interesting variation of implicit modeling is pre-
sented by [Raviv and Elber 2000], who use a forest of trivariate
functions [Casale and Stanton 1985] evaluated on an octree to cre-
ate a multiresolution sculpting capability.

Level set methods have been successfully applied in computer

graphics, computer vision and visualization [Sethian 1999; Sapiro
2001; Osher and Fedkiw 2002], for example medical image seg-
mentation [Malladi et al. 1995; Whitaker et al. 2001], shape morph-
ing [Desbrun and Cani 1998; Breen and Whitaker 2001], 3D recon-
struction [Museth et al. 2002b; Whitaker 1998; Zhao et al. 2001],
volume sculpting [Baerentzen and Christensen 2002], and the ani-
mation of liquids [Enright et al. 2002].

Our work stands apart from previous work in several ways. We
have not developed volumetric modeling tools. Our editing sys-
tem acts on surfaces that happen to have an underlying volumetric
representation, but are based on the mathematics of deforming im-
plicit surfaces. In our system voxels are not directly modified by
the user, instead voxel values are determined numerically by solv-
ing the level set equation, based on user input. Since level set mod-
els are not tied to any specific implicit basis functions, they easily
represent complex models to within the resolution of the sampling.
Our work is the first to utilize level set methods to perform a variety
of interactive editing operations on complex geometric models.

It should also be noted that several of the algorithms described in
this paper have been implemented in graphics hardware, e.g. solv-
ing level set equations [Rumpf and Strzodka 2001a; Lefohn et al.
2003], evaluating other types of differential equations [Rumpf and
Strzodka 2001b; Bolz et al. 2003; Sherbondy et al. 2003], morpho-
logical operators [Hopf and Ertl 2000; Yang and Welch 2002], and
voxelization [Fang and Chen 2000; Sigg et al. 2003]. This work
predominantly focuses on coping with the issues that arise from
mapping general algorithms onto hardware-specific GPUs with re-
strictive memory sizes, data types and instruction sets in order to
shorten computation times.

2 Level Set Models

Level set models implicitly represent a deforming surface as an iso-
surface (or level set),

S = {x | φ(x) = k} , (1)

wherek ∈ R is the iso-value,x ∈ R3 is a point in space on the iso-
surface andφ : R3 → R is an arbitrary scalar function. To allow for
deformations of the level set surface we assume thatS can change
over time. Introducing time dependence into the right-hand side of
Eq. (1) produces two distinct types of level set surface representa-
tions. In the first, the iso-valuek can be considered time-dependent
and the level set functionφ is only implicitly time-dependent, lead-
ing to the so calledstatic level set formulation,

S(t) = {x(t) | φ(x(t)) = k(t)} . (2)

In the second, the iso-valuek is fixed in time and the level set func-
tion explicitly depends on time, leading to thedynamic level set
formulation,

S(t) = {x(t) | φ(x(t), t) = k} . (3)

These two level set formulations arenot equivalent and offer very
distinct advantages and disadvantages. A detailed discussion of
level set methods is beyond the scope of this paper, but since both
formulations play important roles in our work each is briefly de-
scribed. For more details we refer the interested reader to [Osher
and Fedkiw 2002; Sethian 1999].

2.1 Equation Formulations

The static formulation of Eq. (2) describes the deforming surface
as a family of level sets,S(t), of a static functionφ(x). The cor-
responding equation of motion for a point,x(t), on the surface is



easily derived by differentiating both sides ofφ(x(t)) = k(t) with
respect to timet, and applying the chain rule giving:

∇φ(x(t)) · dx(t)

dt
=

dk(t)

dt
. (4)

Before interpreting this equation it is first necessary to define the
term level set speed function. Throughout this paper we assume a
positive-inside/negative-outsidesign convention forφ, i.e. normal
vectors,n, of any level set ofφ point outwardsand are simply given
by n ≡ −∇φ/|∇φ|. This allows us to define the followingspeed
function

F(x, n, φ, . . . ) ≡ n · dx

dt
= − ∇φ

|∇φ| ·
dx

dt
, (5)

which in general is a user-defined scalar function that can depend
on any number of variables includingx, n, φ and its derivatives
evaluated atx, as well as a variety of external data inputs. The
geometric interpretation of this function is straightforward; since
dx/dt denotes the velocity vectors of a pointx on a level set sur-
face, the speed functionF defines the projection of this vector onto
the local surface normal. In other words,F is asignedscalar func-
tion that defines the motion (i.e. speed) of the level set surface in
the direction of the local normaln at a pointx on a level setS.

Using the definition of a speed function in Eq. (5), Eq. (4) may
be simplified to

|∇φ|F = −dk

dt
. (6)

First we note that since the right hand side only depends on time,
so does the sign of the speed function,F . Consequently the static
level set formulation only allows for monotonic surface motions at
any given timet. Secondly we note that Eq. (6) actually includes
two unknown and explicitly time-dependent functions,F and k.
Whereas the presence of a general functional expression fork(t)
adds a little extra flexibility to this formulation, it also makes the
users task of defining a speed function less intuitive since it gen-
erally depends on the specific choice ofk(t). Fortunately we can
easily address this issue by limiting ourselves to a simple special
case of Eq. (2) whereφ(x) ≡ ±t, i.eφ(x) is defined to be the (for-
ward or backward) time of arrival of the level set surface at a point
x. With this trivial choice ofk(t) = ±t, Eq. (6) simplifies to

|∇φ|F = ±1. (7)

which only depends implicitly on time and therefore describes a
simple boundary value problem. Eq. (7) is known as thefundamen-
tal stationary level set equationand can be efficiently solved using
fast marching methods [Tsitsiklis 1995; Sethian 1996], which will
be described in detail in Section 3.1.6. We point out that the so-
calledEikonal equation

|∇φ| = 1, (8)

which produces asigned distance fieldto an initial surfaceS0,
can be considered a special case of the stationary level set equa-
tion (Eq. (7)) with a unit speed function and the boundary condi-
tion {x ∈ S|φ(x) = 0}. Therefore fast marching methods may be
used to efficiently compute the signed distance field to an arbitrary
(closed and orientable) surface.

The stationary level set representation has a significant limita-
tion, however. It follows directly from Eq. (7) that the speed func-
tions,F , has to be strictly positive or negative depending on the sign
of the right-hand side. Consequently surface deformations are lim-
ited to strict monotonic motions - always inward or outward, similar
to the layers of an onion. This limitation stems from the fact that
φ(x) by definition has to be single-valued (time-of-arrival), i.e. the

level set surface resulting from the stationary formulation cannot
self-intersect over time. The inherit limitation of the static formula-
tion can be overcome by adding an explicit time-dependence toφ,
which leads to the dynamic level set Eq. (3).

Following the same steps as the stationary case, the dynamic
equation of motion may be derived by differentiating the right-hand
side of Eq. (3) with respect to time and applying the speed function
definition (Eq. (5)), giving

∂φ

∂t
= −∇φ · dx

dt
(9a)

= |∇φ| F(x, n, φ, . . . ). (9b)

These fundamental equations are referred to as “the level set equa-
tions” in the literature, even though they are strictly speaking the
dynamic counterpart to the stationary level set Eq. (7). In con-
trast to the stationary form the dynamic surface representation of
Eq. (9b) does not limit the sign of the speed functionF , and there-
fore allows for arbitrary surface deformations. The speed function
is usually based on a set of geometric measures of the implicit level
set surface and data inputs. The challenge when working with level
set methods is determining how to combine these components to
produce a local motion that creates a desired global or regional sur-
face structure. [Museth et al. 2002a] defines several such speed
functions that may be used to edit geometric objects.

2.2 Geometric Properties

The speed function,F , introduced in the previous section typically
depends on different geometric properties of the level set surface.
These properties can conveniently be expressed as either zero, first
or second order derivatives ofφ. Examples include the shortest dis-
tance from an arbitrary point to the surface, the local surface normal
and different curvature measures. Assumingφ is properly normal-
ized, i.e. satisfies Eq. (8), the distance is simply the numerical value
of φ, and as indicated above the normal vector is just a normalized
gradient ofφ. The latter is easily proved by noting that the direc-
tional derivative in the tangent plane of the level set function by
definition vanishes, i.e.

dφ

dT
≡ T · ∇φ = 0 (10)

whereT is an arbitrary unit vector in the tangent plane of the level
set surface. We have many different curvature measures for sur-
faces, but as has been noted by others geometric flow based on the
mean curvature seems to be most useful. From the definition of the
mean curvature in differential geometry [do Carmo 1976] we have

K ≡ K1 + K2 ≡ Dive1 [n] + Dive2 [n] (11a)

= e1(e1 · ∇) · n + e2(e2 · ∇) · n (11b)

where{K1, K2} are the principle curvatures and Dive1 [n] denotes
the divergence of the normal vectorn in the principle direction
e1. Next, resolving the gradient operator in the orthonormal frame
of the principle directions{e1, e2} in the tangent plane and the
normal vectorn gives

∇ = e1(e1 · ∇) + e2(e2 · ∇) + n(n · ∇). (12)

Eq. (11b) simplifies to

K = ∇ · n− n(n · ∇) · n (13a)

= ∇ · n = ∇ · ∇φ

|∇φ| , (13b)



Figure 2: A slice through a narrow band distance volume.

where we have also made used of the following relations
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since the normal vector is always normalized to one. Eq. (13b)
can finally be expanded to obtain an expression directly in terms of
derivatives ofφ

K =

`
φ2

x(φyy + φzz)− 2φxφyφxy+
φ2
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φ2

z(φxx + φyy)− 2φyφzφyz

´
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y + φ2
z

´3/2
.

(15)

Eq. (15) clearly reduces the problem of computing the mean curva-
ture of a level set surfaces to the simple approximation of first and
second order derivatives of the level set function itself. In section
3.2.2 we shall also discuss a convenient and fast way to compute the
mean curvature, as well as other types of surface curvature, directly
from Eq. (13b).

3 Types of Computation

The main algorithms employed by our level set modeling system
may be placed in three categories: distance computations, level set
evolutions and efficient mesh extractions.

3.1 Distance Computations

A level set model is represented by a distance volume, a volume
dataset where each voxel stores the shortest distance to the surface
of the object being represented by the volume. The inside-outside
status of the point is defined by its sign, positive for inside and
negative for outside. Since we are only interested in one level set
(iso-surface) embedded in the volume, distance information is only
maintained around one level set (usually of iso-value zero). De-
pending on the accuracy of the integrations scheme this “narrow
band” is typically only a five voxels wide (two voxels on each side
of the zero level set). See Figure 2.

Before an object can be edited in our system, it must first be con-
verted into a narrow-band distance volume. Currently we are able
to convert polygonal, NURBS, implicit and CSG models, as well as
general volumetric models into the appropriate volumetric format.
The fundamental operation performed in the conversion process is
the calculation of the shortest distance from an arbitrary point to the
geometric model being scan converted. Since the calculation is per-
formed repeatedly, efficient computation is essential to minimizing
the time needed for conversion.

3.1.1 Narrow Band Approximation

All of our level set editing operators assume that our models are
represented as ”narrow-band” distance volumes. Unfortunately, our
operators do not necessarily produce this representation, signed dis-
tance in a narrow band and constant values outside of the band.1

The level set equation (Eq. (9b)) contains no explicit constraints
that maintainφ as a signed distance function as time evolves. In
fact it can be shown thatφ will only remain a distance field for cer-
tain restricted types of speed functions [Zhao et al. 1996; Sapiro
2001]. Additionally, the CSG operations used extensively in our
editing system are known not to produce true distance values for
all circumstances [Perry and Frisken 2001; Breen et al. 2000]. We
must therefore reset the volumetric representation of our models af-
ter each editing operation in order to ensure thatφ is approximately
equal to the shortest distance to the zero level set in the narrow
band.

The re-normalization after each editing operation can be imple-
mented in a number of ways. One option is to directly solve the
Eikonal equation,|∇φ| = 1 using algorithms such as Sethian’s Fast
Marching Method[Sethian 1996]. Alternatively one can solve the
following time-dependent Hamilton-Jacobi equation until it reaches
a steady state,

dφ

dt
= S(φ)(1− |∇φ|), (16)

whereS(φ) returns the sign ofφ [Peng et al. 1999]. Both ap-
proaches are accurate but in the context of an interactive imple-
mentation they are too slow. Instead we use a faster but approx-
imate solution where points on the zero level set (iso-surface) of
the embedded surface are found by linearly interpolating the voxel
values along grid edges that span the zero crossings. These “zero-
crossing” edges have end-points (voxels) whose associatedφ val-
ues have opposite signs. The first step in rebuildingφ in the narrow
band after an editing operation consists of creating the list of “ac-
tive” voxels, those adjacent to a zero crossing. The values at these
voxels are then recalculated with a first-order Newton’s approxima-
tion [Whitaker 1998],φnew(x) = φold(x)/|∇φold(x)|, which is
only valid near the zero level set.

Theφ values of the nextN layers of voxels that form a narrow
band on either side of the active list voxels are approximated by a
simple city block distance metric. First, all of the voxels that are
adjacent to the active list voxels are found. They are assigned a
φ value that is one plus the smallestφ value of their 6-connected
neighbors in the active list. Next all of the voxels that are adjacent
to the first layer, but not in the active list are identified and theirφ
values are set to be one plus the smallest value of their 6-connected
neighbors. This process continues until a narrow band` voxels
thick has been created.

3.1.2 Scan Conversion of Polygonal Models

This section describes an algorithm for calculating a distance vol-
ume from a 3D closed, orientable polygonal mesh composed of

1They do properly produce the correct zero crossings in the resulting
volumes.
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Figure 3: Strips containing points with negative (left) and positive
(right) distance to edges.

x

ξ

Figure 4: Wedges containing points with negative (left) and positive
(right) distance to vertices.

triangular faces, edges, vertices, and normals pointing outwards.
The algorithm computes the closest point on and shortest signed
distance to the mesh by solving the Eikonal equation,|∇φ| = 1,
derived in Section 2, by the method of characteristics. The method
of characteristics is implemented2 efficiently with the aid of com-
putational geometry and polyhedron scan conversion producing an
algorithm with computational complexity that is linear in the num-
ber of faces, edges, vertices and voxels [Mauch 2003; Mauch 2004].

Let ξ be the closest point on a manifold to the pointx. The
distance to the manifold is|x− ξ|. x andξ are the endpoints of the
line segment that is a characteristic of the solution of the Eikonal
equation. If the manifold is smooth then the line connectingx to
ξ is orthogonal to the manifold. If the manifold is not smooth atξ
then the line lies “between” the normals of the smooth parts of the
manifold surroundingξ.

Based on this observation, a Voronoi diagram is built for the
faces, edges and vertices of the mesh, with each Voronoi cell de-
fined by a polyhedron. Scan conversion is then utilized to deter-
mine which voxels of the distance volume lie in each Voronoi cell.
By definition the face, edge or vertex associated with the Voronoi
cell is the closest element on the mesh to the voxels in the cell. The
closest point/shortest distance to the element is then calculated for
each voxel.

Suppose that the closest pointξ to a grid pointx lies on a trian-
gular face. The vector fromξ to x is orthogonal to the face. Thus
the closest points to a given face must lie within a triangular prism
defined by the edges and normal vector of the face. Faces produce
prisms of both positive and negative distance depending on their re-
lationship to the face’s normal vector. The sign of the distance value
in the prism in the direction of the normal (outside the mesh) is neg-
ative and is positive opposite the normal (inside the mesh). A 2D
example is presented in Figure 3. In two dimensions the Voronoi
cells are defined as strips with negative and positive distance.

Consider a grid pointx whose closest pointξ is on an edge. Each

2The scan conversion algorithm presented here is available in the CPT
library at http://www.acm.caltech.edu/∼seanm/software/cpt/cpt.html.

(a) (b)

Figure 5: (a) The polyhedron for a single edge. (b) The polyhedra
for the vertices.

Figure 6: Scan conversion of a polygon in 2D. Slicing a polyhedron
to form polygons.

edge in the mesh is shared by two faces. The closest points to an
edge must lie in a wedge defined by the edge and the normals of
the two adjacent faces. We define only one Voronoi cell for each
edge in the direction where the angle between the faces is greater
thanπ. Finally, consider a grid pointx whose closest pointξ is on
a vertex. Each vertex in the mesh is shared by three or more faces.
The closest points to a vertex must lie in a faceted cone defined
by the normals to the adjacent faces. Similar to the edge Voronoi
cells, we only define one polyhedron for each vertex. The cone will
point outwards and contain negative distance if the surface is con-
vex at the vertex. The cone will point inwards and contain positive
distance if the surface is concave at the vertex. Figure 4 may be
thought of as a 2D cross-section of an edge or a vertex Voronoi cell
and demonstrates the conditions for defining one positive or nega-
tive polyhedron. Figure 5a shows a Voronoi cell (polyhedron) for
a single edge. Figure 5b shows all of the vertex polyhedra of an
icosahedron.

Once the Voronoi diagram is constructed, the polyhedra associ-
ated with each cell is scan converted in order to associate the closest
face, edge or vertex with each voxel for the shortest distance calcu-
lation. Each polyhedron is intersected with the planes that coincide
with the grid rows to form polygons. This reduces the problem to
polygon scan conversion. See Figure 6. For each grid row that in-
tersects the resulting polygon we find the left and right intersection
points and mark each grid point in between as being inside the poly-
gon. The polyhedra that define the Voronoi cells must be enlarged
slightly to make sure that grid points are not missed due to finite
precision arithmetic. Therefore, some grid points may be scan con-
verted more than once. In this case, the smaller distance and thus
the closer point is chosen.

3.1.3 Superellipsoids

Superellipsoids are used as modeling primitives and region-of-
influence (ROI) primitives for some of our operators. In both cases,



a scan-converted representation is needed. The parametric equation
for a superellipsoid is

S(η, ω) =

24 a1cos
ε1(η)cosε2(ω)

a2cos
ε1(η)sinε2(ω)

a3sin
ε1(η)

35 (17)

whereη ∈ [−π/2, π/2] andω ∈ [−π, π] are the longitudinal and
latitudinal parameters of the surface,a1, a2, a3 are the scaling fac-
tors in theX, Y , andZ directions, andε1 andε2 define the shape
in the longitudinal and latitudinal directions [Barr 1981].

The distance to a point on the surface of a superellipsoid defined
at [η, ω] from an arbitrary pointP is

d(η, ω) = ||S(η, ω)−P||. (18)

Squaring and expanding Eq. (18) gives

d̂(η, ω) = (a1cos
ε1(η)cosε2(ω)− Px)2

+ (a2cos
ε1(η)sinε2(ω)− Py)2

+ (a3sin
ε1(η)− Pz)

2. (19)

The closest point to the superellipsoid from an arbitrary pointP
can then be calculated by determining the values of[η, ω] which
minimize Eq. (19). In general Eq. (19) is minimized with a gradient
descent technique utilizing variable step-sizes. The values of[η, ω]
may then be plugged into Eq. (17) to give the closest point on the
surface of the superellipsoid, which in turn may be used to calculate
the shortest distance.

Finding the values ofη andω at the closest point with a gradient
descent technique involves calculating the gradient of Eq. (19),

∇d̂ = [∂d̂/∂η, ∂d̂/∂ω]. (20)

Unfortunately, superellipsoids have a tangent vector singularity
near[η, ω] values that are multiples ofπ/2. To overcome this prob-
lem, we re-parameterizeS by arc length [do Carmo 1976]. Once
our steepest descent (on̂d) is redefined so that it is steepest with
respect to the normalized parameters (α, β) we can use the gradient
of the re-parameterized̂d,

∇d′ = [∂d̂/∂α, ∂d̂/∂β], (21)

to find the closest point with greater stability. For more details see
[Breen et al. 2000].

The general formulation of Eq. (21) significantly simplifies for
values ofη and ω near multiples ofπ/2. Instead of deriving
and implementing these simplifications for all regions of the su-
perellipsoid the calculation is only performed in the first octant
(0 ≤ η ≤ π/2, 0 ≤ ω ≤ π/2). Since a superellipsoid is 8-way
symmetric, pointP may be reflected into the first octant, the min-
imization performed, and the solution point reflected back intoP’s
original octant.

It should be noted that for certain values ofε1 andε2 the nor-
mals of a superellipsoid become discontinuous, producing special
degenerate primitives that must be dealt with separately. The most
common cases are the cuboid (ε1 = ε2 = 0), and the cylinder
(ε1 = 0, ε2 = 1). The shortest distance to these primitives may be
determined by calculating the shortest to each individual face (6 for
the cuboid, 3 for the cylinder), and choosing the smallest value.

A faster, but less accurate, alternative for scan-converting any
implicit primitive involves utilizing the approximation from Sec-
tion 3.1.1 at the voxels adjacent to the primitive’s surface. Given
these voxel values, the distance values at the remaining voxels may
be calculated with a Fast Marching Method [Sethian 1996; Tsitsik-
lis 1995]. See Section 3.1.6. Also, once shortest distance can be
calculated for any closed primitive, distance to a Constructive Solid
Geometry (CSG) model consisting of combinations of the primitive
may also be computed [Breen et al. 2000].

Figure 7: A trimmed NURBS teapot model. The trimming curves
remove portions of each surface’s domain and maintain topological
connectivity between adjacent surfaces.

3.1.4 Trimmed NURBS Models

A trimmed NURBS model has portions of its domain, and thus por-
tions of the surface, trimmed away [Shantz and Chang 1988; Piegl
and Tiller 1998]. The trimming data structure is commonly a piece-
wise linear curve in the parameter space and a companion piece-
wise curve in the space of the surface. A set of trimmed surfaces
may be joined together into a solid model with topological connec-
tivity maintained by the trimming curves (Figure 7). Our approach
to converting a trimmed NURBS model consists of three stages: 1)
compute the minimum distance to the Euclidean trimming curves,
2) compute local distance minima to the NURBS surface patches,
discarding solutions that lie outside the trimmed domain, and 3)
perform an inside/outside test on the resulting closest point.

Distance to Trimming Curves Models typically contain thou-
sands of trimming segments and computing the closest point on
these segments is very similar to finding the minimum distance to
polygonal models, except the primitives are line segments instead
of triangles. We have modified the publically available PQP pack-
age3, which computes swept sphere volume hierarchies around tri-
angulated models, to use line segments. This reduces the query time
for the distance to trimming loops from O(n) closer to O(logn).

Local Distance to NURBS Surfaces Similar to a su-
perquadric the distance between a point and parametric surface is
described by

D2(u, v) = ||S(u, v)−P||2. (22)

Minimizing Equation (22) corresponds to finding the parameter val-
ues of the local closest point on that surface and can be done by find-
ing the simultaneous roots of the partial derivatives ofD2(u, v),

(S(u, v)−P) · Su = 0 (23)

(S(u, v)−P) · Sv = 0 (24)

We search for local minima in distance until the closest local
minimum inside the trimmed domain is found. Multi-dimensional
Newton’s method can quickly find a local minimum when given
a reasonable starting point. However, Newton’s method does not
always converge. For robustness, we use Newton’s method at mul-
tiple starting locations around a potential local minimum. As a
preprocess, each original polynomial span of the model’s original

3http://www.cs.unc.edu/∼geom/SSV/



Figure 8: A slice through a 232x156x124 distance volume of the
Utah teapot. The zero level set is highlighted in red.

surfaces are refined into a new sub-surfaces. These refined sub-
surfaces provide multiple starting locations for each potential min-
imum.

The algorithm initializes Newton’s method by projecting the
query point onto the control polygon of the tested surface. This
projection is used to compute a surface point usingnodal map-
ping. Nodal mapping associates a parameter value (the node) to
each control point of that surface piece, and then linearly inter-
polates between node values using the projection onto the control
mesh. Evaluating the surface at this interpolated value produces a
first order approximation to the closest point on the surface and a
reasonable starting value for Newton’s method to improve.

The closest point returned by Newton’s method may be outside
of the trimmed domain. Again, a modified PQP algorithm for pla-
nar line segments is used to find the closest point on the parametric
trimming segments of that surface. Valid parametric solutions are
to the right of the closest trimming line segment. Average normals
are stored at the vertices of the trimming curve in order to correctly
perform the inside/outside domain test.

The closest valid point on the surface is compared with the dis-
tance to the spatial representation of the trimming loops, and the
closest is used as the closest point on the model. If the closest point
is on a surface patch, the inside/outside status of the query is de-
termined by dotting the vector from the query point to the closest
point with the surface normal at the closest point. The sign of the
dot product gives the sign of the distance. If the closest point is on
a trimming loop, we use a classic ray shooting algorithm and count
the number of crossing of the model to determine whether the query
point is inside or outside.

Acceleration Techniques NURBS surfaces have a local con-
vex hull property when the homogeneous coordinate of the control
points have positive values. These convex hulls provide a natural
means of computing a lower bound on the minimum distance from
the query point to the contained portion of surface. We use the GJK
package4 as a robust implementation of Gilbert’s algorithm [Gilbert
et al. 1988; Cameron 1997] to efficiently compute a lower bound on
distance. Refined surfaces with a lower distance bound larger than
the current minimum distance cannot contribute a closer point, so
they can be ignored.

We note that the minimum distance from one query to the next
cannot vary more than the distance between the two query points.
We therefore initialize the minimum distance for a new query as
the last minimum distance plus the space between query points.
This helps to quickly remove surfaces to be tested using the convex
hull technique. Finally, the ray intersection inside/outside test can
be accelerated by noting that if the last query point was outside,

4URL: http://web.comlab.ox.ac.uk/oucl/work/stephen.cameron/distances/

Figure 9: An embossed level set teapot model.

then the new query cannot be inside if the last minimum distance
was larger than distance between query points, and vice versa when
the last query was inside. This very efficiently removes the need
to test the sign of many queries. Figure 8 presents a slice from a
signed distance volume produced from a trimmed NURBS models
containing 20 patches and four trimming curves. It was calculated
in ## minutes.

3.1.5 Point Sets

Some level set editing operators need to determine the closest point
in a set from another arbitrary point. This capability is used dur-
ing level set blending (when calculating the distance to an intersec-
tion “curve”) and embossing (moving a level set surface towards a
point set). We utilize the ANN library of Mount and Arya.5 The
library calculates closest point queries of a point set inO(log N)
time by first storing the point set in a hierarchical data structure
that partitions the space around the point set into non-overlapping
cells. Given an input point, the hierarchical structure is traversed
and candidate cells are identified and sorted [Arya et al. 1998]. A
priority search technique is then utilized to find the closest point
(within some toleranceε) in the list of candidate cells [Arya and
Mount 1993]. When the points are uniformly distributed, we have
found that storing the point set in a K-D tree [de Berg et al. 1997]
provides the best performance. For clustered points, storing the
point set in thebalanced box decomposition (BBD) treedescribed
in [Arya et al. 1998] produces the fastest result.

3.1.6 Fast Marching Method

We utilize a Fast Marching Method (FMM) to generate distance
volumes when given distance values only at voxels immediately
adjacent to the zero level set. This can occur when scan-converting
implicit primitives, and generating distance volumes from a level
set segmentation [Whitaker et al. 2001]. The FMM is also used to
calculate the distance values needed for our morphological opera-
tors.

The solution of the Eikonal Eq. (8) with the boundary condition
φ|S = 0 (a zero level set) is the distance from the manifoldS. The
characteristics of the solution are straight lines which are orthogo-
nal to S. We call the direction in which the characteristics prop-
agate thedownwinddirection. More than one characteristic may
reach a given point. In this case the solution is multi-valued. One

5URL: http://www.cs.umd.edu/∼mount/ANN



can obtain a single-valued weak solution by choosing the small-
est of the multi-valued solutions at each point. This is a weak so-
lution becauseφ is continuous, but not everywhere differentiable.
The equation may be efficiently and directly solved by ordering the
grid points of the volume, so that information is always propagated
in the direction of increasing distance. This isthe Fast Marching
Method[Sethian 1996]. It achieves a computational complexity of
O(N log N).

The Fast Marching Method is similar to Dijkstra’s algorithm [Di-
jkstra 1959; Cormen et al. 2001] for computing the single-source
shortest paths in a weighted, directed graph. In solving this prob-
lem, each vertex is assigned a distance, which is the sum of the
edge weights along the minimum-weight path from the source ver-
tex. As Dijkstra’s algorithm progresses, the status of each vertex
is eitherknown, labeledor unknown. Initially, the source vertex in
the graph hasknownstatus and zero distance. All other vertices
haveunknownstatus and infinite distance. The source vertex labels
each of its adjacent neighbors. Aknownvertex labels an adjacent
vertex by setting its status tolabeledif it is unknownand setting its
distance to be the minimum of its current distance and the sum of
theknownvertices’ weight and the connecting edge weight. It can
be shown that the labeled vertex with minimum distance has the
correct value. Thus the status of this vertex is set toknown, and it
labels its neighbors. This process of freezing the value of the mini-
mum labeled vertex and labeling its adjacent neighbors is repeated
until no labeled vertices remain. At this point all the vertices that
are reachable from the source have the correct shortest path dis-
tance. The performance of Dijkstra’s algorithm depends on quickly
determining the labeled vertex with minimum distance. One can ef-
ficiently implement the algorithm by storing the labeled vertices in
a binary heap. Then the minimum labeled vertex can be determined
in O(log n) time wheren is the number of labeled vertices.

Sethian’s Fast Marching Method differs from Dijkstra’s algo-
rithm in that a finite difference scheme is used to label the adjacent
neighbors when a grid point becomes known. If there areN grid
points, the labeling operations have a computational cost ofO(N).
Since there may be at mostN labeled grid points, maintaining the
binary heap and choosing the minimum labeled vertices makes the
total complexityO(N log N).

3.2 Solving the Level Set Equation

Several editing operators modify geometric objects, represented by
volume datasets (a 3D grid), by evolving the level set partial differ-
ential equation (PDE) (Eq. (9b)). As was first noted by Osher and
Sethian [Osher and Sethian 1988] this PDE can be solved using
finite difference (FD) schemes originally developed for Hamilton-
Jacobi type equations. This corresponds to discretizing Eq. (9b)
on a regular 3D spatial grid and a 1D temporal grid. The use of
such grids raises a number of numerical and computational issues
that are important to the accuracy and stability of the implementa-
tion. The two central issues are the proper choice of a numerical
integration scheme with respect to time, and the development of
an appropriate narrow band algorithm for localizing computation
in the spatial dimensions. The details of these schemes/algorithms
will ultimately affect thestability, accuracy and efficiencyof the
system.

There exists a large number of so-called implicit and explicit in-
tegrations schemes that can be used to propagate Eq. (9b) forward
in time [Burden and Faires 2001]. The implicit schemes have the
advantage of being unconditionally stable with respect to the time
discretization, but typically at the cost of large truncation errors.
They also require massive matrix manipulations which make them
hard to implement and more importantly increase the computation
time per time step. This is in strong contrast to the explicit meth-
ods that are relatively simple to set up and program. Unfortunately

explicit schemes often have stability constraints on their time dis-
cretization given a certain space discretization. The exceptions to
this rule are the so-called semi-Lagrangian integration schemes that
can the considered unconditionally stable explicit schemes. How-
ever is it unclear how to extend semi-Lagrangian schemes to the
general class of PDEs that we are dealing with here.

It is our experience that for the level set problems considered in
this paper the stability constraints associated with a simple explicit
integration scheme like the “forward Euler method”

un+1
i,j,k = un

i,j,k + ∆t∆un
i,j,k, (25)

offer a very good balance of speed, fast update times and simplic-
ity. In this equationun denotes the approximation ofφ(x, t) at the
nth discrete time step,∆t is a time-increment that is chosen to en-
sure stability, and∆un

i,j,k is the discrete approximation to∂φ/∂t
evaluated at grid pointxi,j,k and time-steptn. We shall assume,
without a loss in generality, that the grid spacing is unity. The
initial conditionsu0 are established by the scan conversion algo-
rithms discussed in the previous sections and the boundary condi-
tions produce zero derivatives toward the outside of the grid (Neu-
mann type).

The next step is to express the time-increment,∆un
i,j,k of

Eq. (25), in terms of the fundamental level set Eq. (9b)

∆un
i,j,k = F(i, j, k)

˛̨
∇un

i,j,k

˛̨
(26a)

≈ F(i, j, k)

s X
w∈x,y,z

“
δwun

i,j,k

”2

(26b)

whereδwun
i,j,k approximates∂un

i,j,k/∂w, i.e. the discretization of
the partial derivative ofu with respect to the spatial coordinatew ∈
x, y, z. The final step is to express these spatial derivatives as well
as the speed function,F(i, j, k), in terms of finite differences (FD)
on the spatial 3D grid. Many different FD schemes with varying
stencil and truncation error exist, but to list the simplest we have

∂un
i,j,k

∂w
= δ+

wun
i,j,k + O(∆w) (27a)

= δ−w un
i,j,k + O(∆w) (27b)

= δ±w un
i,j,k + O(∆w2) (27c)

where we have defined short-hand notations for the following FD
expressions

δ+
x un

i,j,k =
un

i+1,j,k − un
i,j,k

∆x
(28a)

δ−x un
i,j,k =

un
i,j,k − un

i−1,j,k

∆x
(28b)

δ±x un
i,j,k =

un
i+1,j,k − un

i−1,j,k

2∆x
(28c)

The explicit choice of an FD scheme for the first order derivatives
in the term

˛̨
∇un

i,j,k

˛̨
turns out to be closely related to the func-

tional expression of the speed-term. This is a simple consequence
of the fact that the the corresponding solutions to the level set PDE
with different speed-functions can shown very different mathemat-
ical behavior. This is formulated more precisely by the so-called
CFL condition which will be explained in more detail below. There
are two important6 classes of level set PDEs, namely hyperbolic
and parabolic.

6The third type - the so-called elliptic PDEs - correspond to boundary
value problems and are therefore not relevant to the initial-value problems
that we are studying here.



3.2.1 Hyperbolic Speed Functions

For many level set deformations the speed function can, to some
approximation, be assumed to be independent of the level set func-
tion itself. This is the case for the embossing operator described
in [Museth et al. 2002a] or simple constant normal flow when per-
forming surface dilation or erosion. This corresponds to the level
set surface beingadvectedin an external flow field generated by, for
example, attraction forces to other geometry like a surface or a set
of points. Such advection problems are common in computational
fluid dynamics and the correspondinghyperbolicPDEs have the
mathematical property of propagating information in certainchar-
acteristicdirections. The explicit finite difference scheme used for
solving the corresponding hyperbolic level set equations should be
consistent with the information flow direction. Indeed, this is noth-
ing more than requiring the numerical scheme to obey the underly-
ing “physics” of the level set surface deformation.

This is formulated more precisely as the Courant-Friedrichs-
Lewy (CFL) stability condition[Courant et al. 1928] that states that
the domain of dependence of the discretized FD problem has to
include the domain of dependence of the differential equation in
the limit as the length of the FD steps goes to zero. Consequently
the stencil used for the FD approximation of the spatial derivatives
in Eq. (26a) should only include sample points (information) from
the domain of dependence of the differential equation, i.e. from the
side of the zero-crossing opposite to the direction in which it moves
- or simply up-wind to the level set surface. This amounts to using
anup-wind schemethat employssingle-sidedderivatives like those
in Eqs. (28a) and (28b). The partial derivatives in the term|∇φ|
of Eq. (26b) are computed using only those derivatives that are up-
wind relative to the movement of the level set. In our initial work we
used the upwind scheme described in [Whitaker 1998], but we now
use the more stable Godunov’s method [Rouy and Tourin 1992]:

(δwun
i,j,k)2 = max(min(δ+

wun
i,j,k, 0)2, max(δ−w un

i,j,k, 0)2) (29)

for F(i, j, k) ≤ 0, and

(δwun
i,j,k)2 = min(max(δ+

wun
i,j,k, 0)2, min(δ−w un

i,j,k, 0)2) (30)

for F(i, j, k) > 0.

Another consequence of the CFL condition is that for the numer-
ical FD scheme to be stable the corresponding numerical wave has
to propagate at least as fast as the level set surface. Since the max-
imum surface motion is defined by the speed-functionF(i, j, k)
and the FD scheme (by definition) propagates the numerical infor-
mation exactly one grid cell (defined by{∆x, ∆y, ∆z)}) per time
iteration, an upper bound is effectively imposed on the numerical
time steps,∆t in Eq. (25). This can be expressed in a conservative
time step restriction7

∆t <
Min(∆x, ∆y, ∆z)

supi,j,k∈S |F(i, j, k)| . (31)

As a closing remark we note that even when the speed func-
tion depends on zero or first order partial derivatives of the level
set function will it typically show hyperbolic behavior8 and should
therefore be discretized using upwind-schemes and CFL time re-
strictions. This however, is not the case when the speed function
depends on higher order partial derivatives ofφ which is exactly
the topic of the next sections.

7This expression can also be derived using Von Neumann stability anal-
ysis.

8The explicit classification of the PDE obviously depends on the actual
functional dependence of the speed function onφ

3.2.2 Parabolic Speed Functions

Another important scenario occurs when the speed function de-
pends on the local curvature of the level set surface. This is the case
for the blending and smoothing/sharpening operators described in
[Museth et al. 2002a]. In it simplest form the resulting level set
equation resembles the geometric heat equation

∂φ

∂t
= αK|∇φ| ≈ α∇2φ, (32)

whereα is a scaling parameter andK is the mean curvature, which
according to Eq. (13b) can be expressed as

K = ∇ · ∇φ

|∇φ| =
φ2

x(φyy + φzz)− 2φyφzφyz

|∇φ|3

+
φ2

y(φxx + φzz)− 2φxφzφxz

|∇φ|3

+
φ2

z(φxx + φyy)− 2φxφyφxy

|∇φ|3 , (33)

using the short-hand notationφxy ≡ ∂2φ/∂x∂y. If the level set
function is normalized to a signed distance function, i.e.|∇φ| =
1, the geometric heat equation simplifies to the regular (thermo-
dynamic) heat equation as indicated in Eq. (32). This type of PDE
has a mathematical behavior which is very different from the hyper-
bolic PDE’s behavior described in the previous section. As oppose
to the latter, Eq. (32) does not propagate information in any par-
ticular direction. More specifically, theparabolicPDE has no real
characteristics associated with it and hence the corresponding solu-
tion at a particular time and position depends (in principle) on the
previous global solutions. Consequently parabolic PDEs have no
domain of dependence defined from characteristics and one needs
to use ordinary central finite difference schemes to discretize the
spatial derivatives. So, for first order partial derivatives in Eq. (26b)
we can use Eq. (28c) and we can use FD schemes of the type

∂2un
i,j,k

∂x2
=

un
i+1,j,k − 2un

i,j,k + un
i−1,j,k

∆x2
+ O(∆x2) (34a)

∂2un
i,j,k

∂x∂y
=

un
i+1,j+1,k − un

i+1,j−1,k

4∆x∆y
(34b)

+
un

i−1,j−1,k − un
i−1,j+1,k

4∆x∆y
+ O(∆x2, ∆y2) (34c)

to evaluate the mean curvature in Eq. (33). Since parabolic PDEs
have no mathematical domain of dependence, the CFL stability
condition described in the previous section does not apply - or more
correctly is not sufficient. Instead one has to perform aVon Neu-
mann stability analysis[Strikwerda 1989] on the FD scheme de-
scribed above. This is an error analysis in Fourier space which
leads to the following stability constraint on the time steps,

∆t <

„
2α

∆x2
+

2α

∆y2
+

2α

∆z2

«−1

. (35)

It should be noted that in this stability constraint∆t is O(∆w2),
which is significantly more stringent than in the hyperbolic case in
Eq. (31) where∆t is only O(∆w). This is a consequence of the
fact that the CFL condition is a necessary but not always sufficient
stability condition for a numerical FD scheme.

3.2.3 Non-linear Speed Functions

In the two previous sections we have described the numerical FD
schemes used to solve two relatively simple cases when the speed



function is either independent ofφ or linearly dependent on the
mean curvature of the level set surface. However for some of the
editing operators described in [Museth et al. 2002a] the situation is
not so straightforward. This is for instance the case for the blend-
ing and smoothing operators where we apply a non-linear filter or
cut-off function to the mean curvature flow in order to control sur-
face properties of the final surface. Other examples include when
the geometric flow depends on other curvature measures, e.g. the
principle curvatures. In these cases the corresponding level set PDE
cannot be classified as either hyperbolic or parabolic, which com-
plicates the choice of discretization. As a result great care has to
be taken and some experimentation is almost inevitable when im-
plementing numerical schemes for level set equations. We shall
therefore only address the case of non-linear dependence on mean
curvature used in the blending and smoothing operations.

We found that the central finite differences scheme described in
the previous section occasionally produced instabilities and small
oscillations. As an alternative we developed a different FD scheme
for mean curvature that proved more stable and also had the added
benefit of easily allowing for the computation of other types of cur-
vature.

The principle curvatures and principle directions are the eigen-
values and eigenvectors of theshape matrix[do Carmo 1976]. For
an implicit surface, the shape matrix is the derivative of the normal-
ized gradient (surface normals) projected onto the tangent plane of
the surface. If we let the normals ben = ∇φ/|∇φ|, the derivative
of this is the3× 3 matrix

N =

„
∂n

∂x

∂n

∂y

∂n

∂z

«T

. (36)

The projection of this derivative matrix onto the tangent plane gives
the shape matrix [do Carmo 1976]B = N(I − n ⊗ n), where⊗
is the exterior product. The eigenvalues of the matrixB arek1, k2

and zero, and the eigenvectors are the principle directions and the
normal, respectively. Because the third eigenvalue is zero, we can
computek1, k2 and various differential invariants directly from the
invariants ofB. Thus the weighted curvature flow is computing
from B using the identitiesD = ||B||2, H = Tr(B)/2, andK =
2H2 −D2/2. The choice of numerical methods for computingB
is discussed in the following section. The principle curvatures are
calculated by solving the quadratic equation

k1,2 = H ±
r

D2

2
−H2. (37)

In many circumstances, the curvature term, which is a kind of
directional diffusion that does not suffer from overshooting, can be
computed directly from first- and second-order derivatives ofφ us-
ing central difference schemes. However, we have found that cen-
tral differences do introduce instabilities when computing flows that
rely on quantities other than the mean curvature. Therefore we use
the method ofdifferences of normals[Rudin et al. 1992; Whitaker
and Xue 2001] in lieu of central differences. The strategy computes
normalized gradients at staggered grid points and takes the differ-
ence of these staggered normals to get centrally located approxi-
mations toN. See Figure 10. The shape matrixB is computed
with gradient estimates based on central differences. The resulting
curvatures are treated as speed functions (motion in the normal di-
rection), and the associated gradient magnitude is computed using
the up-wind scheme. For instance the normal vector centered at the
green triangle in Figure 10 is approximated using the following first
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Figure 10: The normal derivative matrixN, defined in Eq. (36), is
computed by using the central finite differences of staggered (i.e.
not grid-centered) normals. For instance, the normal vector cen-
tered at the green triangle is approximated using Eqs. (38a) (38b)
and (38c).

order difference expressions

∂un
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∂x
= δ+
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i,j,k + O(∆x) (38a)

∂un
i+ 1

2 ,j,k

∂y
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1

2
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δyun

i+1,j,k + δyun
i,j,k

´
+ O(∆y) (38b)

∂un
i+ 1

2 ,j,k

∂z
=

1

2

`
δzun

i+1,j,k + δzun
i,j,k

´
+ O(∆z) (38c)

which involve the six nearest neighbors (18 in 3D).
The stability constraints on the non-linear level set PDEs can also

be hard to estimate since the usual Von Neumann stability analysis
typically cannot be performed. For practical purposes we found
the conservative time constraints of the parabolic PDE to give good
estimates for∆t.

3.2.4 Sparse-Field Solutions

The up-wind solution to the equations described in the previous
section evolves the level set model over the entire range of the em-
bedding, i.e., for all values ofk in Eq. (3). However, this method
requires updatingevery voxel in the volume for each iteration, mak-
ing the computation time a function of the volume rather than the
surface area of the model. Because surface editing only requires a
single model (one level set), it is unnecessary to calculate solutions
over the entire range of iso-values.

The literature has shown that computations can be limited by
the use ofnarrow-bandmethods, which compute solutions only
in the narrow band of voxels that surround the level set of inter-
est [Adalsteinsson and Sethian 1995; Peng et al. 1999]. In previ-
ous work [Whitaker 1998] described an alternative numerical al-
gorithm, called the sparse-field method, that evaluates the level set
in a small subset of voxels in the range and requires a fraction of
the computation time required by previous algorithms.9 We have

9The sparse-field algorithms presented here are available in the VIS-



Figure 11: A level curve of a 2-D scalar field passes through a finite
set of grid points. Only those grid points and their nearest neighbors
are relevant to the evolution of that curve.

shown two advantages to this method. The first is a significant im-
provement in computation times. The second is increased accuracy
when fitting models to forcing functions that are defined to sub-
voxel accuracy.

The sparse-field algorithm takes advantage of the fact that ak-
level surface,S, of a discrete imageu (of any dimension) has a
set of cells through which it passes, as shown in Figure 11. The
set of grid points adjacent to the level set is called theactive set,
and the individual elements of this set are calledactive points. As
a first-order approximation, the distance of the level set from the
center of any active point is proportional to the value ofu divided
by the gradient magnitude at that point. We compute the evolution
given by Eq. (9b) on the active set and then update the neighbor-
hood around the active set using a fast “city-block” approximation
to the distance transform. See Section 3.1.1. Because active points
must be adjacent to the level set model, their positions lie within a
fixed distance to the model. Therefore the values ofu for elements
in the active set must lie within a certain range of greyscale values.
When active point values move out of thisactive rangethey are no
longer adjacent to the model. They must be removed from the set
and other grid points. Those whose values are moving into the ac-
tive range must be added to take their place. The precise ordering
and execution of these operations is important to the operation of
the algorithm.

The values of the points in the active set can be updated using
the up-wind scheme described in the previous section. In order
to maintain stability, one must update the neighborhoods of active
grid points in a way that allows grid points to enter and leave the
active set without those changes in status affecting their values.
Grid points should be removed from the active set when they are
no longer the nearest grid point to the zero crossing. If we assume
that the embeddingu is a discrete approximation to the distance
transform of the model, then the distance of a particular grid point,
(i, j, k), to the level set is given by the value ofu at that grid point.
If the distance between grid points is defined to be unity, then we
should remove a point from the active set when the value ofu at that
point no longer lies in the interval[−1/2, 1/2]. If the neighbors of
that point maintain their distance of 1, then those neighbors will
move into the active range just as(i, j, k) is ready to be removed.

There are two operations that are significant to the evolution of
the active set. First, the values ofu at active points change from
one iteration to the next. Second, as the values of active points pass
out of the active range they are removed from the active set and
other neighboring grid points are added to the active set to take their

PACK library at http://www.cs.utah.edu/∼whitaker/vispack.
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Figure 12: The status of grid points and their values at two differ-
ent points in time show that as the zero crossing moves,activity is
passed one grid point to another.

place. Formal definitions of active sets and the operations that affect
them are detailed in [Whitaker 1998], and it is shown that active sets
will always form a boundary between positive and negative regions
in the image, even as control of the level set passes from one set of
active points to another.

Because grid points that are near the active set are kept at
a fixed value difference from the active points, active points
serve to control the behavior of adjacent nonactive grid points.
The neighborhoods of the active set are defined inlayers,
L+1, . . . , L`, . . . , L+N and L−1, . . . , L−`, . . . , L−N , where the
` indicates the (city block) distance from the nearest active grid
point, and negative numbers are used for the outside layers. For
notational convenience the active set is denotedL0. The number
of layers should coincide with the size of the footprint or neigh-
borhood used to calculate derivatives. In this way, the inside and
outside grid points undergo no changes in their values that affect or
distort the evolution of the zero set. Our work in general has used
second-order derivatives ofφ, which are calculated using nearest
neighbors (6 connected). Therefore only 5 layers are necessary (2
inside layer, 2 outside layer, and the active set). These layers are
denotedL2, L1, L−1, L−2, andL0. The active set has grid point
values in the range[−1/2, 1/2]. The values of the grid points in
each neighborhood layer are kept 1 unit from the next layer closest
to the active set as shown in Figure 12. Thus the values of layerL`

fall in the interval[`− 1/2, `+1/2]. For2N +1 layers, the values
of the grid points that are totally inside and outside areN + 1/2
and−N − 1/2, respectively.

This algorithm can be implemented efficiently using linked-list
data structures combined with arrays to store the values of the grid
points and their states as shown in Figure 13. This requires only
those grid points whose values are changing, the active points and
their neighbors, to be visited at each time step. The computation
time grows asm2, wherem is the number of grid points along one
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Figure 13: Linked-list data structures provide efficient access to
those grid points with values and status that must be updated.

dimension ofU (sometimes called the resolution of the discrete
sampling). Them2 growth in computation time for the sparse-field
models is consistent with conventional (parameterized) models, for
which computation times increase with surface area rather than vol-
ume.

Another advantage of the sparse-field approach is higher effec-
tive resolution. Eq. (9b) describes a process whereby all of the level
sets ofφ are pushed toward the zero-set ofF(). The result is a
shock, a discontinuity in|∇φ|. In discrete volumes these shocks
take the form of high-contrast areas, which cause aliasing in the re-
sulting models. This results in surface models that are unacceptable
for many computer graphics applications.

When using the sparse-field method, the active points serve as a
set of control points on the level set. Changing the values of these
voxels changes the position of the level set. The forcing function is
sampled not at the grid point, but at the location of the nearest level
set, which generally lies between grid points. Using a first-order
approximation toφ produces results that avoid the aliasing prob-
lems associated with the shocks that typically occur with level set
models. Previous work has shown significant increases in the accu-
racy of fitting level set models using the first-order modification to
the sparse-field method [Whitaker 1998].

The procedure for updating the image and the active set based on
surface movements is as follows:

1. For each active grid point(i, j, k):

(a) Use first-order derivatives and Newton’s method (see
3.1) to calculate the position(i′, j′, k′) of the nearest
zero-crossing to(i, j, k).

(b) Calculate F(i′, j′, k′), and spatial derivatives at
(i, j, k) using nearest neighbors according to the FD
schemes discussed in Section 3.2.

(c) Compute∆t according to Eq. (31) or Eq. (35).

(d) Compute the net change ofun
i,j,k, based onF(i′, j′, k′)

and the values of its derivatives using the up-wind
scheme (Eq. (29) or 30).

2. For each active grid point(i, j, k) add the change to the grid
point value and determine if the new valueun+1

i,j,k falls outside

the [−1/2, 1/2] interval. If so, put(i, j, k) on lists of grid
points that are changing status, called thestatus list; S1 or
S−1, for un+1

i,j,k > 1
2

or un+1
i,j,k < − 1

2
, respectively.

3. Visit the grid points in the2N layersL` in the order` =
±1, . . . ± N , and update the grid point values based on the
values (by adding or subtracting one unit) of the next inner
layer,L`∓1. If more than oneL`∓1 neighbor exists then use
the neighbor that indicates a level set closest to that grid point,
i.e., use the maximum for the outside layers and minimum
for the inside layers. If a grid point in layerL` has noL`∓1

neighbors, then it is demoted toL`±1, the next level away
from the active set.

4. For each status listS±1, S±2, . . . , S±N :

(a) For each element(i, j, k) on the status listS`, remove
(i, j, k) from the listL`∓1, and add it to theL` list, or,
in the case of̀ = ±(N + 1), remove it from all lists.

(b) Add allL`∓1 neighbors to theS`±1 list.

More details on the sparse-field method and its properties can be
found in [Whitaker 1998].

3.2.5 Level Set Subvolumes

One of the most effective techniques for increasing interactivity in
our level set editing system involves restricting computations to a
subregion of the volume dataset. This is feasible because many
of the editing operators by their very nature are local. The selec-
tion of the proper subvolume during the editing process is imple-
mented with grid-aligned bounding boxes. Having the bounding
boxes axis-aligned makes them straightforward to compute and ma-
nipulate, and having them grid-aligned guarantees that intersections
directly correspond to valid subvolumes. The bounding box posi-
tion and size are based on the geometric primitive, e.g. superellip-
soid, triangle mesh or point set, utilized by a particular operator.

Employing bounding boxes within the local level set editing op-
erators (blending, smoothing, sharpening and embossing) signif-
icantly lessens the computation time during the editing process.
These operators are defined by speed functions (F()) that specify
the speed of the deformation on the surface. For the smoothing,
sharpening and embossing operators, the user specifies the portion
of the model to be edited by positioning a region-of-influence (ROI)
primitive. The speed function is defined to be zero outside of the
ROI primitive. During a blending operation a set of intersection
voxels (those containing both surfaces being blended) are identified
and blending only occurs within a user-specified distance of these
voxels. The speed function is zero beyond this distance. In both
cases no level set computation is needed in the outer regions. Given
the ROI primitive and the distance information from the set of in-
tersection voxels, a grid/axis-aligned bounding box that contains
only those regions where the speed function is non-zero can be de-
fined. A subvolume is “carved” out from the complete model by
performing a CSG intersection operation with the signed distance
field associated with the bounding box and the model’s volume.
The resulting subvolume is then passed to the level set solver, and
inserted back into the model’s volume after processing.

3.3 Efficient Mesh Extraction

As indicated by the green box in Figure 1 level set surfaces may
either be rendered directly by means of ray casting or indirectly by
a simple two-step procedure (a polygonal mesh is extracted from
the volume dataset and rasterized on graphics hardware). We have
successfully tested both (See Figures?? and 17.) and found the



Figure 14: Volume renderings (left & center) of a winged, two-headed dragon created by merging pieces from a griffin and dragon model. A
physical model (right) manufactured from the level set model.

latter to perform and scale better with the size of our volumes. Im-
plementing a few straightforward mesh extraction procedures make
the overhead of the indirect rendering approach insignificant. Con-
ventional graphics hardware is then capable of providing interactive
frame-rates for all of the models presented in this paper.

3.3.1 Fast Marching Cubes

Much work has been presented over the years on improving the
quality of the triangle meshes extracted from volume datasets, the
fundamental data structure of level set models [Wood et al. 2000;
Gavriliu et al. 2001; Kobbelt et al. 2001]. However, these improve-
ments come at a cost, and sacrifice speed for improved mesh struc-
ture. Fortunately, the simplicity of the original Marching Cubes
(MC) algorithm [Lorensen and Cline 1987] allows us to easily op-
timize mesh extraction in the level set editing system.

The first optimization relies on the fact that level set models
are represented by a signed distance field. This allows us to eas-
ily leap-frog through the volume as opposed to marching through
the entire volume. An effective implementation of this idea is sim-
ply to increment in inner-most loop in the triple-nested for-loop of
the MC algorithm by the distance of the current voxel value (i.e.
floor[|un

i,j,k|]). While more sophisticated space-pruning schemes
can certainly be designed we found this straightforward step bal-
ances the potential complexity of leap-frogging and the relatively
fast hash table look-up of the MC algorithm.

Another variation of the MC algorithm that works effectively
with our level set models utilizes the sparse-field representation pre-
sented in Section 3.2.4. Since the sparse-field method implements
a narrow-banded distance field with a linked list of active voxels,
we know at each step which voxels contain the level set of interest.
The list is traversed and only those voxels needed to generate the
MC mesh are processed.

3.3.2 Incremental Mesh Extraction

Even though the procedures described so far significantly improve
the original MC algorithm they still do not make our indirect ren-
dering approach truly interactive. Fortunately there are other algo-
rithms that can be employed to achieve the goal of interactive ren-
dering of the deforming level set surfaces. Mesh extraction can be
significantly accelerated by incrementally updating the mesh only
in regions where the level set surface changes.

We start by making the following observations about the bound-
ing boxes introduced in Section 3.2.5. First, the definition of the
speed functions that utilize bounding boxes guarantees that the
mesh outside of the bounding boxes is unchanged after a local edit-
ing operation. Second, the bounding boxes are by definition grid-
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Input Model Generation X X X X
CSG Operations X

LS Blending X X X X
LS Smoothing/Sharpening X X X X

LS Embossing X X X X X
Morphological Operations X X

Mesh Extraction X X
Modules

Table 1: Distribution of algorithms used in each module in our in-
teractive level set model editing system.

aligned and all vertices of a MC mesh lie, by construction, on grid
edges. These observations lead to the following incremental mesh
extraction algorithm. Given a complete global mesh we first trim
away all triangles with vertices inside a bounding box. Next, for
each subsequent iteration of the level set calculation, new triangles
are only extracted from the sub-volume defined by the bounding
box. The resulting new triangles are then incrementally added to
the trimmed mesh, which by construction properly connect without
the need for additional triangle clipping.

Given the collection of these procedures the mesh of the deform-
ing level set surface may be interactively displayed while the level
set equation is being iteratively solved, allowing the user to view
the evolving surface and terminate processing once a desired result
is achieved.

4 System Modules

Table 1 identifies the specific algorithms utilized in each of the
modules in our interactive level set model editing system. Since a
wide variety of geometric models may be imported into our system,
many algorithms are needed to perform the necessary conversions,
including shortest distance calculations (Sections 3.1.3, 3.1.4), scan



conversion (Section 3.1.2) and the Fast Marching Method (Sec-
tion 3.1.6). All of the level set deformation operators (blending,
smoothing, sharpening and embossing) use bounding boxes (Sec-
tion 3.2.5), numerical integration (Section 3.2) and the sparse-field
techniques (Section 3.2.4). The blending and embossing operators
use K-D trees (Section 3.1.5) to quickly find closest points. The
smoothing, sharpening and embossing operators utilize shortest dis-
tance calculations (Section 3.1.3) for localizing computation. The
morphological operators employ the Fast Marching Method (Sec-
tion 3.1.6) to calculate the needed distance information. Our mesh
extraction algorithm also extensively utilizes bounding boxes and
the active list of the level set solver to implement an incremen-
tal version of the Marching Cubes algorithm [Lorensen and Cline
1987]. All of the modules use some kind of narrow band calculation
to either limit computation to only those voxels near the level set
of interest (Section 3.2.4), or to re-establish proper distance infor-
mation in the narrow band after performing its operation (Section
3.1.1).

5 Results

We have produced numerous models with our level set editing sys-
tem. The teapot (NURBS surface), dragon (scanned volume), hu-
man head and bust (polygonal surfaces) and eyelet on the winged
dragon’s back (superquadric) in Figures 9, 14, 15, 17 demonstrate
that we are able to import several types of models into our sys-
tem. The CSG operators with blending were utilized to produce
the winged, double-headed dragon and repaired bust in Figures
14 and 17. The images of the dragon are volume rendered and
were interactively produced by VTK’s Volview program utilizing
TeraRecon’s VolumePro 1000 volume rendering hardware. The
smoothing operator is used to fix problems in a model produced by
an early, unfinished version of the NURBS scan conversion code
in Figure 16. The embossing operator produced the result in Fig-
ure 9. The results of our morphological operators [Serra 1982] are
presented in Figure 15. It should be noted that the images in Fig-
ure 17 are screen shots from an interactive editing session with our
system, running on a Linux PC with an AMD Athlon 1.7GHz pro-
cessors. All of the following timing information is produced on this
computer.

A level set editing session, as illustrated in Figure 17, begins by
first importing a level set model into our system. The process of
generating an initial level set model, e.g. with scan conversion, is
not incorporated into the system. It is considered a separate prepro-
cessing step. Once a model10 is brought into the system, it and the
tools to modify it may be interactively (at∼30Hz) manipulated and
viewed. Once a level set editing operation (e.g. blending, smooth-
ing, embossing, and opening) is invoked, an iterative computational
process modifies the model. After each iteration the current state
of the model is displayed, allowing the user to stop the operation,
once a desired result is produced. We have found that most oper-
ations need approximately 10 iterations to produce a satisfactory
result. Each iteration takes approximately 1/2 to 1 second, this in-
cludes level set evolution, mesh extraction and display. Therefore
most level set operations take 5 to 10 seconds to complete. The
CSG operations are not iterative and require less than one second
of computation time. These computation times provide an environ-
ment that allows a user to quickly specify an operation, and then
wait just a few seconds for it to complete. Our system includes
an undo facility, giving the user the ability to rapidly try numerous
editing operations until the best result is found.

10The models in this paper are represented by volume datasets with a
resolution of approximately2563.

6 Conclusions

This paper has described the collection of techniques and algo-
rithms (some new, some pre-existing) needed to create an interac-
tive editing system for level set models. It has summarized the algo-
rithms for producing level set input models and, more importantly,
for localizing/minimizing computation during the editing process.
These algorithms include distance calculations, scan conversion,
closest point determination, fast marching methods, bounding box
creation, incremental and fast mesh extraction, numerical integra-
tion, and narrow band techniques. Together these algorithms pro-
vide the capabilities required for the interactive editing of level set
models.
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Abstract

This chapter describes level set techniques for extracting surface models from a

broad variety of biological volume datasets. These techniques have been incor-

porated into a more general framework that includes other volume processing

algorithms. The volume datasets are produced from standard 3D imaging de-

vices, and are all noisy samplings of complex biological structures with bound-

aries that have low and often varying contrasts. The level set segmentation

method, which is well documented in the literature, creates a new volume from

the input data by solving an initial value partial differential equation (PDE)

with user-defined feature-extracting terms. Given the local/global nature of

these terms, proper initialization of the level set algorithm is extremely im-

portant. Thus, level set deformations alone are not sufficient, they must be

combined with powerful pre-processing and data analysis techniques in order

to produce successful segmentations. This chapter describes the pre-processing

and data analysis techniques that have been developed for a number of segmen-

tation applications, as well as the general structure of our framework. Several

standard volume processing algorithms have been incorporated into the frame-

work in order to segment datasets generated from MRI, CT and TEM scans.

A technique based on moving least-squares has been developed for segmenting

multiple non-uniform scans of a single object. New scalar measures have been

defined for extracting structures from diffusion tensor MRI scans. Finally, a

direct approach to the segmentation of incomplete tomographic data using den-

sity parameter estimation is described. These techniques, combined with level

set surface deformations, allow us to segment many different types of biological

volume datasets.

0.1 Introduction

This chapter addresses the common problem of building meaningful 3D models

of complex structures from noisy datasets generated from 3D imaging devices.

In certain circumstances such data can be visualized directly [1, 2, 3, 4]. While

direct techniques can provide useful insights into volume data, they are in-

sufficient for many problems. For instance, direct volume rendering techniques

typically do not remove occluding structures, i.e., they do not allow one to “peel

back” the various layers of the data to expose the inner structures that might
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be of interest. They also do not generate the models needed for quantitative

study/analysis of the visualized structures. Furthermore, direct visualization

techniques typically do not perform well when applied directly to noisy data,

unless one filters the data first. Techniques for filtering noisy data are abundant

in the literature, but there is a fundamental limitation—filtering that reduces

noise tends to distort the shapes of the objects in the data. The challenge is

to find methods which present the best tradeoff between fidelity and noise.

Level set segmentation relies on a surface-fitting strategy, which is effective

for dealing with both small-scale noise and smoother intensity fluctuations in

volume data. The level set segmentation method, which is well documented

in the literature [5, 6, 7, 8], creates a new volume from the input data by

solving an initial value partial differential equation (PDE) with user-defined

feature-extracting terms. Given the local/global nature of these terms, proper

initialization of the level set algorithm is extremely important. Thus, level

set deformations alone are not sufficient, they must be combined with powerful

initialization techniques in order to produce successful segmentations. Our level

set segmentation approach consists of defining a set of suitable pre-processing

techniques for initialization and selecting/tuning different feature-extracting

terms in the level set algorithm. We demonstrate that combining several pre-

processing steps, data analysis and level set deformations produces a powerful

toolkit that can be applied, under the guidance of a user, to segment a wide

variety of volumetric data.

There are more sophisticated strategies for isolating meaningful 3D struc-

tures in volume data. Indeed, the so called segmentation problem constitutes

a significant fraction of the literature in image processing, computer vision,

and medical image analysis. For instance, statistical approaches [9, 10, 11, 12]

typically attempt to identify tissue types, voxel by voxel, using a collection of

measurements at each voxel. Such strategies are best suited to problems where

the data is inherently multi-valued or where there is sufficient prior knowledge

[13] about the shape or intensity characteristics of the relevant anatomy. Al-

ternatively, anatomical structures can be isolated by grouping voxels based on

local image properties. Traditionally, image processing has relied on collections

of edges, i.e. high-contrast boundaries, to distinguish regions of different types

[14, 15, 16]. Furthermore deformable models, incorporating different degrees

of domain-specific knowledge, can be fitted to the 3D input data [17, 18].
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This chapters describes a level set segmentation framework, as well as the

the pre-processing and data analysis techniques needed to segment a diverse

set biological volume datasets. Several standard volume processing algorithms

have been incorporated into framework for segmenting conventional datasets

generated from MRI, CT and TEM scans. A technique based on moving least-

squares has been developed for segmenting multiple non-uniform scans of a

single object. New scalar measures have been defined for extracting structures

from diffusion tensor MRI scans. Finally, a direct approach to the segmen-

tation of incomplete tomographic data using density parameter estimation is

described. These techniques, combined with level set surface deformations,

allow us to segment many different types of biological volume datasets.

0.2 Level Set Surface Models

When considering deformable models for segmenting 3D volume data, one is

faced with a choice from a variety of surface representations, including triangle

meshes [19, 20], superquadrics [21, 22, 23], and many others [18, 24, 25, 26,

27, 28, 29]. Another option is an implicit level set model, which specifies the

surface as a level set of a scalar volumetric function, φ : U 7→ IR, where U ⊂ IR3

is the range of the surface model. Thus, a surface S is

S = {s|φ(s) = k} , (1)

with an isovalue k. In other words, S is the set of points s in IR3 that composes

the kth isosurface of φ. The embedding φ can be specified as a regular sampling

on a rectilinear grid.

Our overall scheme for segmentation is largely based on the ideas of Osher

and Sethian [30] that model propagating surfaces with (time-varying) curvature-

dependent speeds. The surfaces are viewed as a specific level set of a higher-

dimensional function φ – hence the name level set methods. These methods

provide the mathematical and numerical mechanisms for computing surface

deformations as isovalues of φ by solving a partial differential equation on the

3D grid. That is, the level set formulation provides a set of numerical methods

that describes how to manipulate the greyscale values in a volume, so that the

isosurfaces of φ move in a prescribed manner (shown in Figure 1). This pa-

per does not present a comprehensive review of level set methods, but merely
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Figure 1a: Level set models represent

curves and surfaces implicitly using

greyscale images. For example an el-

lipse is represented as the level set of

an image shown here.

Figure 1b: To change the shape of the

ellipse we modify the greyscale values

of the image by solving a PDE.

introduces the basic concepts and demonstrates how they may be applied to

the problem of volume segmentation. For more details on level set methods see

[7, 31].

There are two different approaches to defining a deformable surface from a

level set of a volumetric function as described in Equation 1. Either one can

think of φ(s) as a static function and change the isovalue k(t) or alternatively fix

k and let the volumetric function dynamically change in time, i.e. φ(s, t). Thus,

we can mathematically express the static and dynamic model respectively as

φ(s) = k(t) (2a)

φ(s, t) = k. (2b)

To transform these definitions into partial differential equations which can be

solved by standard numerical techniques, we differentiate both sides of Equa-

tion 2 with respect to time t, and apply the chain rule:

∇φ(s)
ds

dt
=

dk(t)
dt

(3a)

∂φ(s, t)
∂t

+∇φ(s, t) · ds

dt
= 0. (3b)

The static Equation 3a defines a boundary value problem for the time-independent

volumetric function φ. This static level set approach has been solved [32, 33]

using “Fast Marching Methods”. However it inherently has some serious limi-

tations following the simple definition in Equation 2a. Since φ is a function (i.e.

single-valued), isosurfaces cannot self intersect over time, i.e. shapes defined

in the static model are strictly expanding or contracting over time. However,
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the dynamic level set approach of Equation 3b is much more flexible and shall

serve as the basis of the segmentation scheme in this paper. Equation 3b is

sometimes referred to as a “Hamilton-Jacobi-type” equation and defines an

initial value problem for the time-dependent φ. Throughout the remainder of

this paper we shall for simplicity refer to this dynamical approach as the level

set method – and not consider the static alternative.

Thus, to summarize the essence of the (dynamic) level set approach; let

ds/dt be the movement of a point on a surface as it deforms, such that it can

be expressed in terms of the position of s ∈ U and the geometry of the surface

at that point, which is, in turn, a differential expression of the implicit function,

φ. This gives a partial differential equation on φ: s ≡ s(t)

∂φ

∂t
= −∇φ · ds

dt
= ‖∇φ‖ F(s,n, φ, Dφ,D2φ, . . .) (4a)

F() ≡ n · ds

dt
, (4b)

where F() is a user-created “speed” term that defines the speed of the level set

at point s in the direction of the local surface normal n at s. F() may depend

on a variety of local and global measures including the order-n derivatives of

φ, Dnφ, evaluated at s, as well as other functions of s, n, φ and external data.

Because this relationship applies to every level set of φ, i.e. all values of k, this

equation can be applied to all of U , and therefore the movements of all the

level set surfaces embedded in φ can be calculated from Equation 4.

The level set representation has a number of practical and theoretical advan-

tages over conventional surface models, especially in the context of deformation

and segmentation. First, level set models are topologically flexible, they easily

represent complicated surface shapes that can, form holes, split to form multiple

objects, or merge with other objects to form a single structure. These models

can incorporate many (millions) of degrees of freedom, and therefore they can

accommodate complex shapes such as the dendrite in Figure 6. Indeed, the

shapes formed by the level sets of φ are restricted only by the resolution of the

sampling. Thus, there is no need to reparameterize the model as it undergoes

significant changes in shape.

The solutions to the partial differential equations described above are com-

puted using finite differences on a discrete grid. The use of a grid and discrete

time steps raises a number of numerical and computational issues that are im-

portant to the implementation. However, it is outside of the scope of this paper
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to give a detailed mathematical description of such a numerical implementa-

tion. Rather we shall provide a summary in a later section and refer to the

actual source code which is publicly available1.

Equation 4 can be solved using finite forward differences if one uses the

up-wind scheme, proposed by Osher and Sethian [30], to compute the spatial

derivatives. This up-wind scheme produces the motion of level set models

over the entire range of the embedding, i.e., for all values of k in Equation

2. However, this method requires updating every voxel in the volume for each

iteration., which means that the computation time increases as a function of

the volume, rather than the surface area, of the model. Because segmentation

requires only a single model, the calculation of solutions over the entire range

of iso-values is an unnecessary computational burden.

This problem can be avoided by the use of narrow-band methods, which

compute solutions only in a narrow band of voxels that surround the level set

of interest [34, 35]. In previous work [36] we described an alternative numerical

algorithm, called the sparse-field method, that computes the geometry of only

a small subset of points in the range and requires a fraction of the computation

time required by previous algorithms. We have shown two advantages to this

method. The first is a significant improvement in computation times. The

second is increased accuracy when fitting models to forcing functions that are

defined to sub-voxel accuracy.

0.3 Segmentation Framework

The level set segmentation process has two major stages, initialization and level

set surface deformation, as seen in Figure 2. Each stage is equally important

for generating a correct segmentation. Within our framework a variety of core

operations are available in each stage. A user must “mix-and-match” these

operations in order to produce the desired result [37]. Later sections describe

specialized operations for solving specific segmentation problems that build

upon and extend the framework.

1The level set software used to produce the morphing results in this paper is available

for public use in the VISPACK libraries at http://www.cs.utah.edu/∼whitaker/vispack.
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Figure 2: Level set segmentation stages – initialization and surface deformation.

0.3.1 Initialization

Because level set models move using gradient descent, they seek local solutions,

and therefore the results are strongly dependent on the initialization, i.e., the

starting position of the surface. Thus, one controls the nature of the solu-

tion by specifying an initial model from which the surface deformation process

proceeds. We have implemented both computational (i.e. “semi-automated”)

and manual/interactive initialization schemes that that may be combined to

produce reasonable initial estimates directly from the input data.

Linear filtering: We can filter the input data with a low-pass filter (e.g.

Gaussian kernel) to blur the data and thereby reduce noise. This tends

to distort shapes, but the initialization need only be approximate.

Voxel classification: We can classify pixels based on the filtered values of

the input data. For greyscale images, such as those used in this paper,

the classification is equivalent to high and low thresholding operations.

These operations are usually accurate to only voxel resolution (see [12] for

alternatives), but the deformation process will achieve sub-voxel results.

Topological/logical operations: This is the set of basic voxel operations

that takes into account position and connectivity. It includes unions or

intersections of voxel sets to create better initializations. These logical

operations can also incorporate user-defined primitives. Topological oper-

ations consist of connected-component analyses (e.g. flood fill) to remove

small pieces or holes from objects.

Morphological filtering: This includes binary and greyscale morpholog-

ical operators on the initial voxel set. For the results in the paper we
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implement openings and closings using morphological propagators [38, 39]

implemented with level set surface models. This involves defining offset

surfaces of φ by expanding/contracting a surface according to the follow-

ing PDE,

∂φ

∂t
= ±|∇φ|, (5)

up to a certain time t. The value of t controls the offset distance from

the original surface of φ(t = 0). A dilation of size α, Dα, corresponds to

the solution of Equation 5 at t = α using the positive sign, and likewise

erosion, Eα, uses the negative sign. One can now define a morphological

opening operator Oα by first applying an erosion followed by a dilation of

φ, i.e. Oαφ = Dα ◦ Eαφ, which removes small pieces or thin appendages.

A closing is defined as Cαφ = Eα ◦ Dαφ, and closes small gaps or holes

within objects. Both operations have the qualitative effect of low-pass

filtering the isosurfaces in φ—an opening by removing material and a

closing by adding material. Both operations tend to distort the shapes

of the surfaces on which they operate, which is acceptable for the initial-

ization because it will be followed by a surface deformation.

User-specified: For some applications it is desirable and easier for the

user to interactively specify the initial model. Here, the user creates a

Constructive Solid Geometry (CSG) model which defines the shape of

the initial surface. In Figure 3a the CSG model in blue is interactively

positioned relative to a Marching Cubes mesh extracted from the orig-

inal dataset. The CSG model is scan-converted into a binary volume,

with voxels simply marked as inside (1) or outside (0), using standard

CSG evaluation techniques [40]. An isosurface of the initialization vol-

ume dataset generated from the torus and sphere is presented in Figure

3b. This volume dataset is then deformed to produce the final result seen

in Figure 3c.

0.3.2 Level Set Surface Deformation

The initialization should position the model near the desired solution while

retaining certain properties such as smoothness, connectivity, etc. Given a
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a b c

Figure 3: (a) Interactively positioning a CSG model relative to a Marching

Cubes mesh. (b) Isosurface of a binary scan conversion of the initialization

CSG model. (c) Final internal embryo structures.

rough initial estimate, the surface deformation process moves the surface model

toward specific features in the data. One must choose those properties of the

input data to which the model will be attracted and what role the shape of the

model will have in the deformation process. Typically, the deformation process

combines a data term with a smoothing term, which prevents the solution from

fitting too closely to noise-corrupted data. There are a variety of surface-motion

terms that can be used in succession or simultaneously, in a linear combination

to form F(x) in Equation 4.

Curvature: This is the smoothing term. For the work presented here we

use the mean curvature of the isosurface H to produce

Fcurv(x) = H =
(
∇ · ∇φ

|∇φ|

)
. (6)

The mean curvature is also the normal variation of the surface area (i.e.,

minimal surface area). There are a variety of options for second-order

smoothing terms [41], and the question of efficient, effective higher-order

smoothing terms is the subject of on-going research [7, 42, 31]. For the

work in this paper, we combine mean curvature with one of the following

three terms, weighting it by a factor β, which is tuned to each specific

application.

Edges: Conventional edge detectors from the image processing literature

produce sets of “edge” voxels that are associated with areas of high con-
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trast. For this work we use a gradient magnitude threshold combined with

non-maximal suppression, which is a 3D generalization of the method of

Canny [16]. The edge operator typically requires a scale parameter and

a gradient threshold. For the scale, we use small, Gaussian kernels with

standard deviation σ = [0.5, 1.0] voxel units. The threshold depends on

the contrast of the volume. The distance transform on this edge map

produces a volume that has minima at those edges. The gradient of this

volume produces a field that attracts the model to these edges. The edges

are limited to voxel resolution because of the mechanism by which they

are detected. Although this fitting is not sub-voxel accurate, it has the

advantage that it can pull models toward edges from significant distances,

and thus inaccurate initial estimates can be brought into close alignment

with high-contrast regions, i.e. edges, in the input data. If E is the set

of edges, and DE(x) is the distance transform to those edges, then the

movement of the surface model is given by

Fedge(x) = n · ∇DE(x). (7)

Greyscale features—gradient magnitude: Surface models can also be

attracted to certain greyscale features in the input data. For instance, the

gradient magnitude indicates areas of high contrast in volumes. By fol-

lowing the gradient of such greyscale features, surface models are drawn

to minimum or maximum values of that feature. Typically greyscale fea-

tures, such as the gradient magnitude are computed with a scale operator,

e.g., a derivative-of-Gaussian kernel. If models are properly initialized,

they can move according to the gradient of the gradient magnitude and

settle onto the edges of an object at a resolution that is finer than the

original volume.

If G(x) is some greyscale feature, for instance G(x) = |∇I(x)|, where

I(x) is the input data (appropriately filtered—we use Gaussian kernels

with σ ≈ 0.5), then

Fgrad(x) = n · (±∇G(x)), (8)

where a positive sign moves surfaces towards maxima and the negative

sign towards minima.
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Isosurface: Surface models can also expand or contract to conform to

isosurfaces in the input data. To a first order approximation, the distance

from a point x ∈ U to the k-level surface of I is given by (I(x)− k) /|∇I|.
If we let g(α) be a fuzzy threshold, e.g., g(α) = α/

√
1 + α2, then

Fiso(x) = g

(
I(x)− k

|∇I|

)
(9)

causes the surfaces of φ to expand or contract to match the k isosurface

of I. This term combined with curvature or one of the other fitting terms

can create “quasi-isosurfaces” that also include other considerations, such

as smoothness or edge strength.

0.3.3 Framework Results

Figure 4 presents one slice from an MRI scan of a mouse embryo, and an iso-

surface model of its liver extracted from the unprocessed dataset. Figure 5

presents 3D renderings of the sequence of steps performed on the mouse MRI

data to segment the liver. The first step is the initialization, which includes

smoothing the input data, thresholding followed by a a flood fill to remove

isolated holes, and finally applying morphological operators to remove small

gaps and protrusions on the surface. The second (surface deformation) step

first involves fitting to discrete edges and then to the gradient magnitude. This

produces a significant improvement over the result in Figure 4. Figure 8a

presents several other structures that were segmented from the mouse embryo

dataset. The skin (grey) and the liver (blue) were isolated using computational

initialization. The brain ventricles (red) and the eyes (green) were segmented

with interactive initialization.

The same set of initialization and surface deformation steps may be com-

bined to extract a model of a spiny dendrite from the TEM scan presented in

Figure 6a. An iso-surface extracted from the scan is presented in Figure 6b.

Figures 7 shows the results of the proposed method compared to the results

of a manual segmentation, which took approximately 10 hours of slice-by-slice

hand contouring. The manual method suffers from slice-wise artifacts, and,

because of the size and complexity of the dataset, the manual segmentation

is unable to capture the level of detail that we obtain with the surface-fitting

results. Manual segmentation can, however, form connections that are not

well supported by the data in order to complete the “spines” that cover this
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Figure 4: (left) One slice of a 256×128×128 MR scan of a mouse embryo. The

central dark structure is its liver. (right) A dual-threshold surface rendering

hightlights the segmentation problem.

Figure 5: (left) The initialization of a mouse liver dataset using morphology

to remove small pieces and holes. (center) Surface fitting to discrete edges.

(right) The final fit to maxima of gradient magnitude.

dendrite. These types of “judgments” that humans make when they perform

such tasks by hand are a mixed blessing. Humans can use high-level knowledge

about the problem to fill in where the data is weak, but the expectations of

a trained operator can interfere with seeing unexpected or unusual features in

the data.

Figure 8 presents models from four samples of an MR series of a developing

frog embryo. The top left image (Hour 9) shows the first evident structure,

the blastocoel, in blue, surrounded by the outside casing of the embryo in grey.

The top right image (Hour 16) demonstrates the expansion of the blastocoel

and the development of the blastoporal lip in red. In the bottom left image

(Hour 20) the blastoporal lip has collapsed, the blastocoel has contracted, and

the archenteron in green has developed. In the bottom right image (Hour

30) the blastocoel has collapsed and only the archenteron is present. For this
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Figure 6a: One slice of a 154 ×
586 × 270 TEM scan of a spiny den-

drite shows low contrast and high

noise content in a relatively complex

dataset.

Figure 6b: An isosurface rendering,

with prefiltering, shows how noise

and inhomogenieties in density inter-

fere with visualizing the 3D structure

of the dendrite.

Figure 7: (top) Rendering of a dendrite segmented using our the proposed

method. (bottom) Rendering of a manual segmentation of the same dendrite.
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Figure 8a: Final mouse embryo

model with skin (grey), liver (blue),

brain ventricles (red), and eyes

(green).

Figure 8b: Hour 16 dataset.

Figure 8c: Geometric structures ex-

tracted from MRI scans of a de-

veloping frog embryo, with blasto-

coel (blue), blastoporal lip (red), and

archenteron (green). Hour 9 (top

left). Hour 16 (top right). Hour

20 (bottom left). Hour 30 (bottom

right).
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dataset it was difficult to isolate structures only based on their voxel values.

We therefore used our interactive techniques to isolate (during initialization)

most of the structures in the frog embryo samples.

Table 1 describes for each dataset the specific techniques and parameters

we used for the results in this section. These parameters were obtained by first

making a sensible guess based on the contrasts and sizes of features in the data

and then using trial and error to obtain acceptable results. Each dataset was

processed between 4 and 8 times to achieve these results. More tuning could

improve things further, and once these parameters are set, they work moder-

ately well for similar modalities with similar subjects. The method is iterative,

but the update times are proportional to the surface area. On an SGI 180MHz

MIPS 10000 machine, the smaller mouse MR dataset required approximately

10 minutes of CPU time, and the dendrite dataset ran for approximately 45

minutes. Most of this time was spent in the initialization (which requires sev-

eral complete passes through the data) and in the edge detection. The frog

embryo datasets needed only a few minutes of processing time, because they

did not require computational initialization and are significantly smaller than

the other example datatsets.

0.4 Segmentation From Multiple Non-Uniform

Volume Datasets

Many of today’s volumetric datasets are generated by medical MR, CT and

other scanners. A typical 3-D scan has a relatively high resolution in the scan-

ning X − Y plane, but much lower resolution in the axial Z direction. The

difference in resolution between the in-plane and out-of-plane samplings can

easily range between a factor of 5 to 10, see Figure ??. This occurs both be-

cause of physical constraints on the thickness of the tissue to be excited during

scanning (MR), total tissue irradiation (CT), and scanning time restrictions.

Even when time is not an issue, most scanners are by design incapable of sam-

pling with high resolution in the out-of-plane direction, producing anisotropic

“brick-like” voxels.

The non-uniform sampling of an object or a patient can create certain prob-

lems. The inadequate resolution in the Z direction implies that small or thin

structures will not be properly sampled, making it difficult to capture them
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Dataset Initialization Surface Fitting

Dendrite

1. Gaussian blur

σ = 0.5

2. Threshold:

I < 127

3. Fill isolated holes

4. Morphology:

O0.5 ◦ C1.5

1. Edge fitting:

σ = 0.75,

threshold = 6,

β = 0.1

2. Gradient magnitude

fitting: σ = 0.5,

β = 1.0

Mouse

1. Gaussian blur

σ = 0.5

2. Threshold:

I > 3, I < 60

3. Fill isolated holes

4. Morphology:

O2.0 ◦ C3.0

1. Edge fitting:

σ = 0.75,

threshold = 20,

β = 2

2. Gradient magnitude

fitting: σ = 0.5,

β = 16.0

Frog 1. Interactive

1. Gradient magnitude

fitting: σ = 1.25,

β = 1.0

Table 1: Parameters for processing example datasets.
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during surface reconstruction and object segmentation. One way to address

this problem is to scan the same object from multiple directions, with the hope

that the small structures will be adequately sampled in one of the scans. Gen-

erating several scans of the same object then raises the question of how to

properly combine the information contained in these multiple datasets. Sim-

ply merging the individual scans does not necessarily assemble enough samples

to produce a high resolution volumetric model. To address this problem we

have developed a method for deforming a level set model using velocity infor-

mation derived from multiple volume datasets with non-uniform resolution in

order to produce a single high-resolution 3D model [43]. The method locally

approximates the values of the multiple datasets by fitting a distance-weighted

polynomial using moving least-squares (MLS) [44, 45]. Directional 3D edge

information that may be used during the surface deformation stage is readily

derived from MLS, and integrated within our segmentation framework.

The proposed method has several beneficial properties. Instead of merg-

ing all of the input volumes by global resampling (interpolation), we locally

approximate the derivatives of the intensity values by MLS. This local versus

global approach is feasible because the level set surface deformation only re-

quires edge information in a narrow band around the surface. Consequently the

MLS calculation is only performed in a small region of the volume, rather than

throughout the whole volume, making the computational cost proportional

to the object surface area [36]. As opposed to many interpolation schemes

the MLS method is stable with respect to noise and imperfect registrations

[46]. Our implementation also allows for small intensity attenuation artifacts

between the multiple scans thereby providing gain-correction. The distance-

based weighting employed in our method ensures that the contributions from

each scan is properly merged into the final result. If a slice of data from one

scan is closer to a point of interest on the model, the information from this

scan will contribute more heavily to determining the location of the point.

To the best of our knowledge there is no previous work on creating de-

formable models directly from multiple volume datasets. While there has been

previous work on 3D level set segmentation and reconstruction[41, 6, 5, 8, 47],

it has not been based on multiple volume datasets. However, 3D models have

been generated from multiple range maps [48, 49, 36, 29], but the 2D nature of

these approaches is significantly different from the 3D problem being addressed
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here. The most relevant related projects involve merging multiple volumes to

produce a single high-resolution volume dataset [50, 51], and extracting edge

information from a single non-uniform volume [52]. Our work does not attempt

to produce a high-resolution merging of the input data. Instead, our contri-

bution stands apart from previous work because it deforms a model based on

local edge information derived from multiple non-uniform volume datasets.

We have demonstrated the effectiveness of our approach on three multi-

scan datasets. The first two examples are derived from a single high resolution

volume dataset that has been sub-sampled in the X, Y and Z directions. Since

these non-uniform scans are extracted from a single dataset they are therefore

perfectly aligned. The first scan is derived from a high resolution MR scan

of a 12-day-old mouse embryo, which has already had its outer skin isolated

with a previous segmentation process. The second example is generated from a

laser scan reconstruction of a figurine. The third example consists of multiple

MR scans of a zucchini that have been imperfectly aligned by hand. The first

two examples show that our method is able to perform level set segmentation

from multiple non-uniform scans of an object, picking up and merging features

only found in one of the scans. The second example demonstrates that our

method generates satisfactory results, even when there are misalignments in

the registration.

0.4.1 Method Description

We have formulated our approach to 3D reconstruction of geometric models

from multiple non-uniform volumetric datasets within our level set segmen-

tation framework. Recall that speed function F() describes the velocity at

each point on the evolving surface in the direction of the local surface nor-

mal. All of the information needed to deform a surface is encapsulated in the

speed function, providing a simple, unified approach to evolving the surface. In

this section we define speed functions that allow us to solve the multiple-data

segmentation problem. The key to constructing suitable speed terms is 3D

directional edge information derived from the multiple datasets. This problem

is solved using a moving least-squares scheme that extracts edge information

by locally fitting sample points to high-order polynomials.
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0.4.1.1 Level Set Speed Function for Segmentation

Many different speed functions have been proposed over the years for segmen-

tation of a single volume dataset [41, 6, 5, 8]. Typically such speed functions

consist of a (3D) image-based feature attraction term and a smoothing term

which serves as a regularization term that lowers the curvature and suppresses

noise in the input data. From computer vision it is well known that features,

i.e. significant changes in the intensity function, are conveniently described by

an edge-detector [53]. There exists a very large body of work devoted to the

problem of designing optimal edge detectors for 2D images [14, 16], most of

which are readily generalized to 3D. For this project we found it convenient to

use speed functions with a 3D directional edge term that moves the level set

toward the maximum of the gradient magnitude. This gives a term equivalent

to Equation 8,

Fgrad(x,n, φ) = αn · ∇‖∇Vg‖ (10)

where α is a scaling factor for the image-based feature attraction term ∇‖∇Vg‖
and n is the normal to the level set surface at x. Vg symbolizes some global

uniform merging of the multiple non-uniform input volumes. This feature term

is effectively a 3D directional edge-detector of Vg. However there are two prob-

lems associated with using this speed function exclusively. The first is that we

cannot expect to compute reliable 3D directional edge information in all regions

of space simply because of the nature of the non-uniform input volumes. In

other words Vg cannot be interpolated reliably in regions of space where there

are no nearby sample points. Hence the level set surface will not experience

any image-based forces in these regions. The solution is to use a regularization

term that imposes constraints on the mean curvature of the deforming level

set surface. We include the smoothing term from Equation 6 and scale it with

parameter β, in order to smooth the regions where no edge information exists

as well as suppress noise in the remaining regions thereby preventing excessive

aliasing.

Normally the feature attraction term, ∇‖∇Vg‖, creates only a narrow range

of influence. In other words, this feature attraction term will only reliably move

the portion of the level set surface that is in close proximity to the actual edges

in Vg. Thus, a good initialization of the level set surface is needed before

solving Equation 10. A reasonable initialization of the level set surface may be

obtained by computing the CSG union of the multiple input volumes, which
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are first tri-linearly resampled to give a uniform sampling. However, if the

input volumes are strongly non-uniform, i.e. they are severely undersampled in

one or more directions, their union produces a poor initial model. To improve

the initialization we attract the CSG union surface to the Canny edges [16]

computed from Vg using the distance transform produced from those edges.

See Equation 7. This approach allows us to move the initial surface from a

long range, but only with pixel-level accuracy.

Canny edges are non-directional edges defined from the zero-crossing of the

second derivative of the image in the direction of the local normal. In 3D this

is
∂2

∂n2
g

Vg = 0 (11)

where ng ≡ ∇Vg/‖∇Vg‖ is the local normal vector of Vg. Using the expression

∂/∂ng = ng · ∇ we can rewrite Equation 11 as

∂2

∂n2
g

Vg = ng · ∇ [ng · ∇Vg] = ng · ∇‖∇Vg‖. (12)

The next section focuses on the methods needed to reliably compute the

vectors ng and ∇‖∇Vg‖. In preparation, the latter may be explicitly expressed

in terms of the derivatives of the merged volume Vg

∇‖∇Vg‖ =
∇Vg ĤVg

‖∇Vg‖
(13)

where we have defined the gradient vector and the Hessian matrix,

∇̂Vg = (
∂Vg

∂x
,
∂Vg

∂y
,
∂Vg

∂z
) (14a)

ĤVg =


∂2Vg

∂x2
∂2Vg

∂y∂x
∂2Vg

∂z∂x
∂2Vg

∂x∂y
∂2Vg

∂y2
∂2Vg

∂z∂y
∂2Vg

∂x∂z
∂2Vg

∂y∂z
∂2Vg

∂z2

 . (14b)

Thus, in closing we note that the level set propagation needed for segmentation

only needs information about the first and second order partial derivatives of

the input volumes, not the interpolated intensity values themselves.

0.4.1.2 Computing Partial Derivatives

As outlined above the speed function F in the level set equation, Equation 4,

is based on edge information derived from the input volumes. This requires
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estimating first and second order partial derivatives from the multiple non-

uniform input volumes. We do this by means of moving least-squares (MLS),

which is an effective and well established numerical technique for computing

derivatives of functions whose values are known only on irregularly spaced

points [44, 45, 46].

Let us assume we are given the input volumes V̂d, d = 1, 2, .., D which

are volumetric samplings of an object on the non-uniform grids {x̂d}. We

shall also assume that the local coordinate frames of {x̂d} are scaled, rotated

and translated with respect to each other. Hence, we define a world coordinate

frame (typically one of the local frames) in which we solve the level set equation.

Now, let us define the world sample points {xd} as

xd ≡ T(d)[x̂d] (15)

where T(d) is the coordinate transformation from a local frame d to the world

frame. Next we locally approximate the intensity values from the input volumes

V̂d with a 3D polynomial expansion. Thus, we define the N-order polynomials

V
(d)
N (x) = C

(d)
000 +

N∑
i+j+k=1

C
(0)
ijkxiyjzk, d = 1, 2, . . . , D (16)

where the C coefficients are unknown. Note that these local approximations to

the intensity values share coefficients C
(0)
ijk of order higher than zero, i.e. all of

the functions V
(d)
N , d = 1, 2, .., D have the same edges. The fact that the zero-

order term in Equation 16 is input volume dependent means we allow for local

constant offsets between the input volumes V̂d. This effectively provides built-

in gain-correction in the scheme, since it can handle small intensity attenuation

artifacts between the multiple scans.

Moving Least-Squares To solve for the expansion coefficients C in Equa-

tion 16 we define the moving least-squares functional

E(x0) =
D∑

d=1

∑
xd

wd(xd−x0)
[
V

(d)
N (xd−x0)− Vd(xd)

]2
(17)
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where x0 is the expansion point from where we are seeking edge information,

Vd(xd) ≡ V̂d(x̂d) and where

wd(x) ≡


1− 2(‖x‖/∆)2 for 0 ≤ ‖x‖ ≤ ∆/2

2(‖x‖/∆− 1)2 for ∆/2 < ‖x‖ < ∆

0 for ‖x‖ ≥ ∆

(18)

is a “moving filter” that weights the contribution of different sampling points,

xd, according to their Euclidean distance, ‖xd − x0‖, to the expansion point,

x0. Other expressions for this weighting function could of course be used, but

Equation 18 is fast to compute, has finite support (by the window parameter

∆), and its tangent is zero at the endpoints. After substitution of Equation 16

into Equation 35 we obtain the functional

E(x0) =
D∑

d=1

∑
xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd) (19)

+
N∑

i+j+k=1

C
(0)
ijk(xd − x0)i(yd − y0)j(zd − z0)k

]2
.

The minimization of this moving least-squares functional with respect to the

expansion coefficients C requires the partial derivatives to vanish, i.e.

∂Ê(x0)

∂C
(d)
000

= 0 = 2
∑
xd

wd(xd−x0)
[
C

(d)
000 − V̂d(xd) (20a)

+
N∑

i+j+k=1

C
(0)
ijk(xd − x0)i(yd − y0)j(zd − z0)k

]
∂Ê(x0)

∂C
(0)
lnm

= 0 = 2
D∑

d=1

∑
xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd)

+
N∑

i+j+k=1

C
(0)
ijk(xd − x0)i(yd − y0)j(zd − z0)k

]
× (xd − x0)l(yd − y0)m(zd − z0)n. (20b)

This defines a system of linear equations in the expansion coefficients C
(r)
ijk, that

can be solved using standard techniques from numerical analysis, see Equa-

tion 21 and Equation 23.
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Equation 20a and Equation 20b can then be conveniently expressed as∑
q

Ap,q cq = bp (21)

where A is a diagonal matrix, and b, c are vectors. In this equation we have

also introduced the compact index notations p ≡ (i, j, k, r) and q ≡ (l, m, n, s)

defined as

p ∈
{

i, j, k, r ∈ N+
∣∣ i = j = k = 0, 1≤r≤D

}
∪
{

i, j, k, r ∈ N+
∣∣ 1 ≤ i+j+k≤N, r = 0

}
(22a)

q ∈
{

l,m, n, s ∈ N+
∣∣ l = m = n = 0, 1≤s≤D

}
∪
{

l,m, n, s ∈ N+
∣∣ 1 ≤ l+m+n≤N, s = 0

}
. (22b)

The diagonal matrix A, and the vectors b, c in Equation 21 are defined as

Ap,q ≡
∑

d

(δr,d + δr,0) (δs,d + δs,0)
∑
xd

wd(xd−x0)

× (xd − x0)i(yd − y0)j(zd − z0)k (23a)

× (xd − x0)l(yd − y0)m(zd − z0)n

bp ≡
∑

d

(δr,d + δr,0) wd(xd−x0)V̂d(xd)

× (xd − x0)i(yd − y0)j(zd − z0)k (23b)

cp ≡ C
(r)
ijk. (23c)

Next the matrix equation Ac = b must be solved for the vector c of dimen-

sion
(
N+3

3

)
+ D− 1, where N is the order of the expansion in Equation 16 and

D is the number of non-uniform input volumes. As is well known for many

moving least-square problems it is possible for the condition number of the

matrix A to become very large. Any matrix is singular if its condition number

is infinite and can be defined as ill-conditioned if the reciprocal of its condition

number approaches the computer’s floating-point precision. This can occur

if the problem is over-determined (number of sample points, xd greater than

number of coefficients C) and under-determined (ambiguous combinations of

the coefficients C work equally well or equally bad). To avoid such numerical

problems, a singular value decomposition (SVD) linear equation solver is rec-

ommended for use in combination with the moving least-squares method. The
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SVD solver identifies equations in the matrix A that are, within a specified

tolerance, redundant (i.e. linear combinations of the remaining equations) and

eliminates them thereby improving the condition number of the matrix. We

refer the reader to reference [54] for a helpful discussion of SVD pertinent to

linear least-squares problems.

Once we have the expansion coefficients c we can readily express the Hessian

matrix and the gradient vector of the combined input volumes as

∇V = (C(0)
100, C

(0)
010, C

(0)
001) (24a)

HV =


2C

(0)
200 C

(0)
110 C

(0)
101

C
(0)
110 2C

(0)
020 C

(0)
011

C
(0)
101 C

(0)
011 2C

(0)
002

 (24b)

evaluated at the moving expansion point x0. This in turn is used in Equation 13

to compute the edge information needed to drive the level set surface.

0.4.1.3 Algorithm Overview

Algorithm 1 describes the main steps of our approach. The initialization rou-

tine, Algorithm 2, is called for all of the multiple non-uniform input volumes,

Vd. Each non-uniform input dataset is uniformly resampled in a common co-

ordinate frame (V0’s) using tri-linear interpolation. Edge information and the

union, V0, of the Vd’s is then computed. Algorithm 2 calculates Canny and 3D

directional edge information using moving least-squares in a narrow band in

each of the resampled input volumes, Vd, and buffers this in Vedge and V grad.

Next Algorithm 1 computes the distance transform of the zero-crossings of the

Canny edges and takes the gradient of this scalar volume to produce a vector

field V edge, which pulls the initial level set model to the Canny edges. Finally

the level set model is attracted to the 3D directional edges of the multiple in-

put volumes, V grad, and a Marching Cubes mesh is extracted for visualization.

The level set solver, described in Algorithm 3, solves Equation 4 using the “up-

wind scheme” (not explicitly defined) and the sparse-field narrow-band method

of [36], with V0 as the initialization and V edge and V grad as the force field in

the speed function.
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Algorithm 1: Main(V1, . . . , VD)

comment: V1, . . . , VD are non-uniform samplings of object V

global Vedge,V grad

do



V0 ← uniform sampling of empty space

for d← 1 to D

do V0 ← V0 ∪ Initialization(Vd)

V edge ←∇[distance transform[zero-crossing[Vedge]]]

V0 ← SolveLevelSetEQ(V0,V edge, α, 0)

V0 ← SolveLevelSetEQ(V0,V grad, α, β)

return (Marching Cubes mesh of V0)

Algorithm 2: Initialization(Vd)

comment: Pre-processing to produce good LS initialization

do



Vd ← Uniform tri-linear resampling of Vd

Γd ← Set of voxels in narrow band of iso-surface of Vd

for each x0 ∈ Γd

do


Solve moving least-squares problem at x0

Vedge(x0)← scalar Canny edge, cf. Equation 12

V grad(x0)← 3D directional edge, cf. Equation 13

return (Vd)

Algorithm 3: SolveLevelSetEQ(V0,V , α, β)

comment: Solve Equation 4 with initial condition φ(t=0) = V0

do



φ← V0

repeat

Γ← Set of voxels in narrow band of iso-surface of φ

∆t← γ/ supx∈Γ ‖V (x)‖, γ ≤ 1

for each x ∈ Γ

do


n← upwind scheme[−∇φ(x)/‖∇φ(x)‖]
φ̇(x)← ‖∇φ(x)‖(αV (x) · n + β∇ · n)

φ(x)← φ(x) + φ̇(x)∆t

until supx∈Γ ‖φ̇(x)‖ ≤ ε

return (φ)
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Figure 9: Non-uniform datasets merged to produce high resolution level set

models, (top) laser scan of a figurine, (bottom) MR scan of a mouse embryo.

Figure 10: Three low resolution MR scans of a zucchini that have been indi-

vidually colored and overlaid to demonstrate their imperfect alignment. The

level set model on the right is derived from the three low resolution scans.
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0.4.2 Multiple Volume Results

We have applied our segmentation method to several multi-scan non-uniform

datasets to produce high resolution level set models. The parameters used for

these segmentations are listed in Table 2. α and β are weights that the user

adjusts to balance attraction to edges with curvature-based smoothing during

the level set deformation process.

Table 2: Maximum in-plane to out-of-plane sampling ratios of non-uniform

input datasets, and parameters for the two level set speed terms defined in

Equation 6 and Equation 10.

Model Origin Ratio α β

Griffin Laser scan 6/10:1 1.0 0.5

Mouse MR scan 10:1 1.0 0.5

Zucchini MR scan 10:1 1.0 0.5

0.4.2.1 Griffin Dataset

The griffin dataset was created with a volumetric laser scan reconstruction algo-

rithm [49]. This algorithm creates a high resolution volumetric representation

of an object by merging multiple depth maps produced via a laser scan. The

original griffin dataset has a resolution of 312×294×144. We have extracted

two non-uniform datasets from this high resolution representation by copying

every sixth plane of data in the X direction and every tenth plane in the Y

direction. The two derived non-uniform griffin datasets have the following res-

olution: 52×294×144 and 312×30×144. Iso-surfaces have been extracted

from these datasets, appropriately scaled in the low resolution direction, and

are presented in the first two images in Figure 9 (top). Each low resolution

scan inadequately captures some important geometric feature of the griffin. We

have performed a reconstructions from the undersampled non-uniform scans to

produce the result in Figure 9 (top). The method produces a high resolution

(312×294×144) level set model that contains all of the significant features of

the original scan.
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0.4.2.2 Mouse Embryo Dataset

The first three scans in Figure 9 (bottom) are derived from a high resolution

MR scan of a mouse embryo. They are subsampled versions of a 256×128×128

volume dataset, and have the following resolutions: 26×128×128, 256×16×128

and 256×128×13. The last image in Figure 9 presents the result produced by

our multi-scan segmentation method. The information in the first three scans

has been successfully used to create a level set model of the embryo with a

resolution of 256×128×130. The finer features of the mouse embryo, namely

its hands and feet, have been reconstructed.

0.4.2.3 Zucchini Dataset

The final dataset consists of three individual MRI scans of an actual zucchini.

The separate scans have been registered manually and are presented on the left

side of Figure 10, each with a different color. The resolutions of the individual

scans are 28×218×188, 244×25×188 and 244×218×21. This image highlights the

rough alignment of the scans. The right side of Figure 10 presents the result of

our level set segmentation. It demonstrates that our approach is able to extract

a reasonable model from multiple datasets that are imperfectly aligned.

0.5 Segmentation of DT-MRI Brain Data

Diffusion tensor magnetic resonance imaging[55, 56] (DT-MRI) is a technique

used to measure the diffusion properties of water molecules in tissues. Anisotropic

diffusion can be described by the equation

∂C

∂t
= ∇ · (D∇C) (25)

where C is the concentration of water molecules and D is a diffusion coefficient,

which is a symmetric second order tensor

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (26)

Figure 11 presents a “slice” of the diffusion tensor volume data of human brain

used in our study. Each sub-image presents the scalar values of the associated

diffusion tensor component for one slice of the dataset.
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Figure 11: Slice of a tensor volume where every “element” of the image matrix

corresponds to one component of the tensor D.

Tissue segmentation and classification based on DT-MRI offers several ad-

vantages over conventional MRI, since diffusion data contains additional phys-

ical information about the internal structure of the tissue being scanned. How-

ever, segmentation and visualization using diffusion data is not entirely straight-

forward. First of all, the diffusion matrix itself is not invariant with respect to

rotations, and the elements that form the matrix will be different for different

orientations of the sample or field gradient and therefore cannot themselves

be used for classification purposes. Moreover, 3D visualization and segmen-

tation techniques available today are predominantly designed for scalar and

sometimes vector fields. Thus, there are three fundamental problems in tensor

imaging: a) finding an invariant representation of a tensor that is independent

of a frame of reference, b) constructing a mapping from the tensor field to a

scalar or vector field, and c) visualization and classification of tissue using the

derived scalar fields.

The traditional approaches to diffusion tensor imaging involve converting

the tensors into an eigenvalue/eigenvector representation, which is rotationally
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invariant. Every tensor may then be interpreted as an ellipsoid with princi-

pal axes oriented along the eigenvectors and radii equal to the corresponding

eigenvalues. This ellipsoid describes the probabilistic distribution of a water

molecule after a fixed diffusion time.

Using eigenvalues/eigenvectors one can compute different anisotropy mea-

sures [55, 57, 58, 59] that map tensor data onto scalars and can be used for

further visualization and segmentation. Although eigenvalue/vector compu-

tation of the 3x3 matrix is not expensive, it must be repeatedly performed

for every voxel in the volume. This calculation easily becomes a bottleneck

for large datasets. For example, computing eigenvalues and eigenvectors for a

5123 volume requires over 20 CPU-minutes on a powerful workstation. Another

problem associated with eigenvalue computation is stability - a small amount of

noise will not only change the values but also the ordering of the eigenvalues[60].

Since many anisotropy measures depend on the ordering of the eigenvalues, the

calculated direction of diffusion and classification of tissue will be significantly

altered by the noise normally found in diffusion tensor datasets. Thus it is

desirable to have an anisotropy measure which is rotationally invariant, does

not require eigenvalue computations and is stable with respect to noise. Tensor

invariants with these characteristics were first proposed by Ulug and Zijl[61].

In Section 0.5.1 we formulate a new anisotropy measure for tensor field based

on these invariants.

Visualization and model extraction from the invariant 3D scalar fields is

the second issue addressed in this paper. One of the popular approaches to

tensor visualization represents a tensor field by drawing ellipsoids associated

with the eigenvectors/values[62]. This method was developed for 2D slices and

creates visual cluttering when used in 3D. Other standard CFD visualization

techniques like tensor-lines do not provide meaningful results for the MRI data

due to rapidly changing directions and magnitudes of eigenvector/values and

the amount of noise present in the data. Recently Kindlmann[63] developed

a volume rendering approach to tensor field visualization using eigenvalue-

based anisotropy measures to construct transfer functions and color maps that

highlight some brain structures and diffusion patterns.

In our work we perform iso-surfacing on the 3D scalar fields derived from

our tensor invariants to visualize and segment the data [64]. An advantage of

iso-surfacing over other approaches is that it can provide the shape information
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Figure 12: Isotropic C1 (left) and anisotropic Ca (right) tensor invariants for

the tensor slice shown in Figure 11.

needed for constructing geometric models, and computing internal volumes and

external surface areas of the extracted regions. There has also been a number

of recent publications[65, 66] devoted to brain fiber tracking. This is a different

and more complex task than the one addressed in this paper and requires data

with a much higher resolution and better signal-to-noise ratio than the data

used in our study.

0.5.1 Tensor Invariants

Tensor invariants (rotational invariants) are combinations of tensor elements

that do not change after the rotation of the tensor’s frame of reference, and thus

do not depend on the orientation of the patient with respect to the scanner when

performing DT imaging. The well known invariants are the eigenvalues of the

diffusion tensor (matrix) D, which are the roots of corresponding characteristic

equation

λ3 − C1 · λ2 + C2 · λ− C3 = 0, (27)

with coefficients

C1 = Dxx + Dyy + Dzz

C2 = DxxDyy −DxyDyx + DxxDzz −DxzDzx +

DyyDzz −DyzDzy (28)

C3 = Dxx(DyyDzz −DzyDyz)

− Dxy(DyxDzz −DzxDyz) + Dxz(DyxDzy −DzxDyy).
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Since the roots of Equation (27) are rotational invariants, the coefficients C1,

C2 and C3 are also invariant. In the eigen- frame of reference they can be easily

expressed through the eigenvalues

C1 = λ1 + λ2 + λ3

C2 = λ1λ2 + λ1λ3 + λ2λ3 (29)

C3 = λ1λ2λ3

and are proportional to the sum of the radii, surface area and the volume of

the “diffusion” ellipsoid. Then instead of using (λ1, λ2, λ3) to describe the

dataset, we can use (C1, C2, C3). Moreover, since Ci are the coefficients of the

characteristic equation, they are less sensitive to noise, then roots λi of the

same equation.

Any combination of the above invariants is, in turn, an invariant. We

consider the following dimensionless combination: C1C2/C3. In the eigenvector

frame of reference it becomes

C1C2

C3
= 3 +

λ2 + λ3

λ1
+

λ1 + λ3

λ2
+

λ1 + λ2

λ3
(30)

and we can define a new dimensionless anisotropy measure

Ca =
1
6

[
C1C2

C3
− 3
]

. (31)

It is easy to show that for isotropic diffusion, when λ1 = λ2 = λ3, the

coefficient Ca = 1. In the anisotropic case, this measure is identical for both

linear, directional diffusion (λ1 >> λ2 ≈ λ3) and planar diffusion (λ1 ≈ λ2 >>

λ3) and is equal to

Climit
a ≈ 1

3

[
1 +

λ1

λ3
+

λ3

λ1

]
. (32)

Thus Ca is always ∼ λmax/λmin and measures the magnitude of the dif-

fusion anisotropy. We again want to emphasize that we use the eigenvalue

representation here only to analyze the behavior of the coefficient Ca, but we

use invariants (C1, C2, C3) to compute it using Equations (5) and (31).

0.5.2 Geometric Modeling

Two options are usually available for viewing the scalar volume datasets, di-

rect volume rendering[1, 4] and volume segmentation[67] combined with con-

xxxiii



ventional surface rendering. The first option, direct volume rendering, is only

capable of supplying images of the data. While this method may provide

useful views of the data, it is well-known that it is difficult to construct the

exact transfer function that highlights the desired structures in the volume

dataset[68]. Our approach instead focuses on extracting geometric models of

the structures embedded in the volume datasets. The extracted models may

be used for interactive viewing, but the segmentation of geometric models from

the volume datasets provides a wealth of additional benefits and possibilities.

The models may be used for quantitative analysis of the segmented structures,

for example the calculation of surface area and volume; quantities that are

important when studying how these structures change over time. The models

may be used to provide the shape information necessary for anatomical studies

and computational simulation, for example EEG/MEG modeling within the

brain[69]. Creating separate geometric models for each structure allows for the

straightforward study of the relationship between the structures, even though

they come from different datasets. The models may also be used within a surgi-

cal planning/simulation/VR environment[70], providing the shape information

needed for collision detection and force calculations. The geometric models

may even be used for manufacturing real physical models of the structures[71].

It is clear that there are numerous reasons to develop techniques for extracting

geometric models from diffusion tensor volume datasets.

The most widely used technique for extracting polygonal models from vol-

ume datasets is the Marching Cubes algorithm[72]. This technique creates a

polygonal model that approximates the iso-surface embedded in a scalar vol-

ume dataset for a particular iso-value. While the Marching Cubes algorithm is

easy to understand and straightforward to implement, applying it directly to

raw volume data from scanners can produce undesirable results, as seen in the

first images in Figures 13 and 16. The algorithm is susceptible to noise and

can produce many unwanted triangles that mask the central structures in the

data. In order to alleviate this problem, we utilize the tools in our level set

framework to smooth the data and remove the noise-related artifacts.

0.5.3 Segmentation

In this section we demonstrate the application of our methods to the segmenta-

tion of DT-MRI data of the human head. We use a high resolution dataset from
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a human volunteer which contains 60 slices each of 128x128 pixels resolution.

The raw data is sampled on a regular uniform grid.

We begin by generating two scalar volume datasets based on the invariants

described in Section 0.5.1. The first scalar volume dataset (V1) is formed by

calculating the trace (C1) of the tensor matrix for each voxel of the diffusion

tensor volume. It provides a single number that characterizes the total dif-

fusivity at each voxel within the sample. Higher values signify greater total

diffusion irrespective of directionality in the region represented by a particular

voxel. A slice from this volume can be seen in Figure 12 (left). The second

scalar volume dataset (V2) is formed by calculating (C1, C2, C3) invariants for

each voxel and combining them into Ca. It provides a measure of the mag-

nitude of the anisotropy within the volume. Higher values identify regions of

greater spatial anisotropy in the diffusion properties. A slice from the second

scalar volume is presented in Figure 12 (right). The measure Ca does not by

definition distinguish between linear and planar anisotropy. This is sufficient

for our current study since the brain does not contain measurable regions with

planar diffusion anisotropy. We therefore only need two scalar volumes in order

to segment the DT dataset.

We then utilize our level set framework to extract smoothed models from

the two derived scalar volumes. First the input data is filtered with a low-pass

Gaussian filter (σ ≈ 0.5) to blur the data and thereby reduce noise. Next, the

volume voxels are classified for inclusion/exclusion in the initialization based

on the filtered values of the input data (k ≈ 7.0 for V1 and k ≈ 1.3 for V2).

For grey scale images, such as those used in this paper, the classification is

equivalent to high and low thresholding operations. The last initialization

step consists of performing a set of topological (e.g. flood fill) operations in

order to remove small pieces or holes from objects. This is followed by a level

set deformation that pulls the surface toward local maxima of the gradient

magnitude and smooths it with a curvature-based motion. This moves the

surface toward specific features in the data, while minimizing the influence of

noise in the data.

Figures 13 and 14 present two models that we extracted from DT-MRI

volume datasets using our techniques. Figure 13 contains segmentations from

volume V1, the measure of total diffusivity. The top image shows a Marching

Cubes iso-surface using an iso-value of 7.5. In the bottom we have extracted
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Figure 13: Segmentation from isotropic measure volume V1 for the first DT-

MRI dataset. The first row is the marching cubes iso-surface with iso-value

7.5. The second row is the result of flood-fill algorithm applied to the same

volume and used for initialization. The third row is the final level set model.
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Figure 14: Model segmentation from volume V2. Top left image is an iso-

surface of value 1.3, used for initialization of the level set. Clockwise, are the

results of level set development with corresponding β values of 0.2, 0.4 and 0.5.

just the ventricles from V1. This is accomplished by creating an initial model

with a flood-fill operation inside the ventricle structure shown in the middle

image. This identified the connected voxels with value of 7.0 or greater. The

initial model was then refined and smoothed with a level set deformation, using

a β value of 0.2.

Figure 14 again provides the comparison between direct iso-surfacing and

and level set modeling, but on the volume V2. The image in the top-left corner is

a Marching Cubes iso-surface using an iso-value of 1.3. There is significant high-

frequency noise and features in this dataset. The challenge here was to isolate

coherent regions of high anisotropic diffusion. We applied our segmentation

approach to the dataset and worked with neuroscientists from LA Childrens

Hospital, City of Hope Hospital and Caltech to identify meaningful anatomical

structures. We applied our approach using a variety of parameter values, and

presented our results to them, asking them to pick the model that they felt

best represented the structures of the brain. Figure 14 contains three models

extracted from V2 at different values of smoothing parameter β used during
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Figure 15: Combined model of ventricles and (semi-transparent) anisotropic

regions: rear, exploded view (left), bottom view (right), side view (bottom).

Note how model of ventricles extracted from isotropic measure dataset V1 fits

into model extracted from anisotropic measure dataset V2.

segmentation. Since we were not looking for a single connected structure in

this volume, we did not use a seeded flood-fill for initialization. Instead we

initialized the deformation process with an iso-surface of value 1.3. This was

followed by a level set deformation using a β value of 0.2. The result of this

segmentation is presented on the bottom-left side of Figure 14. The top-right

side of this figure presents a model extracted from V2 using an initial iso-surface

of value 1.4 and a β value of 0.5. The result chosen as the “best” by our

scientific/medical collaborators is presented on the bottom-right side of Figure

14. This model is produced with an initial iso-surface of 1.3 and a β value of

0.4. Our collaborators were able to identify structures of high diffusivity in this

model, for example the corpus callosum, the internal capsul, the optical nerve

tracks, and other white matter regions.
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Figure 16: Segmentation using anisotropic measure V2 from the second DT-

MRI dataset. (left) Marching cubes iso-surface with iso-value 1.3. (middle)

Result of flood-fill algorithm applied to the volume and used for initialization.

(right) Final level set model.

We can also bring together the two models extracted from datasets V1 and

V2 into a single image. They will have perfect alignment since they are derived

from the same DT-MRI dataset. Figure 15 demonstrates that we are able

to isolate different structures in the brain from a single DT-MRI scan and

show their proper spatial inter-relationship. For example, it can be seen that

the corpus callosum lies directly on top of the ventricles, and that the white

matter fans out from both sides of the ventricles.

Finally, to verify the validity of our approach we applied it to the second

dataset from a different volunteer. This dataset has 20 slices of the 256x256

resolution. We generated the anisotropy measure volume V2 and performed the

level set model extraction using the same iso-values and smoothing parameters

as for V2. The results are shown in Figure 16, and demonstrate the generality

of our approach.
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0.6 Direct Estimation of Surfaces in

Tomographic Data

The radon transform is invertable (albeit, marginally so) when the measured

data consists of a sufficient number of good quality, properly spaced projections

[73]. However, for many applications the number of realizable projections is

insufficient, and direct greyscale reconstructions are susceptible to artifacts.

We will refer to such problems as under-constrained tomographic problems.

Cases of under-constrained tomographic problems usually fall into one of two

classes. The first class is where the measuring device produces a relatively

dense set of projections (i.e. adequately spaced) that do not span a full 180

degrees. In these cases, the sinogram contains regions without measured data.

Considering the radon transform in the Fourier domain, these missing regions

of the sinogram correspond to a transform with angular wedges (pie slices) that

are null, making the transform noninvertable. We assume that these missing

regions are large enough to preclude any straight-forward interpolation in the

frequency domain. The second class of incomplete tomographic problems are

those that consist of an insufficient number of widely spaced projections. We

assume that these sparse samples of the sinogram space are well distributed

over a wide range of angles. For this discussion the precise spacing is not

important. This problem is characterized by very little data in the Fourier

domain, and direct inversion approaches produce severe artifacts. Difficulties

in reconstructing volumes from such incomplete tomographic datasets are often

aggravated by noise in the measurements and misalignments among projections.

Under-constrained problems are typically solved using one or both of two

different strategies. The first strategy is to choose from among feasible solu-

tions (those that match the data) by imposing some additional criterion, such

as finding the solution that minimizes an energy function. This additional cri-

terion should be designed to capture some desirable property, such as minimum

entropy. The second strategy is to parameterize the solution in a way that re-

duces the number of degrees of freedom. Normally, the model should contain

few enough parameters so that the resulting parameter estimation problem is

over constrained. In such situations solutions are allowed to differ from the

data in a way that accounts for noise in the measurements.

In this section we consider a special class of under constrained tomographic
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problems that permits the use of a simplifying model. The class of problems

we consider are those in which the imaging process is targeted toward tissues

or organs that have been set apart from the other anatomy by some contrast

agent. This agent could be an opaque dye, as in the case of transmission

tomography, or an emissive metobolite, as in nuclear medicine. We assume that

this agent produces relatively homogeneous patches that are bounded by areas

of high contrast. This assumption is reasonable, for instance, in subtractive

angiography or CT studies of the colon. The proposed approach, therefore,

seeks to find the boundaries of different regions in a volume by estimating

sets of closed surface models and their associated density parameters directly

from the incomplete sinogram data [74]. Thus, the reconstruction problem is

converted to a segmentation problem. Of course, we can never expect real

tissues to exhibit truly homogeneous densities. However, we assert that when

inhomogeneities are somewhat uncorrelated and of low contrast the proposed

model is adequate to obtain acceptable reconstructions.

0.6.1 Related Work

Several areas of distinct areas of research in medical imaging, computer vision,

and inverse problems impact this work. Numerous tomographic reconstruction

methods are described in the literature [75, 76], and the method of choice de-

pends on the quality of projection data. Filtered back projection (FBP), the

most widely used approach, works well in the case the fully constrained recon-

struction where one is given enough high-quality projections over 180 degree

angular range. Statistical, iterative approaches such as maximum likelihood

(ML) and maximum a posteriori (MAP) estimation have been proven to work

well with noisy projection data, but do not systematically address the under

constrained reconstruction problem and generally rely on complete datasets.

An exception is [77], which proposes an iterative algebraic approach that in-

cludes some assumptions about the homogeneity of the solution to compute a

full greyscale reconstruction. Also, some hybrid approaches [78, 79] are specif-

ically developed to deal with limited-angle tomography by extrapolating the

missing sinogram data.

Other tomographics reconstruction techniques have been proposed, for ex-

ample those that utilize discrete tomagraphy strategies [80, 73, 81, 82], and

deformable models [83, 84, 85, 86, 87]. The literature also describes many
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examples of level sets as curve and surface models for image segmentation

[7, 6, 41, 88]. The authors have examined their usefulness for 3D segmentation

of TEM reconstructions [37]. Several authors have proposed solving inverse

problems using level sets [89, 90, 91, 92, 93, 94, 95], but are mostly limited to

solving 2D problems.

We make several important contributions to this previous body of work;

first we give a formal derivation of the motion of deformable surface mod-

els as the first variation of an error term that relates the projected model to

the noisy tomographic data. This formulation does not assume any specific

surface representation, and therefore applies to a wide range of tomographic,

surface-fitting problems. Second we present a level set implementation of this

formulation that computes incremental changes in the radon transform of the

projected model only along the wave front, which makes it practical on large

datasets. Third we examine the specific problem of initializing the deformable

surface in the absence of complete sinogram data, and demonstrate, using real

and synthetic data, the effectiveness of direct surface estimation for a specific

class of tomographic problems which are under constrained.

0.6.2 Mathematical Formulation

As an introduction, we begin with the derivation of surface estimation problem

in two dimensions. The goal is to simultaneously estimate the interface between

two materials and their densities, β0 and β1. Thus we have a background, with

density β0 and collection of solid objects with density β1. We denote the (open)

set of points in those regions as Ω, the closure of that set, the surface, as S.

The projection of a 2D signal f(x, y) produces a sinogram given by the

radon transform as

p(s, θ) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(Rθx− s)dx , (33)

where Rθx = x cos(θ)+y sin(θ) is a rotation and projection of a point x = (x, y)

onto the imaging plane associated with θ. The 3D formulation is the same,

except that the signal f(x, y, z) produces a collection of images. We denote

the projection of the model, which includes estimates of the objects and the

background, as p̂(s, θ). For this work we denote the angles associated with a

discrete set of projections as θ1, . . . θN and denote the domain of each projection

as S = s1, . . . sM . Our strategy is to find Ω, β0, and β1 by maximizing the
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Figure 17: The model is the interface between two densities, which are pro-

jected onto the imaging plane to create p̂(s, θi).

likelihood.

If we assume the projection measurements are corrupted by independent

noise, the log likelihood of a collection of measurements for a specific shape

and density estimate is the probability of those measurements conditional on

the model.

lnP (p(s1, θ1), p(s2, θ1), . . . , p(sM , θN )|S, β0, β1) =∑
i

∑
j lnP (p(sj , θi)|S, β0, β1). (34)

We call the negative log likelihood the error and denote it Edata. Normally,

the probability density of a measurement is parameterized by the ideal value,

which gives

Edata =
N∑

i=1

M∑
j=1

E (p̂ij , pij) , (35)

where E(p̂i,j , pi,j) = − lnP (p̂i,j , pi,j) is the error associated with a particular

point in the radon space, and pi,j = p(sj , θi). In the case of independent

Gaussian noise, E is a quadratic, and the log likelihood results in a weighted

least squares in the radon space. For all of our results, we use a Gaussian

noise model. Next we apply the object model, shown in Figure 0.6.2, to the

reconstruction of f . If we let g(x, y) be a binary inside-outside function on Ω,
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Figure 18: The reconstruction strategy starts with an initial surface estimate

and iteratively modifies its shape and the associated density parameters to

achieve a good fit to the input data.

then we have the following approximation to f(x, y):

f(x, y) ≈ β0 + [β1 − β0]g(x, y). (36)

Applying the radon transform to the model and substituting for p̂, gives

Edata =
N∑

i=1

M∑
j=1

E

(
β0K(sj , θi) + [β1 − β0]

∫
Ω

δ(Rθi
x− sj)dx, pij

)
, (37)

where K(sj , θi) is the projection of the background— it depends on the geome-

try of the region over which the data is taken, and is independent of the surface

estimate. For some applications we know that β0 = 0, and the term β0K is

zero. The integral over Ω results from integrating g over the entire domain.

The proposed strategy is to alternately (i.e. separately) update the shape of

the surface model and the density parameters. For the surface shape, a gradient

descent minimization approach describes the deformation of the surface, with

respect to an evolution parameter t, as it progressively improves its fit to the

sinogram data. The incremental change in the likelihood is

dEdata

dt
=
∫
S

N∑
i=1

M∑
j=1

d

dt
E (p̂ij , pi,j) dx =

∫
S

N∑
i=1

M∑
j=1

E′ (p̂ij , pij)
dp̂ij

dt
dx, (38)

where E′ = ∂E/∂p̂, which, for Gaussian noise, is simply the difference between

p̂ and p. Next we must formulate dp̂/dt, which, by the transport equation, is

dp̂ij

dt
= [β1 − β0]

d

dt

∫
Ω

δ(Rθi
x− sj)dx

= [β1 − β0]
∫
S

δ(Rθi
x− sj)n(x) · v(x)dx, (39)
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where n is an outward pointing surface normal and v(x) is the velocity of the

surface at the point x. The derivative of Edata with respect to surface motion

is therefore

dEdata

dt
= [β1 − β0]

∫
S

N∑
i=1

M∑
j=1

E′ (p̂i,j , pij) δ(Rθi
x− sj)n(x) · v(x) dx. (40)

Note that the integral over dx and the δ functional serve merely to associate sj

in the ith scan with the appropriate x point. If the samples in each projection

are sufficiently dense, we can approximate the sum over j as an integral over

the image domain, and thus for every x on the surface there is a mapping back

into the ith projection. We denote this point si(x). This gives a closed-form

expression for the derivative of the derivative of Edata in terms of the surface

velocity.
dEdata

dt
= [β1 − β0]

∫
S

N∑
i=1

ei(x)n(x) · v(x)dx, (41)

where ei(x) = E′(p̂(si(x), θi), p(si(x), θi)) is the derivative of the error associ-

ated with the point si(x) in the ith projection. The result shown in (41) does

not make any specific assumptions about the surface shape or its representa-

tion. Thus, this equation could be mapped onto any set of shape parameters

by inserting the derivative of a surface point with respect to those parameters.

Of course one would have to compute the surface integral, and methods for

solving such equations on parametric models (in the context of range data) are

described in [96].

For this work we are interested in free-form deformations, where each point

on the surface can move independently from the rest. If we let xt represent

the velocity of a point on the surface, the gradient descent surface free-form

surface motion is

xt = −dEdata

dx
= (β0 − β1)

N∑
i=1

ei(x)n(x). (42)

Thus, at a point x ∈ S, the ith projection has the effect of causing the sur-

face to expand or contract according to the difference between the projected

model values and the measured data at the point si(x), the projection of x

(Figure 0.6.2). The surface motion prescribed by a collection of projections is

the sum of motions from the individual projections. In the case of continuous

set of angles, the surface motion at a point is proportional to the sinusoidal

line integral on the error sinogram, which is e(s, θ).
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Figure 19: The model expands or contracts based on the difference in the

sinograms between the projected model and the measured data.

0.6.2.1 Density Parameter Estimation

The density parameters also affect the error term in equation (37). We propose

to update the estimate of the surface model iteratively, and at each iteration

we re-estimate the quantities β0 and β1 in such a way that the energy, Edata is

minimized. Treating Ω as fixed, (37) has two unknowns, β0 and β1, which are

computed from the following system:

∂Edata

∂β0
= 0,

∂Edata

∂β1
= 0. (43)

In the case of a Gaussian noise model (43) is a linear system. Because of

variations in instrumentation, the contrast levels of images taken at different

angles can vary. In such cases we estimate sets of such parameters, i.e., β0(θi)

and β1(θi) for i = 1 . . . N .

To extend the domain to higher dimensions, we have x ∈ IRn, and S ⊂
IRn−1 and the mapping si : IRn 7→ S models the projective geometry of the

imaging system (e.g. orthographic, cone beam, or fan beam). Otherwise the

formulation is the same as 2D.

One important consideration is to model more complex models of density.

If β0 and β1 are smooth, scalar functions defined over the space in which the
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surface model deforms, and g is a binary function, the density model is:

f(x) = β0(x) + (β1(x)− β0(x)) g(x, y). (44)

The first variation of the boundary is simply

dx

dt
= [β1(x)− β0(x)]

N∑
i=1

ei(x)n(x). (45)

Note, this formulation is different from that of Yu and Fessler [95], who address

the problem of reconstruction from noisy tomographic using using a single

density function f with a smoothing term that interacts with a set of deformable

edge models Γ. The edges models are surfaces, represented using level sets. In

that case variational framework for deforming Γ requires differentiation of f

across the edge, precisely where the proposed model exhibits (intentionally) a

discontinuity.

0.6.2.2 Prior

The analysis above maximizes the likelihood. For a full MAP estimation, we

include a prior term. Because we are working with the logarithm of the likeli-

hood, the effect of the prior is additive:

xt = −dEdata

dx
− dEprior

dx
. (46)

Thus in addition to the noise model, we can incorporate some knowledge about

the kinds of shapes that give rise to the measurements. With appropriately

fashioned priors, we can push the solution toward desirable shapes or density

values, or penalize certain shape properties, such as roughness or complexity.

The choice of prior is intimately tied to the choice of surface representation and

the specific application, but is independent of the formulation that describes

the relationship between the estimate and the data, given in (37).

Because the data are noisy and incomplete it is useful to introduce a simple,

low-level prior on the surface estimate. We therefore use a prior that penalizes

surface area, which introduces a second-order smoothing term in the surface

motion. That term introduces a free parameter C, which controls the relative

influence of the smoothing term. The general question of how best to smooth

surfaces remains an important, open question. However, if we restrict ourselves

to curvature-based geometric flows, there are several reasonable options in the
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literature [7, 31, 97]. The following subsection, which describes the surface

representation used for our application, gives a more precise description of our

smoothing methods.

0.6.3 Surface Representation and Prior

Our goal is to build an algorithm that applies to a wide range of potentially

complicated shapes with arbitrary topologies—topologies that could change as

the shapes deform to fit the data. For this reason, we have implemented the

free-form deformation given in (42) with an implicit level set representation.

Substituting the expression for dx/dt (from Equations 45 and 46) into the

ds/dt term of the level set equation (Equation 4a), and recalling that n =

∇φ/|∇φ|, gives

∂φ

∂t
= −|∇φ|

(
M∑
i=1

ei(x) + Cκ(x)

)
, (47)

where κ represents the effect of the prior, which is assumed to be in the normal

direction.

The prior is introduced as a curvature-based smoothing on the level set

surfaces. Thus, every level set moves according to a weighted combination of

the principle curvatures, k1 and k2, at each point. This point-wise motion is in

the direction of the surface normal. For instance, the mean curvature, widely

used for surface smoothing, is H = (k1 + k2)/2. Several authors have proposed

using Gaussian curvature K = k1k2 or functions thereof [97]. Recently [98] have

proposed using the minimum curvature, M = AbsMin(k1, k2) for preserving

thin, tubular structures, which otherwise have a tendency to pinch off under

mean curvature smoothing.

In previous work [41], the authors have proposed a weighted sum of mean

curvatures that emphasizes the minimum curvature, but incorporates a smooth

transition between different surface regions, avoiding the discontinuities (in the

derivative of motion) associated with a strict minimum. The weighted curvature

is

W =
k2
1

k2
1 + k2

2

k2 +
k2
2

k2
1 + k2

2

k1 =
2HK

D2
, (48)

where D =
√

k2
1 + k2

2 is the deviation from flatness [99].

For an implicit surface, the shape matrix [100] is the derivative of the normal

map projected onto the tangent plane of the surface. If we let the normal map
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be n = ∇φ/|∇φ|, the derivative of this is the 3× 3 matrix

N =
(

∂n

∂x

∂n

∂y

∂n

∂z

)T

. (49)

The projection of this derivative matrix onto the tangent plane gives the shape

matrix B = N(I − n⊗ n), where ⊗ is the exterior product and I is the 3× 3

identity matrix. The eigenvalues of the matrix B are k1, k2 and zero, and the

eigenvectors are the principle directions and the normal, respectively. Because

the third eigenvalue is zero, we can compute k1, k2 and various differential

invariants directly from the invariants of B. Thus the weighted-curvature flow

is computing from B using the identities D = ||B||2, H = Tr(B)/2, and K =

2H2 − D2/2. The choice of numerical methods for computing B is discussed

in the following section.

0.6.4 Implementation

The level set equations are solved by finite differences on a discrete grid, i.e.

a volume. This raises several important issues in the implementation. These

issues are the choice of numerical approximations to the PDE, efficient and

accurate schemes for representing the volume, and mechanisms for computing

the sinogram-based deformation in (47).

0.6.4.1 Numerical Schemes

Osher and Sethian [30] have proposed an up-wind method for solving equations

of the form φt = ∇φ ·v, of which φt = |∇φ|
∑

i ei(x), from (47), is an example.

The up-wind scheme utilizes one-sided derivatives in the computation of |∇φ|,
where the direction of the derivative depends, point-by-point, on the sign of the

speed term
∑

i ei(x). With strictly regulated time steps, these scheme avoids

overshooting (ringing) and instability.

Under normal circumstances, the curvature term, which is a directional dif-

fusion, does not suffer from overshooting; it can be computed directly from first-

and second-order derivatives of φ using central difference schemes. However, we

have found that central differences does introduce instabilities when computing

flows that rely on quantities other than the mean curvature. Therefore we use

the method of differences of normals [101, 102] in lieu of central differences.

The strategy is to compute normalized gradients at staggered grid points and
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Figure 20: The shape matrix B is computed by using the differences of stag-

gered normals.

take the difference of these staggered normals to get centrally located approx-

imations to N (as in Figure 0.6.4.1). The normal projection operator n ⊗ n

is computed with gradient estimates from central differences. The resulting

curvatures are treated as speed terms (motion in the normal direction), and

the associated gradient magnitude is computed using the up-wind scheme.

0.6.4.2 Sparse-Field Method

The computational burden associated with solving the 3D, second-order, non-

linear level set PDE is significant. For this reason several papers [34, 35]

have proposed narrow-band methods, which compute solutions only a rela-

tively small set of pixels in the vicinity of k level set. The authors [36] have

proposed a sparse-field algorithm, which uses an approximation to the distance

transform and makes it feasible to recompute the neighborhood of the level

set model at each time step. It computes updates on a band of grid points,

called the active set, that is one point wide. Several layers around this active

set are updated in such a way to maintain a neighborhood in order to calculate

derivatives. The position of the surface model is determined by the set of active
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points and their values.

0.6.4.3 Incremental Projection Updates

The tomographic surface reconstruction problem entails an additional compu-

tational burden, because the measured data must be compared to the projected

model at each iteration. Specifically, computing p̂ij can be a major bottleneck.

Computing this term requires re-computing the sinogram of the surface/object

model as it moves. In the worst case, we would re-project the entire model

every iteration.

To address this computational concern, we have developed the method of

incremental projection updates (IPU). Rather than fully recompute p̂ at every

iteration, we maintain a current running version of p̂ and update it to reflect

the changes in the model as it deforms. Changes in the model are computed

only on a small set of grid points in the volume, and therefore the update time

is proportional to the area of the surface, rather than the size of the volume it

encloses.

The IPU strategy works with the the sparse-field algorithm as follows. At

each iteration, the sparse-field algorithm updates only the active layer (one

voxel wide) and modifies the set of active grid points as the surface moves.

The incremental projection update strategy takes advantage of this to selec-

tively update the model projection to reflect those changes. At each iteration,

the amount of change in an active point’s value determines the motion of that

particular surface point as well as the percentage of the surrounding voxel that

is either inside or outside of the surface. By the linearity of projection, we can

map these changes in the object shape, computed at grid points along the sur-

face boundary, back into the sinogram space and thereby incrementally update

the sinogram. Notice that each 3D grid point has a weighting coefficient (these

are precomputed and fixed), which is determined by its geometric mapping of

the surrounding voxel back into the sinogram, as in Figure 21. In this way the

IPU method maintains sub-voxel accuracy at a relatively low computational

cost.

0.6.4.4 Initialization

The deformable model fitting approach requires an initial model, i.e. φ(x, t =

0). This initial model should be obtained using the “best” information available
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Figure 21: A weighting coefficient for each voxel determines the portions of the

discrete sinogram influenced by incremental changes to a grid point.

prior to the surface fitting. In some cases this will mean thresholding a greyscale

reconstruction, such as FBP, knowing that it has artifacts. In practice the

initial surface estimate is impacted by the reconstruction method and the choice

of threshold, and because we perform a local minimization, these choices can

affect the final result. Fortunately, the proposed formulation is moderately

robust with respect to the initial model, and our results show that the method

works well under a range of reasonable initialization strategies.

0.6.5 Results

0.6.5.1 Transmission Electron Microscopy

Transmission electron microscopy is the process of using transmission images of

electron beams to reveal biological structures on very small dimensions. Typi-

cally TEM datasets are produced using a dye that highlights regions of interest,

e.g. the interior of a microscopic structure, such as a cell (see Figure 0.6.5.1a).

There are technical limits to the projection angles from which data can be

measured. These limits are due to the mechanical apparatus used to tilt the

specimens and the trade off between the destructive effects of electron energy

and the effective specimen thickness, which increases with tilt angle. Usually,

the maximum tilt angle is restricted to about ±60–70 degrees. Figure 0.6.5.1b

shows an illustration of the geometry of this limited-angle scenario. The TEM
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Figure 22: a) Transmission electron microscopy is used to image very small

specimens that have been set apart from the substrate by a contrast agent. b)

TEM imaging technology provides projections over a limited set of angles.

reconstruction problem is further aggravated by the degree of electron scatter-

ing, which results in projection images (sinograms) that are noisy relative to

many other modalities, e.g. X-ray CT. Finally, due to the flexible nature of

biological objects and the imperfections in the tilting mechanism, the objects

undergo some movements while being tilted. Manual alignment procedures

used to account for this tend to produce small misregistration errors.

We applied the proposed algorithm to 3D TEM data obtained from a 3

MeV electron microscope. This 3D dataset consists of 67 tilt series images,

each corresponding to one view of the projection. Each tilt series image is of

size 424x334. The volume reconstructed by FBP is of size 424x424x334. Figure

23a and 23b show the sinogram corresponding to a single slice of this dataset

and the estimate of the same sinogram created by the method. Figure 23e

shows the surface estimate intersecting this slice overlaid on the back projected

slice. Some structures not seen in the back projection are introduced in the

final estimation, but the orientation of the structures introduced suggests that

these are valid features that were lost due to reconstruction artifacts from the

FBP. Also, the proposed method captures line-by-line brightness variations in

the input sinogram (as explained in section 0.6.2.1). This suggests that the

density estimation procedure is correct.

Figure 24 shows the 3D initialization and the final 3D surface estimate. The

figure also shows enlarged initial and final versions of a small section of the sur-

face. Computing the surface estimate for the TEM dendrite with 150 iterations
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Figure 23: 2D slice of dendrite data: (a) Sinogram of one slice (b) Sinogram

estimated by the proposed method (c) Back projection showing artifacts (d)

Initial model obtained by thresholding the back projection (white curve overlaid

on the back projection) (e) Final surface estimate.

took approximately 3 hours on a single 300MHz processor of a Silicon Graph-

ics Onyx2 workstation. We consider these results positive for several reasons.

First, the biology is such that one expects the spines (small protrusions) to be

connected to the dendrite body. The proposed method clearly establishes those

connections, based soley on consistency of the model with the projected data.

The second piece of evidence is the shapes of the spines themselves. The re-

constructed model shows the recurrence of a characteristic shape—a long thin

spine with a cup-like structure on the end. This characteristic structure, which

often fails to show up in the FBP reconstruction, does appear quite regularly

in hand-segmentations of the same datasets.

0.6.5.2 Sinogram Extrapolation

The fitting of surfaces to this data is a simplification. It is justified in the con-

text of segmentation, but there are underlying inhomogeneities in the density of

this specimen, which could be indicative of relevant structures. Thus for some

applications direct visualization of the measured data, by volume rendering,

offers advantages over the segmented surfaces. We propose to use the surface

estimation algorithm as a mechanism for estimating the missing data in the

sinograms.
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(a) (c)

(b) (d)

Figure 24: 3D results: (a) Surface initialization (b) Final surface estimated after

150 iterations (c) A portion of the initial surface enlarged (d) The corresponding

portion in the final surface

Figure 25a and 25b show the input sinogram and the sinogram of the esti-

mated model (for one slice) of the TEM dendrite data. The estimated sinogram

demonstrates that the surface estimation method recovers the missing informa-

tion in a reasonable way. Thus, we combine the sinograms from the model with

original sinograms to produce a “full” sinogram that still contains all of the

orginal, measured data. FBP reconstructions from such augmented sinograms

should have fewer limited-angle streak artifacts.

We demonstrate this by comparing volume renderings with and without

the augmentation. We create augmented sinograms by using sinogram data

from the estimated model only where the data is missing from the measured

sinograms. The augmented sinogram for a single slice is shown in Figure 25c.

The slice reconstructed (FBP) from the augmented sinogram is shown in Fig-

ure 25d. Note that this reconstructed slice does not contain the limited-angle

artifacts that appear in the slice in Figure 23c. Maximum intensity projection

(MIP) volume renderings of the volume created from original sinograms and
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(a) (b) (c) (d)

Figure 25: Sinogram extrapolation for slice number 150 of dendrite data: (a) In-

put sinogram (b) Sinogram estimated by the proposed method (c) Augmented

sinogram constructed using original data and estimating missing data from the

segmentation (d) FBP reconstruction of the augmented sinogram.

the volume created from augmented sinograms are compared in Figure 26. The

main body of the dendrite, which exhibited a very convoluted and fuzzy bound-

ary, shows better definition. Also, several of the spines which were dangling in

the original reconstruction are now connected.

Conclusions

This chapter has described a level set segmentation framework and the pre-

processing and data analysis techniques needed for a number of segmentation

applications. Several standard volume processing algorithms have been incor-

porated into the framework in order to segment datasets generated from MRI,

CT and TEM scans. A technique based on moving least-squares has been

developed for segmenting multiple non-uniform scans of a single object. New

scalar measures have been defined for extracting structures from diffusion ten-

sor MRI scans. Finally, a direct approach to the segmentation of incomplete

tomographic data using density parameter estimation is described. These tech-

niques, combined with level set surface deformations, allow us to segment many

different types of biological volume datasets.
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(a) (c)

(b) (d)

Figure 26: Sinogram extrapolation results: (a) MIP volume rendering of volume

reconstructed from original sinograms (b) MIP volume rendering of volume re-

constructed from augmented (extrapolated) sinograms (c) A portion of original

MIP enlarged (d) The corresponding portion in augmented MIP enlarged
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Abstract

We present a physically based method for modeling and animating
fire. Our method is suitable for both smooth (laminar) and turbulent
flames, and it can be used to animate the burning of either solid or
gas fuels. We use the incompressible Navier-Stokes equations to
independently model both vaporized fuel and hot gaseous products.
We develop a physically based model for the expansion that takes
place when a vaporized fuel reacts to form hot gaseous products,
and a related model for the similar expansion that takes place when
a solid fuel is vaporized into a gaseous state. The hot gaseous prod-
ucts, smoke and soot rise under the influence of buoyancy and are
rendered using a blackbody radiation model. We also model and
render the blue core that results from radicals in the chemical reac-
tion zone where fuel is converted into products. Our method allows
the fire and smoke to interact with objects, and flammable objects
can catch on fire.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
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1 Introduction

The modeling of natural phenomena such as fire and flames remains
a challenging problem in computer graphics. Simulations of fluid
behavior are in demand for special effects depicting smoke, wa-
ter, fire and other natural phenomena. Fire effects are especially
in demand due to the dangerous nature of this phenomenon. Fire
simulations are also of interest for virtual reality effects, for exam-
ple to help train fire fighters or to determine proper placement of
exit signs in smoke filled rooms (i.e. so they can be seen). The
interested reader is referred to [Rushmeier 1994].

Combustion processes can be loosely classified into two rather
distinct types of phenomena: detonations and deflagrations. In both
of these processes, chemical reactions convert fuel into hot gaseous
products. Deflagrations are low speed events such as the fire and

Figure 1:A turbulent gas flame model of a flamethrower.

flames we address in this paper, while detonations are high speed
events such as explosions where shock waves and other compress-
ible effects are important, see e.g. [Yngve et al. 2000] and [Neff and
Fiume 1999]. As low speed events, deflagrations can be modeled
using the equations for incompressible flow (as opposed to those for
compressible flow). Furthermore, since viscous effects are small,
we use the incompressible inviscid Euler equations similar to [Fed-
kiw et al. 2001]. As noted therein, these equations can be solved
efficiently using a semi-Lagrangian stable fluid approach, see e.g.
[Staniforth and Cote 1991] and [Stam 1999].

An important, often neglected aspect of fire and flame modeling
concerns the expansion of the fuel as it reacts to form hot gaseous
products. This expansion is the reason for the visual fullness ob-
served in many flames and is partly responsible for the visual tur-
bulence as well. Since the incompressible equations do not account
for expansion, we propose a simple thin flame model for capturing
these effects. This is accomplished by using an implicit surface to
represent the reaction zone where the gaseous fuel is converted into
hot gaseous products. Although real reaction zones have a nonzero
(but small) thickness, the thin flame approximation works well for
visual modeling and has been used by scientists as well, see for
example [Markstein 1964] who first proposed this methodology.

Our implementation of the thin flame model is as follows. First,
a dynamic implicit surface is used to track the reaction zone where
the gaseous fuel is converted into hot gaseous products. Then both
the gaseous fuel and the hot gaseous products are separately mod-
eled using independent sets of incompressible flow equations. Fi-
nally, these incompressible flow equations are updated together in
a coupled fashion using the fact that both mass and momentum
must be conserved as the gas reacts at the interface. While this
gives rather pleasant looking laminar (smooth) flames, we include a
vorticity confinement term, see [Steinhoff and Underhill 1994] and
[Fedkiw et al. 2001], to model the larger scale turbulent flame struc-
tures that are difficult to capture on the relatively coarse grids used
for efficiency reasons in computer graphics simulations. We also
include other features important for visual simulation, such as the
buoyancy effects generated by hot gases and the interaction of fire
with flammable and nonflammable objects. We render the fire as
a participating medium with blackbody radiation using a stochastic
ray marching algorithm. In our rendering we pay careful attention



Figure 2: Flame temperature profile for a solid (or gaseous) fuel.

to the chromatic adaptation of the observer in order to get the cor-
rect colors of the fire.

2 Previous Work

A simple laminar flame was texture mapped onto a flame-like im-
plicit primitive and then volume-traced by [Inakage 1989]. [Perry
and Picard 1994] applied a velocity spread model from combus-
tion science to propagate flames. [Chiba et al. 1994] computed
the exchange of heat between objects by projecting the environ-
ment onto a plane. The spread of flame was a function of both
the temperature and the concentration of fuel. [Stam and Fiume
1995] present a similar model in three spatial dimensions for the
creation, extinguishing and spread of fire. The spread of the fire
is controlled by the amount of fuel available, the geometry of the
environment and the initial conditions. Their velocity field is pre-
defined, and then the temperature and density fields are advected
using an advection-diffusion type equation. They render the fire
using a diffusion approximation which takes into account multiple
scattering. [Bukowski and Sequin 1997] integrated the Berkeley
Architectural Walkthrough Program with the National Institute of
Standards and Technology’s CFAST fire simulator. The integrated
system creates a simulation based design environment for building
fire safety systems.

Although we do not consider high-speed combustion phenom-
ena such as detonations in this paper, there has been some notable
work on this subject. [Musgrave 1997] concentrated on the explo-
sive cloud portion of the explosion event using a fractal noise ap-
proach. [Neff and Fiume 1999] model and visualize the blast wave
portion of an explosion based on a blast curve approach. [Mazarak
et al. 1999] discuss the elementary blast wave equations, which
were used to model exploding objects. They also show how to
incorporate the blast wave model with a rigid body motion simu-
lator to produce realistic animation of flying debris. Most recently,
[Yngve et al. 2000] model the propagation of an explosion through
the surrounding air using a computational fluid dynamics based ap-
proach to solve the equations for compressible, viscous flow. Their
system includes two way coupling between solid objects and sur-
rounding fluid, and uses the spectacular brittle fracture technology
of [O’Brien and Hodgins 1999]. While the compressible flow equa-
tions are useful for modeling shock waves and other compressible
phenomena, they introduce a very strict time step restriction asso-
ciated with the acoustic waves. We use the incompressible flow
equations instead to avoid this restriction making our method more
computationally efficient.

3 Physically Based Model

We consider three distinct visual phenomena associated with
flames. The first of these is the blue or bluish-green core seen

Figure 3: The hot gaseous products and soot emit blackbody
radiation that illuminates the smoke.

in many flames. These colors are emission lines from intermedi-
ate chemical species, such as carbon radicals, produced during the
chemical reaction. In the thin flame model, this thin blue core is
located adjacent to the implicit surface. Therefore, in order to track
this blue core, we need to track the movement of the implicit sur-
face. The second visual phenomenon is the blackbody radiation
emitted by the hot gaseous products, in particular the carbon soot.
This is characterized by the yellowish-orange color we associate
with fire. In order to model this with visual accuracy we need to
track the temperatures associated with a flame as depicted in figure
2 (read from left to right). If the fuel is solid or liquid, the first step
is the heating of the solid until it undergoes a phase change to the
gaseous state. (Obviously, for gas fuels, we start in this gaseous
state region in the figure.) Then the gas heats up until it reaches its
ignition temperature corresponding to our implicit surface and the
beginning of the thin blue core region. The temperature continues
to increase as the reaction proceeds reaching a maximum before
radiative cooling and mixing effects cause the temperature to de-
crease. As the temperature decreases, the blackbody radiation falls
off until the yellowish-orange color is no longer visible. The third
and final visual effect we address is the smoke or soot that is appar-
ent in some flames after the temperature cools to the point where
the blackbody radiation is no longer visible. We model this effect
by carrying along a density variable in a fashion similar to the tem-
perature. One could easily add particles to represent small pieces of
soot, but our focus in this paper is the fire, not the smoke. For more
details on smoke, see [Foster and Metaxas 1997], [Stam 1999] and
[Fedkiw et al. 2001]. Figure 3 shows smoke coupled to our gas
flame.

3.1 Blue Core

Our implicit surface separates this gaseous fuel from the hot
gaseous products and surrounding air. Consider for example the
injection of gaseous fuel from a cylindrically shaped tube. If the
fuel were not burning, then the implicit surface would simply move
at the same velocity as the gaseous fuel being injected. However,
when the fuel is reacting, the implicit surface moves at the veloc-
ity of the unreacted fuel plus a flame speedS that indicates how
fast fuel is being converted into gaseous products.S indicates how
fast the unreacted gaseous fuel is crossing over the implicit surface
turning into hot gaseous products. The approximate surface area of
the blue core,AS, can be estimated with the following equation

vf Af = SAS, (1)



Figure 4: Blue reaction zone cores for large (left) and small
(right) values of the flame reaction speedS. Note the increased
turbulence on the right.

wherevf is the speed the fuel is injected across the injection sur-
face with areaAf , e.g.Af is the cross section of the cylindrical tube.
This equation results from canceling out the density in the equation
for conservation of mass. The left hand side is the fuel being in-
jected into the region bounded by the implicit surface, and the right
hand side is the fuel leaving this region crossing over the implicit
surface as it turns into gaseous products. From this equation, we see
that injecting more (less) gas is equivalent to increasing (decreas-
ing) vf resulting in a larger (smaller) blue core. Similarly, increas-
ing (decreasing) the reaction speedS results in a smaller (larger)
blue core. While we can turn the velocity up or down on our cylin-
drical jet, the reaction speedSis a property of the fuel. For example,
S is approximately.44m/s for a propane fuel that has been suitably
premixed with oxidizer [Turns 1996]. (We useS= .5m/s for most
of our examples.) Figure 4 shows the effect of varying the param-
eterS. The smaller value ofSgives a blue core with more surface
area as shown in the figure.

This thin flame approximation is fairly accurate for premixed
flames where the fuel and oxidizer are premixed so that the injected
gas is ready for combustion. Non-premixed flames, commonly re-
ferred to as diffusion flames, behave somewhat differently. In a
diffusion flame, the injected fuel has to mix with a surrounding ox-
idizer before it can combust. Figure 5 shows the injection of fuel
out of a cylindrically shaped pipe. The cone shaped curve is the
predicted location of the blue core for a premixed flame while the
larger rounded curve is the predicted location of the blue core for
a diffusion flame. As can be seen in the figure, diffusion flames
tend to have larger cores since it takes a while for the injected fuel
and surrounding oxidizer to mix. This small-scale molecular diffu-
sion process is governed by a second order partial differential equa-
tion that is computationally costly model. Thus for visual purposes,

Figure 5: Location of the blue reaction zone core for a premixed
flame versus a diffusion (non-premixed) flame

Figure 6: Streamlines illustrating the path of individual fluid
elements as they across the blue reaction zone core. The curved
path is caused by the expansion of the gas as it reacts.

we model diffusion flames with larger blue cores simply by using
a smaller value ofS than that used for a corresponding premixed
flame.

3.2 Hot Gaseous Products

In order to get the proper visual look for our flames, it is important
to track individual elements of the flow and follow them through
their temperature histories given by figure 2. This is particularly dif-
ficult because the gas expands as it undergoes reaction from fuel to
hot gaseous products. This expansion is important to model since it
changes the trajectories of the gas and the subsequent look and feel
of the flame as individual elements go through their temperature
profile. Figure 3.2 shows some sample trajectories of individual el-
ements as they cross over the reaction front. Note that individual
elements do not go straight up as they pass through the reaction
front, but instead turn outward due to the effects of expansion. It
is difficult to obtain visually full turbulent flames without modeling
this expansion effect. In fact, many practitioners resort to a num-
ber of low level hacks (and lots of random numbers) in an attempt
to sculpt this behavior, while we obtain the behavior intrinsically
by using the appropriate model. The expansion parameter is usu-
ally given as a ratio of densities,ρ f /ρh whereρ f is the density of
the gaseous fuel andρh is the density of the hot gaseous products.
Figure 7 shows three flames side by side with increasing amounts
of expansion from left to right. Note how increasing the expansion
makes the flames appear fuller. We usedρ f = 1kg/m3 (about the
density of air) for all three flames withρh = .2kg/m3, .1kg/m3 and
.05kg/m3 from left to right.

We use one set of incompressible flow equations to model the
fuel and a separate set of incompressible flow equations to model
the hot gaseous products and surrounding airflow. We require a
model for coupling these two sets of incompressible flow equations
together across the interface in a manner that models the expansion
that takes place across the reaction front. Given that mass and mo-

Figure 7: Comparison of flame shapes for differing degrees of
gaseous expansion. The amount of expansion increases from
left to right making the flame appear fuller and more turbulent.



mentum are conserved we can derive the following equations for
the coupling across the thin flame front:

ρh(Vh−D) = ρ f (Vf −D), (2)

ρh(Vh−D)2 + ph = ρ f (Vf −D)2 + pf , (3)

whereVf andVh are the normal velocities of the fuel and the hot
gaseous products, andpf and ph are their pressures. Here,D =
Vf −S is the speed of the implicit surface in the normal direction.
These equations indicate that both the velocity and the pressure are
discontinuous across the flame front. Thus, we will need to exercise
caution when taking derivatives of these quantities as is required
when solving the incompressible flow equations. (Note that the
tangential velocities are continuous across the flame front.)

3.3 Solid Fuels

When considering solid fuels, there are two expansions that need to
be accounted for. Besides the expansion across the flame front, a
similar expansion takes place when the solid is converted to a gas.
However,S is usually relatively small for this reaction (most solids
burn slowly in a visual sense), so we can use the boundary of the
solid fuel as the reaction front. Since we do not currently model the
pressure in solids, only equation 2 applies. We rewrite this equation
as

ρ f (Vf −D) = ρs(Vs−D), (4)

whereρs andVs are the density and the normal velocity of the solid
fuel. SubstitutingD = Vs−Sand solving forVf gives

Vf = Vs+
(
ρs/ρ f −1

)
S (5)

indicating that the gasified solid fuel moves at the velocity of the
solid fuel plus a correction that accounts for the expansion. We
model this phase change by injecting gas out of the solid fuel at
the appropriate velocity. This can be used to set arbitrary shaped
solid objects on fire as long as they can be voxelized with a suitable
surface normal assigned to each voxel indicating the direction of
gaseous injection.

In figure 8, we simulate a campfire using two cylindrically
shaped logs as solid fuel injecting gas out of the logs in a direc-
tion consistent with the local unit surface normal. Note the realistic
rolling of the fire up from the base of the log. The ability to inject
(or not inject) gaseous fuel out of individual voxels on the surface of
a complex solid object allows us to animate objects catching on fire,
burn different parts of an object at different rates or not at all (by us-
ing spatially varying injection velocities), and extinguish solid fuels
simply by turning off the injection velocity. While building an an-
imation system that allows the user to hand paint temporally and
spatially varying injection velocities on the surface of solid objects
is beyond the scope of this paper, it is the subject of future work.

4 Implementation

We use a uniform discretization of space intoN3 voxels with uni-
form spacingh. The implicit surface, temperature, density and pres-
sure are defined at the voxel centers and are denotedφi, j,k, Ti, j,k,
ρi, j,k andpi, j,k wherei, j,k = 1, · · · ,N. The velocities are defined at
the cell faces and we use half-way index notation:ui+1/2, j,k where
i = 0, · · · ,N and j,k = 1, · · · ,N; vi, j+1/2,k where j = 0, · · · ,N and
i,k = 1, · · · ,N; wi, j,k+1/2 wherek = 0, · · · ,N andi, j = 1, · · · ,N.

Figure 8:Two burning logs are placed on the ground and used
to emit fuel. The crossways log on top is not lit so the flame is
forced to flow around it.

4.1 Level Set Equation

We track our reaction zone (blue core) using the level set method
of [Osher and Sethian 1988] to track the moving implicit surface.
We defineφ to be positive in the region of space filled with fuel,
negative elsewhere and zero at the reaction zone.

The implicit surface moves with velocityw = u f + Sn where
u f is the velocity of the gaseous fuel and theSn term governs the
conversion of fuel into gaseous products. The local unit normal,
n = ∇φ/|∇φ | is defined at the center of each voxel using central
differencing to approximate the necessary derivatives, e.g.φx ≈
(φi+1, j,k−φi−1, j,k)/2h. Standard averaging of voxel face values is
used to defineu f at the voxel centers, e.g.ui, j,k = (ui−1/2, j,k +
ui+1/2, j,k)/2. The motion of the implicit surface is defined through

φt =−w ·∇φ (6)

and solved at each grid point using

φ
new= φ

old−∆t
(
w1φx +w2φy +w3φz

)
(7)

and an upwind differencing approach to estimate the spatial deriva-
tives. For example, ifw1 > 0, φx ≈ (φi, j,k−φi−1, j,k)/h. Otherwise
if w1 < 0, φx ≈ (φi+1, j,k− φi, j,k)/h. This simple approach is effi-
cient and produces visually appealing blue cores.

To keep the implicit surface well conditioned, we occasionally
adjust the values ofφ in order to keepφ a signed distance function
with |∇φ | = 1. First, interpolation is used to reset the values ofφ

at voxels adjacent to theφ = 0 isocontour (which we don’t want to



move since it is the visual location of the blue core). Then we march
out from the zero isocontour adjusting the values ofφ at the other
grid points as we cross them. [Tsitsiklis 1995] showed that this
could be accomplished in an accurate, optimal and efficient manner
solving quadratic equations and sorting points with a binary heap
data structure. Later, [Sethian 1996] proposed the finite difference
formulation of this algorithm that we currently use.

4.2 Incompressible Flow

We model the flow of the gaseous fuel and the hot gaseous products
using a separate set of incompressible Euler equations for each. In-
compressibility is enforced through conservation of mass (or vol-
ume), i.e. ∇ · u = 0 whereu = (u,v,w) is the velocity field. The
equations for the velocity

ut =−(u ·∇)u−∇p/ρ + f (8)

are solved for in two parts. First, we use this equation to compute
an intermediate velocityu∗ ignoring the pressure term, and then we
add the pressure (correction) term using

u = u∗−∆t∇p/ρ. (9)

The key idea to this splitting method is illustrated by taking the
divergence of equation 9 to obtain

∇ ·u = ∇ ·u∗−∆t∇ · (∇p/ρ) (10)

and then realizing that we want∇ ·u = 0 to enforce mass conserva-
tion. Thus the left hand side of equation 10 should vanish leaving a
Poisson equation of the form

∇ · (∇p/ρ) = ∇ ·u∗/∆t (11)

that can be solved to find the pressure needed for updating equation
9.

We use a semi-Lagrangian stable fluids approach for finding the
intermediate velocityu∗ and refer the reader to [Stam 1999] and
[Fedkiw et al. 2001] for the details. Since we use two sets of incom-
pressible flow equations, we need to address the stable fluid update
when a characteristic traced back from one set of incompressible
flow equations crosses the implicit surface and queries the veloci-
ties from the other set of incompressible flow equations. Since the
normal velocity is discontinuous across the interface, the straight-
forward stable fluids approach fails to work. Instead, we need to
use the balance equation 2 for conservation of mass to correctly
interpolate a velocity.

Suppose we are solving for the hot gaseous products and we in-
terpolate across the interface into a region where a velocity from the
gaseous fuel might incorrectly be used. Instead of using this value,
we compute a ghost value as follows. First, we compute the normal
velocity of the fuel,Vf = u f ·n. Then we use the balance equation
2 to find a ghost value forVG

h as

VG
h = Vf +

(
ρ f /ρh−1

)
S. (12)

Since the tangential velocities are continuous across the implicit
surface, we combine this new normal velocity with the existing tan-
gential velocity to obtain

uG
h = VG

h n+u f − (u f ·n)n (13)

as a ghost value for the velocity of the hot gaseous products in the
region where only the fuel is defined. This ghost velocity can then
be used to correctly carry out the stable fluids update. Since both
n andu f are defined throughout the region occupied by the fuel,
andρ f , ρh andS are known constants, a ghost cell value for the

hot gaseous products,uG
h , can be found anywhere in the fuel region

(even quite far from the interface) by simply algebraically evaluat-
ing the right hand side of equation 13. [Nguyen et al. 2001] showed
that this ghost fluid method, invented in [Fedkiw et al. 1999], could
be used to compute physically accurate engineering simulations of
deflagrations.

After computing the intermediate velocityu∗ for both sets of in-
compressible flow equations, we solve equation 11 for the pressure
and finally use equation 9 to find our new velocity field. Equation
11 is solved by assembling and solving a linear system of equations
for the pressure as discussed in more detail in [Foster and Fedkiw
2001] and [Fedkiw et al. 2001]. Once again, we need to exercise
caution here since the pressure is discontinuous across the inter-
face. Using the ghost fluid method and equation 3, we can obtain
and solve a slightly modified linear system incorporating this jump
in pressure. We refer the reader to [Nguyen et al. 2001] for ex-
plicit details and a demonstration of the physical accuracy of this
approach in the context of deflagration waves.

The temperature affects the fluid velocity as hot gases tend to
rise due to buoyancy. We use a simple model to account for these
effects by defining external forces that are directly proportional to
the temperature

fbuoy= α (T−Tair )z, (14)

wherez = (0,0,1) points in the upward vertical direction,Tair is
the ambient temperature of the air andα is positive constant with
the appropriate units.

Fire, smoke and air mixtures contain velocity fields with large
spatial deviations accompanied by a significant amount of rota-
tional and turbulent structure on a variety of scales. Nonphysical
numerical dissipation damps out these interesting flow features, so
we aim to add them back on the coarse grid. We use the vorticity
confinement technique invented by Steinhoff (see e.g. [Steinhoff
and Underhill 1994]) and used by [Fedkiw et al. 2001] to generate
the swirling effects for smoke. The first step in generating the small
scale detail is to identify the vorticityω = ∇×u as the source of this
small scale structure. Each small piece of vorticity can be thought
of as a paddle wheel trying to spin the flow field in a particular di-
rection. Normalized vorticity location vectors,N = ∇|ω|/|∇|ω||
simply point from lower concentrations of vorticity to higher con-
centrations. Using these, the magnitude and direction of the vortic-
ity confinement (paddle wheel) force is computed as

fcon f = εh(N×ω) , (15)

whereε > 0 and is used to control the amount of small scale detail
added back into the flow field. The dependence onh guarantees
that as the mesh is refined the physically correct solution is still
obtained. All these quantities can be evaluated in a straightforward
fashion as outlined in [Fedkiw et al. 2001].

Usually a standard CFL time step restriction dictates that the
time step4t should be limited by4t < h/|u|maxwhere|u|max is the
maximum velocity in the flow field. While this is true for our level
set equation 6 withu replaced byw, the combination of the semi-
Lagrangian discretization and the ghost fluid method allows us to
take a much larger time step for the incompressible flow equations.
We choose our incompressible flow time step to be about five times
bigger than that dictated by applying the CFL condition to the level
set equation, and then stably updateφ using substeps. This reduces
the number of times one needs to solve for the pressure, which is
the most expensive part of the calculation, by a factor of five.

4.3 Temperature and Density

The temperature profile has great effect on how we visually per-
ceive flames, and we need to generate a temperature time history
for fluid elements that behaves as shown in figure 2. Since this fig-
ure depicts a time history of the temperature of fluid elements, we



need a way to track individual fluid elements as they cross over the
blue core and rise upward due to buoyancy. In particular, we need to
know how much time has elapsed since a fluid element has passed
through the blue core so that we can assign an appropriate temper-
ature to it. This is easily accomplished using a reaction coordinate
variableY governed by the equation

Yt =−(u ·∇)Y−k, (16)

wherek is a positive constant which we take to be 1 (larger or
smaller values can be used to get a good numerical variation ofY
in the flame). Ignoring the convection term,Yt =−1 can be solved
exactly to obtainY(t) =−t +Y(0). If we setY(0) = 1 in the region
of space occupied by the gaseous fuel and solve equation 16 forY,
then the local value of 1−Y is equal to the total time elapsed since
a fluid element crossed over the blue reaction core.

We solve equation 16 using the semi-Lagrangian stable fluids
method to first update the convection term obtaining an intermedi-
ate valueY∗. Then we separately integrate the source term analyti-
cally so it too is stable for large time steps, i.e.Ynew=−k∆t +Y∗.

We can now use the values ofY to assign temperature values
to the flow. SinceTignition is usually below the visual blackbody
emission threshold, the temperature we set inside the blue core is
usually not important. Therefore, we can setT = Tignition for the
points inside the blue core. The region between the blue core and
the maximum temperature in figure 2 is important since it models
the rise in temperature due to the progress of a complex chemical
reaction (which we do not model for the sake of efficiency). Here
the animator has a lot of freedom to sculpt temperature rise curves
and adjust how the mapping corresponds to the localY values. For
example, one could useT = Tignition atY = 1, T = Tmax atY = .9
and use a linear temperature function for the in between values of
Y ∈ (.9,1). For large flames, this temperature rise interval will be
compressed too close to the blue core for our grid to resolve. In
these instances we use the ghost fluid method to setT = Tmax for
any characteristic that looks across the blue core into the gaseous
fuel region. The blue core then “spits” out gas at the maximum
temperature that immediately starts to cool off, i.e. there is no tem-
perature rise region. In fact, we did not find it necessary to use
the temperature rise region in our examples as we are interested in
larger scale flames, but this temperature rise region would be useful,
for example, when modeling candle.

The animator can also sculpt the temperature falloff region to
the right of figure 2. However, there is a physically correct, viable
(i.e. computationally cheap) alternative. For the values ofY in the
temperature falloff region, we simply solve

Tt =−(u ·∇)T−cT

(
T−Tair

Tmax−Tair

)4

(17)

which is derived from conservation of energy. Similar to equation
16, we solve this equation by first using the semi-Lagrangian stable
fluids method to solve for the convection term. Then we integrate
the fourth power term analytically to cool down the flame at a rate
governed by the cooling constantcT .

Similar to the temperature curve in figure 2, the animator can
sculpt a density curve for smoke and soot formation. The density
should start low and increase as the reaction proceeds. In the tem-
perature falloff region, the animator can switch from the density
curve to a physically correct equation

ρt =−(u ·∇)ρ (18)

that can (once again) be solved using the semi-Lagrangian stable
fluids method. Again, we did not find it necessary to sculpt densities
for our particular examples.

5 Rendering of Fire

Fire is a participating medium. It is more complex than the types
of participating media (e.g. smoke and fog) that are typically en-
countered in computer graphics since fire emits light. The region
that creates the light-energy typically has a complex shape, which
makes it difficult to sample. Another complication with fire is that
the fire is bright enough that our eyes adapt to its color. This chro-
matic adaptation is important to account for when displaying fire
on a monitor. In this section, we will first describe how we simulate
the scattering of light within a fire-medium. Then, we will detail
how to properly integrate the spectral distribution of power in the
fire and account for chromatic adaptation.

5.1 Light Scattering in a Fire Medium

Fire is a blackbody radiator and a participating medium. The prop-
erties of a participating medium are described by the scattering, ab-
sorption and emission properties. Specifically, we have the scatter-
ing coefficient,σs, the absorption coefficient,σa, and the extinction
coefficient,σt = σa +σs. These coefficients specify the amount of
scattering, absorption and extinction per unit-distance for a beam of
light moving through the medium. The spherical distribution of the
scattered light at a location is specified by a phase-function,p. We
use the Henyey-Greenstein phase-function [Henyey and Greenstein
1941]

p(~ω ·~ω ′) =
1−g2

4π(1+g2−2g~ω ·~ω ′)1.5 . (19)

Here,g∈ [−1,1] is the scattering anisotropy of the medium,g > 0
is forward scattering,g < 0 is backward scattering, whileg = 0 is
isotropic scattering. Note that the distribution of the scattered light
only depends on the angle between the incoming direction,~ω, and
the outgoing direction,~ω ′.

Light transport in participating media is described by an integro-
differential equation, the radiative transport equation [Siegel and
Howell 1981]:

(~ω ·∇)Lλ (x, ~ω) = −σt(x)Lλ (x, ~ω)+

σs(x)
∫

4π

p(~ω, ~ω ′)Lλ (x, ~ω ′)d~ω ′+

σa(x)Le,λ (x, ~ω). (20)

Here,Lλ is the spectral radiance, andLe,λ is the emitted spectral
radiance. Note thatσs, σa, andσt vary throughout the medium and
therefore depend on the positionx.

We solve Equation 20 to estimate the radiance distribution in
the medium by using a stochastic adaptive ray marching algorithm
which recursively samples multiple scattering. In highly scatter-
ing media this approach is costly; however, we are concerned about
fire which is a blackbody radiator (no scattering, only absorption)
that creates a low-albedo smoke (the only scattering part of the fire-
medium). This makes the Monte Carlo ray tracing approach practi-
cal.

To estimate the radiance along a ray traversing the medium, we
split the ray into short segments. For a given segment,n, the scat-
tering properties of the medium are assumed constant, and the radi-
ance,Ln, at the start of the segment is computed as:

Ln,λ (x, ~ω) = e−σt ∆xL(n−1),λ (x+∆x, ~ω)+

Lλ (x, ~ω ′)p(~ω ·~ω ′)σs∆x+
σaLe,λ (x)∆x. (21)

This equation is evaluated recursively to compute the total radiance
at the origin of the ray.∆x is the length of the segment,Ln−1 is the
radiance at the beginning of the next segment, and~ω ′ is a sample



Figure 9:A metal ball passes through and interacts with a gas
flame.

direction for a new ray that evaluates the indirect illumination in a
given direction for the segment. We find the sample direction by
importance sampling the Henyey-Greenstein phase function. Note
that we do not explicitly sample the fire volume; instead we rely
on the Monte Carlo sampling to pick up energy as sample rays hit
the fire. This strategy is reasonably efficient in the presence of the
low-albedo smoke generated by the fire.

The emitted radiance is normally ignored in graphics, but for fire
it is an essential component. For a blackbody we can compute the
emitted spectral radiance using Planck’s formula:

Le,λ (x) =
2C1

λ 5(eC2/(λT)−1)
, (22)

whereT is the temperature,C1 ≈ 3.7418· 10−16Wm2, andC2 ≈
1.4388· 10−2m

o
K [Siegel and Howell 1981]. In the next section,

we will describe how to properly render fire taking this spectral
distribution of emitted radiance into account.

5.2 Reproducing the Color of Fire

Accurately reproducing the colors of fire is critical for a realistic fire
rendering. The full spectral distribution can be obtained directly by
using Planck’s formula for spectral radiance when performing the
ray marching. This spectrum can then be converted to RGB before
being displayed on a monitor. To get the right colors of fire out of
this process it is necessary to take into account the fact that our eyes
adapt to the spectrum of the fire.

To compute the chromatic adaptation for fire, we use a von Kries
transformation [Fairchild 1998]. We assume that the eye is adapted
to the color of the spectrum for the maximum temperature present in
the fire. We map the spectrum of this white point to the LMS cone
responsivities (Lw, Mw, Sw). This enables us to map a spectrum to
the monitor as follows. We first integrate the spectrum to find the
raw XYZ tristimulus values (Xr , Yr , Zr ). We then find the adapted
XYZ tristimulus values (Xa, Ya, Za) as: Xa

Ya
Za

 = M−1

 1/Lw 0 0
0 1/Mw 0
0 0 1/Sw

M

 Xr
Yr
Zr

 . (23)

Here,M maps the XYZ colors to LMS (consult [Fairchild 1998] for
the details). Finally, we map the adapted XYZ tristimulus values to
the monitor RGB space using the monitor white point.

In our implementation, we integrate the spectrum of the black-
body at the source (e.g. when emitted radiance is computed); we

Figure 10: A flammable ball passes through a gas flame and
catches on fire.

then map this spectrum to RGB before using it in the ray marcher.
This is much faster than doing a full spectral participating media
simulation, and we found that it is sufficiently accurate, since we
already assume that the fire is the dominating light source in the
scene when doing the von Kries transformation.

6 Results

Figure 1 shows a frame from a simulation of a flamethrower. We
used a domain that was 8 meters long with 160 grid cells in the hor-
izontal direction (h = .05). The flame was injected at 30m/s out of
a cylindrical pipe with diameter.4m. We usedS= .5m/s, rhof =
1kg/m3, rhoh = .01kg/m3, cT = 3000K/s and α = .15m/(Ks2).
The vorticity confinement parameter was set toε = 16 for the
gaseous fuel and toε = 60 for the hot gaseous products. The simu-
lation cost was approximately 3 minutes per frame using a Pentium
IV.

Solid objects are treated by first tagging all the voxels inside the
object as occupied. Then all the occupied voxel cell faces have their
velocity set to that of the object. The temperature at the center of
occupied voxels is set to the object’s temperature and the (smoke)
density is set to zero. Figure 9 shows a metal sphere as it passes
through and interacts with a gas fire. Note the reflection of the fire
on the surface of the sphere. For more details on object interactions
with liquids and gases see [Foster and Fedkiw 2001] and [Fedkiw
et al. 2001].

Since we have high temperatures (i.e. fire) in our flow field, we
allow our objects to heat up if their temperature is lower than that
of their surroundings. We use a simple conduction model where
we increase the local temperature of an object depending on the
surrounding air temperature and object temperature as well as the
time step∆t. Normally, the value of the implicit surface is set to
a negative value ofh at the center of all voxels occupied by ob-
jects indicating that there is no available fuel. However, we can
easily model ignition for objects we designate as flammable. Once
the temperature of a voxel inside an object increases above a pre-
defined threshold indicating ignition, we change the value of the
implicit surface in that voxel from−h to h indicating that it con-
tains fuel. In addition, those voxel’s faces have their velocities aug-
mented above the object velocity by an increment in the direction
normal to the object surface indicating that gaseous fuel is being
injected according to the phase change addressed earlier for solid
fuels. In figure 10, we illustrate this technique with a spherical ball
that heats up and subsequently catches on fire as it passes through
the flame. Both this flammable ball and the metal ball were com-



puted on a 120× 120× 120 grid at approximately 5 minutes per
frame.

7 Conclusion

We have presented a physically based model for animating and ren-
dering fire and flames. We demonstrated that this model could be
used to produce realistic looking turbulent flames from both solid
and gaseous fuels. We showed plausible interaction of our fire and
smoke with objects, including ignition of objects by the flames.
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Abstract 
We present a general method for modeling and animating liquids. 
The system is specifically designed for computer animation and 
handles viscous liquids as they move in a 3D environment and 
interact with graphics primitives such as parametric curves and 
moving polygons. We combine an appropriately modified semi-
Lagrangian method with a new approach to calculating fluid flow 
around objects. This allows us to efficiently solve the equations of 
motion for a liquid while retaining enough detail to obtain 
realistic looking behavior. The object interaction mechanism is 
extended to provide control over the liquid’s 3D motion. A high 
quality surface is obtained from the resulting velocity field using 
a novel adaptive technique for evolving an implicit surface.  

Keywords: animation, computational fluid dynamics, implicit 
surface, level set, liquids, natural phenomena, Navier-Stokes, 
particles, semi-Lagrangian. 

1. Introduction 
The desire for improved physics-based animation tools has grown 
hand in hand with the advances made in computer animation on 
the whole. It is natural then, that established engineering 
techniques for simulating and modeling the real world have been 
modified and applied to computer graphics more frequently over 
the last few years. One group of methods that have resisted this 
transition are those used to model the behavior of liquids from the 
field of computational fluid dynamics (CFD). Not only are such 
techniques generally complex and computationally intensive, but 
they are also not readily adaptable to what could be considered 
the basic requirements of a computer animation system. 
One of the key difficulties encountered when using these methods 
for animation directly characterizes the trade off between 
simulation and control. Physics-based animations usually rely on 
direct numerical simulation (DNS) to achieve realism. In 
engineering terms, this means that initial conditions and boundary 
conditions are specified and the process is left to run freely with 
only minor influence on the part of the animator. The majority of 
engineering techniques for liquid simulation assume this model.  
From an animation viewpoint, we are interested in using 
numerical techniques to obtain behaviors that would be 
prohibitive to model by hand. At the same time we want control 
over the global, low frequency motion so we can match it to the 

behavior we are trying to create. This then becomes the goal when 
transitioning between engineering and computer animation; 
preserve as much of the realistic behavior as feasible while 
allowing for control over motion on both a local and global scale. 
This has to be achieved without compromising the overall 
requirement of a visually coherent and realistic look.  
This paper specifically addresses these issues for liquid 
animation. The method presented is for animating viscous liquids 
ranging from water to thick mud. These liquids can freely mix, 
move arbitrarily within a fixed three-dimensional grid and interact 
realistically with stationary or moving polygonal objects. This is 
achieved for animation by trading off engineering correctness for 
computational efficiency. 
We start with the Navier-Stokes equations for incompressible 
flow and solve for liquid motion using an adaptation of a semi-
Lagrangian method introduced recently to graphics for solving 
fluid flows [25]. These methods usually result in mass dissipation. 
While not an issue for gas or smoke, this is visually unacceptable 
for modeling liquids. We correct for this by tracking the motion 
of the liquid surface using a novel hybrid combination of 
inertialess particles and an implicit surface called a level set. The 
level set prevents mass dissipation while the particles allow the 
liquid to still splash freely. A useful consequence is that this 
combined surface can be rendered in a highly believable way.   
The next innovation involves taking account of the effects of 
moving polygonal objects within the liquid. We develop a new 
technique that, while not accurate in an engineering sense, 
satisfies the physics of object/liquid interactions and looks 
visually realistic. This method is efficient and robust, and we 
show that it can be adapted to provide low frequency directional 
control over the liquid volume. This allows us to efficiently 
calculate liquid behavior that would be impossible to get by hand, 
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Figure 1: A ball splashes into a tank of water. 



 

 

while at the same time allowing us to “dial-in” specific motion 
components. 
When the techniques described above are applied together, the 
result is a comprehensive system for modeling and animating 
liquids for computer graphics. The main contributions of the 
system are a numerical method that takes the minimal 
computational effort required for visual realism combined with 
tailor-made methods for handling moving objects and for 
maintaining a smooth, temporally coherent liquid surface. 

2. Previous Work 
The behavior of a volume of liquid can be described by a set of 
equations that were jointly developed by Navier and Stokes in the 
early eighteen hundreds (see next section). The last fifty years has 
seen an enormous amount of research by the CFD community into 
solving these equations for a variety of engineering applications. 
We direct the interested reader to Abbot and Basco [1] which 
covers some of the important principles without being too 
mathematically dense.  
Early graphics work concentrated on modeling just the surface of 
a body of water as a parametric function that could be animated 
over time to simulate wave transport [12, 22, 23]. Kass and Miller 
[17] approximated the 2D shallow water equations to get a 
dynamic height field surface that interacted with a static ground 
“object”. Chen and Lobo [4] extended the height field approach 
by using the pressure arising from a 2D solution of the Navier-
Stokes equations to modulate surface elevation. O’Brien and 
Hodgins [20] simulated splashing liquids by combining a particle 
system and height field, while Miller and Pearce [19] used 
viscous springs between particles to achieve dynamic flow in 3D. 
Terzopoulos, Platt and Fleischer [27] simulated melting 
deformable solids using a molecular dynamics approach to 
simulate the particles in the liquid phase.  
Surface or particle based methods are relatively fast, especially in 
the case of large bodies of water, but they don’t address the full 
range of motion exhibited by liquids. Specifically, they don’t take 
advantage of the realism inherent in a full solution to the Navier-
Stokes equations. They are also not easily adapted to include 
interaction with moving objects. Foster and Metaxas [11] 
modified an original method by Harlow and Welch [15] (later 
improved by others, see e.g. [5]) to solve the full equations in 3D 
with arbitrary static objects and extended it to include simple 
control mechanisms [9]. Foster and Metaxas also applied a similar 
technique to model hot gases [10]. Stam [25] replaced their finite 
difference scheme with a semi-Lagrangian method to achieve 
significant performance improvements at the cost of increased 
rotational damping. Yngve et al. used a finite difference scheme 
to solve the compressible Navier-Stokes equations to model shock 
wave and convection effects generated by an explosion [28]. 

3. Method Outline 
The Navier-Stokes equations for describing the motion of a liquid 
consist of two parts. The first, enforces incompressibility by 
saying that mass should always be conserved, i.e. 

0∇ ⋅ =u ,      (3.1)   

where u  is the liquid velocity field, and 

( )/ x, / y, / z∇ = ∂ ∂ ∂ ∂ ∂ ∂  

is the gradient operator. The second equation couples the velocity 
and pressure fields and relates them through the conservation of 
momentum, i.e. 

( ) ( )t
1

p + = ν∇ ⋅ ∇ − ⋅ ∇ − ∇
ρ

u u u u g . (3.2) 

This equation models the changes in the velocity field over time 
due to the effects of viscosity (ν), convection, density (ρ), 
pressure (p), and gravity (g). By solving (3.1) and (3.2) over time, 
we can model the behavior of a volume of liquid. The new 
algorithm we are proposing to do this consists of six 
straightforward steps. 

I. Model the static environment as a voxel grid. 
II. Model the liquid volume using a combination of 

particles and an implicit surface. 
Then, for each simulation time step 
III. Update the velocity field by solving (3.2) using finite 

differences combined with a semi-Lagrangian method. 
IV. Apply velocity constraints due to moving objects. 
V. Enforce incompressibility by solving a linear system 

built from (3.1). 
VI. Update the position of the liquid volume (particles and 

implicit surface) using the new velocity field. 
These steps are described in detail in the following sections. Steps 
IV and V are presented in reverse order for clarity.  

4. Static Environment 
Equations (3.1) and (3.2) model a liquid as two coupled dynamic 
fields, velocity and pressure. The motion of the liquid we are 
modeling will be determined by evolving these fields over time. 
We start by representing the environment that we want the liquid 
to move in as a rectangular grid of voxels with side length ∆τ. 
The grid does not have to be rectangular, but the overhead of 
unused (non-liquid containing) cells will be low and so it is 
convenient. Each cell has a pressure variable at its center and 
shares a velocity variable with each of its adjacent neighbors (see 
figure 2). This velocity is defined at the center of the face shared 
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Figure 2: A single grid cell with three of its six face velocities 
shown. 



 

 

by the two neighboring cells and represents the magnitude of the 
flow normal to that face. This is the classic “staggered” MAC grid 
[15]. Each cell is then either tagged as being empty (available to 
be filled with liquid) or filled completely with an impermeable 
static object. Despite the crude voxelized approximation of both 
objects and the liquid volume itself, we’ll show that we can still 
obtain and track a smooth, temporally coherent liquid surface.  

5. Liquid Representation 
The actual distribution of liquid in the environment is represented 
using an implicit surface. The implicit function is derived from a 
combination of inertialess particles and a dynamic isocontour. 
The isocontour provides a smooth surface to regions of liquid that 
are well resolved compared to our grid, whereas the particles 
provide detail where the surface starts to splash.  

5.1 Particles 
Particles are placed (or introduced via a source) into the grid 
according to some initial liquid distribution. Their positions then 
evolve over time by simple convection. Particle velocity is 
computed directly from the velocity grid using tri-linear 
interpolation and each particle is moved according to the 
inertialess equation dxp/dt = vx, where vx is the fluid velocity at 
xp. Particles have a low computational overhead and smoothly 
integrate the changing liquid velocity field over time.  The 
obvious drawback to using them, however, is that there is no 
straightforward way to extract a smooth polygonal (or parametric) 
description of the actual liquid surface. This surface is preferred 
because we want to render the liquid realistically using traditional 
computer graphics techniques. It is possible to identify it by 
connecting all the particles together into triangles, although 
deducing both the connectivity and set of surface triangles is 
difficult. In addition, since the particles do not generally form a 
smooth surface, the resulting polygonal mesh suffers from 
temporal aliasing as triangles “pop” in or out.  

5.2 Isocontour 
An alternative technique for representing the liquid surface is to 
generate it from an isocontour of an implicit function. The 
function is defined on a high resolution Eulerian sub-grid that sits 
inside the Navier-Stokes grid. Let each particle represent the 
center of an implicitly defined volumetric object (see 
Bloomenthal et al. [3] for a survey of implicit surfaces). 
Specifically, an implicit function centered at the particle location 
xp with radius r is given by  

          2 2 2
p i pi j pj k pk( ) = (x x ) +(x x ) +(x x ) rφ − − − −x . 

The surface of that particle is defined as the spherical shell around 
xp where φp(x)=0. An implicit function, φ(x), is then defined over 
all the particles by taking the value of φp(x) from the particle 
closest to x. If we sample φ(x) at each sub-grid point we can use a 
marching cubes algorithm [18] to tessellate the φ(x)=0 isocontour 
with polygons. More sophisticated blend functions could be used 
to create an implicit function, however, we are going to 
temporally and spatially smooth φ(x) so it isn’t necessary. We 
refer those interested in wrapping implicit surfaces around 
particles to the work of Desbrun and Cani-Gascuel [7]. 

The first step towards smoothing the surface is to normalize φ  so 
that |φ(x)| equals the distance from x to the closest point on the 
zero isocontour. The sign of φ is set negative inside the liquid and 

positive outside. This signed distance function can be created 
quickly using the Fast Marching Method [24] starting from the 
initial guess of φ(x) defined by the particles as outlined above.  

In order to smooth out φ to reduce unnatural “folds” or “corners” 
in the surface (see figure 3), a smoothing equation of the form 

( )( )=0 1S η
ηφ = − φ ∇φ − ,   (5.1) 

is used to modify values of φ close to the φ(x)=0 isocontour. S(φ) 
is a smoothed sign function given by  

( )
2 2

S
φ

φ =
φ + ∆τ

. 

If applied for a few relaxation steps in fictitious time η 
(everything else remains constant), (5.1) smooths out the φ(x)=0 
isocontour while maintaining overall shape. Once smoothed, the 
isocontour can be ray traced directly using a root finding 
algorithm to identify the zero values of φ. A fast root finder can 
be built easily because at any sub-grid point the value of φ 
explicitly gives the minimum step to take to get closer to the 
surface. Note that the surface normal is given by n = ∇φ ∇φ . 

By creating a smooth isocontour for each frame of animation, we 
get an improved surface representation compared to using 
particles alone. There are still drawbacks however. A high density 
of particles is required at the φ(x)=0 isocontour before the surface 
looks believably flat. Particles are also required throughout the 
entire liquid volume even when it’s clear that they make no 
contribution to the visible surface. The solution is to create φ once 
using the particles, and then track how it moves using the same 
velocity field that we’re using to move the particles. This leads to 
a temporally smoothed dynamic isosurface known in the CFD 
literature as a level set.  

5.3 Dynamic Level Set 
An obvious way to track the evolution of the surface of a volume 
of liquid would be to attach particles directly to the surface in its 
initial position and then just move them around in the velocity 
field. This would require adding extra particles when the surface 
becomes too sparsely resolved, and removing them as the surface 
folds, or “splashes” back over itself. An alternative method which 
is intuitively similar, but that doesn’t use particles, was developed 
by Osher and Sethian [21] and is called the level set method.  

We want to evolve φ directly over time using the liquid velocity 
field u. We have a smooth surface but need to conform, visually 
at least, to the physics of liquids. It has been shown [21] that the 

Figure 3: The isocontour due to the implicit function around 
the particles, interpolated φ values, and smoothed φ values, 
respectively. 



 

 

equation to update φ under these circumstances has the following 
structure, 

t 0φ + ⋅ ∇φ =u .    (5.2) 

Using (5.2), the surface position is evolved over time by tracking 
φ(x)=0. The (u ⋅∇ φ) term is a convection term similar to the 
(u ⋅∇ )u term in (3.2) implying that we could use a semi-
Lagrangian method to solve this equation. However, since this 
equation represents the mass evolution of our liquid, the semi-
Lagrangian method tends to be too inaccurate. Instead we use a 
higher order upwind differencing procedure [1] on the 
(u ⋅∇ φ) term. Fedkiw et al. [8] used this methodology to track a 
fluid surface and give explicit details on solving (5.2). This 
method can suffer from severe volume loss especially on the 
relatively coarse grids commonly used in computer graphics. This 
is clearly visible when regions of liquid break away during 
splashing and then disappear because they are too small to be 
resolved by the level set. We require visual coherency for this to 
be a useful graphics technique and so the level set method needs 
to be modified to preserve volume. 

5.4 Hybrid Surface Model 
Particle evolution is a fully Lagrangian approach to the mass 
motion while level set evolution is a fully Eulerian approach. 
Since they tend to have complementary strengths and weakness, a 
combined approach gives superior results under a wider variety of 
situations. Level set evolution suffers from volume loss near 
detailed features while particle evolution suffers from visual 
artifacts in the surface when the number of particles is small. 
Conversely, the level set is always smooth, and particles retain 
detail regardless of flow complexity. Therefore we suggest a 
novel combination of the two approaches. 

At each time step we evolve the particles and the level set φ 
forward in time. Next, we use the updated value of the level set 
function to decide how to treat each particle. If a particle is more 
than a few grid cells away from, and inside the surface, as 
indicated by the locally interpolated value of φ, then that particle 
is deleted. This increases efficiency since particles are only 
needed locally near the surface of the liquid as opposed to 
throughout the entire liquid volume.  In addition, for cells close to 
φ(x)=0 that are sparsely populated, extra particles can be 
introduced “within” the isocontour. Thus, for a bounded number 
of particles, we get improved surface resolution. 
Next, for each particle near the surface, the locally interpolated 
curvature of the interface, calculated as  

( )k = ∇ ⋅ ∇φ ∇φ , 

is used to indicate whether or not the surface is smooth. Smooth 
regions have low curvature and the particles are ignored allowing 
the level set function to give a very smooth representation of the 
liquid surface. On the other hand, regions of high curvature 
indicate splashing. In these regions, the particles are a better 
indicator of the rough surface topology. Particles in these regions 
are allowed to modify the local values of φ. At grid points where 
the implicit basis function for the particle would give a smaller 
value of φ (i.e. a particle is “poking” out of the zero level set), this 
smaller value is used to replace the value obtained from the time 
evolution of φ.  

Even with the tight coupling between the particles and the level 
set, some particles will escape the inside of the liquid layer since 
the grid is too coarse to represent them individually. These 
particles can be rendered directly as small liquid drops. In 
addition, these stray particles could be used as control particles to 
indicate the presence of fine spray or mist.  

6. Updating the Velocity Field  
We have a representation of the graphics environment and a way 
of tracking the surface of a volume of liquid. We can now apply 
(3.2) to the existing velocity field to advance it through an Euler-
integration time step ∆t. The equation is solved in three stages. 
First we compute ∆t using the CFL condition (see Appendix A). 
Next, we update the convective component, i.e. (u ⋅∇ )u, using a 
first order semi-Lagrangian method, as per Courant et al. [6] and 
by Stam [25]. We use the same formulation as Stam and refer 
readers to his description. Standard central differencing is then 
used on the viscous terms of (3.2) as described by Foster and 
Metaxas [11]. The results from this and the preceding calculation 
are added together to get an updated (though not mass conserving) 
velocity field for time t+∆t. 
Semi-Lagrangian methods allow us to take large time steps 
without regard for the sometimes overly restrictive CFL condition 
[26]. Unfortunately, these large time steps come at the cost of 
added dissipation. This is visually acceptable for gases such as 
smoke where it appears realistic. For liquids however, mass 
dissipation ruins the visual effect. Therefore, even though we use 
a semi-Lagrangian method to update (3.2), the time step for 
evolving the particles and the level set still needs to be limited 
according to a plausible CFL condition. Updating the surface 
position isn’t particularly expensive computationally, and so we 
alternate between a large time step for updating the Navier-Stokes 
equations and a series of small time steps (that add up to the large 
time step) for the particles and the level set. Our experience 
suggests that the velocity field time step can only be a few 
(around five) times bigger than that dictated by the usual CFL 
criterion. However, even this gives tremendous computational 
savings, since enforcing incompressibility (step V, discussed in 
section 8) is the most expensive part of the algorithm.  

Figure 4: Water pours into a container causing a complex 
surface to develop. 



 

 

We caution the reader that using a particle only evolution with the 
semi-Lagrangian method introduces noise into the surface, and 
that using a level set only evolution with the semi-Lagrangian 
method gives noticeable volume loss. The key to making the 
semi-Lagrangian method work for liquids is the mixed Eulerian-
Lagrangian formulation that uses both particles and level sets to 
evolve the surface position over time.  

7. Boundary Conditions 
When solving (3.2) within the grid, we need to specify pressure 
and velocity values for certain cells. We want stationary object 
cells to resist liquid motion and cells that represent the boundary 
between air and liquid to behave appropriately. 

7.1.1 Non-liquid Cells 
Cells in the grid that don't contain particles and aren’t contained 
within the isosurface are either considered empty (open air) or are 
part of an object. If a cell is empty, its pressure is set to 
atmospheric pressure, and the velocity on each of its faces shared 
with another empty cell is set to zero. This assumes that air 
dynamics has a negligible effect. An object cell, on the other 
hand, can have velocities and pressures set using many different 
combinations to approximate liquid flowing into or out of the 
environment, or to approximate different object material 
properties. Foster and Metaxas [10] summarize and discuss 
methods to do this.  

7.1.2 Liquid Surface 
Other grid cells that require special attention are those that 
contain part of the φ(x)=0 isocontour. Such cells represent what 
we know about the location of the liquid surface within the grid. 
The movement of the isocontour will determine how the surface 
evolves, but we need to set velocities on faces between empty and 
liquid cells so that normal and tangential stresses are zero.  
Intuitively, we need to make sure that the "air" doesn't mix with 
or inhibit the motion of the liquid, while allowing it to flow freely 
into empty cells. This is done by explicitly enforcing 
incompressibility within each cell that contains part of the liquid 
surface. Velocities adjacent to a liquid filled cell are left alone, 
whereas the others are set directly so (3.1) is satisfied for that cell. 
The pressure in a surface cell is set to atmospheric pressure.  

8. Conservation of Mass 
The velocity field generated after evolving the Navier-Stokes 
equations (steps III and IV) has rotation and convection 
components that are governed by (3.2) (excluding the pressure 
term). However, (3.1), conservation of mass, is only satisfied in 
surface cells where we have explicitly enforced it. The best we 
can do to preserve mass within our grid is to ensure that the 
incompressibility condition is satisfied for every grid cell (at least 
to some tolerance). Foster and Metaxas [11] achieved this using a 
technique called Successive Over Relaxation.  
A more efficient method for enforcing incompressibility comes 
from solving the linear system of equations given by using the 
Laplacian operator to couple local pressure changes to the 
divergence in each cell. Specifically, this gives 

2p= t∇ ρ∇ ⋅ ∆u ,    (8.1)

where 2∇ p is the spatial variation (Laplacian) of the pressure and 
u is the velocity field obtained after solving (3.2). Applied at the 
center of a cell, (8.1) can be discretized as 

          ( )
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∆
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where pn ± 1 is the pressure from the cell ahead (+) or behind (-) in 
the n direction, and the u values are taken directly from the grid 
cell faces. Using (8.2), we form a linear system AP = b where P is 
the vector of unknown pressures needed to make the velocity field 
divergence free, b is the RHS of (8.2), and A has a regular but 
sparse structure. The diagonal coefficients of A, aii, are equal to 
the negative number of liquid cells adjacent to celli (e.g., -6 for a 
fully “submerged” cell) while the off diagonal elements are 
simply aij=aji=1 for all liquid cellsj adjacent to celli.  
Conveniently, the system described above is symmetric and 
positive definite (as long as there is at least one surface cell as 
part of each volume). Static object and empty cells don’t disrupt 
this structure. In that case pressure and velocity terms can 
disappear from both sides of (8.2), but the system remains 
symmetric. Because of this, it can be solved quickly and 
efficiently using a Preconditioned Conjugate Gradient (PCG) 
method.  Further efficiency gains can be made by using an 
Incomplete Choleski preconditioner to accelerate convergence. 
There is a wealth of literature available regarding PCG techniques 
and we recommend any of the standard implementations, see 
Barret et al. [2] for some basic templates. Once the new pressures 
have been determined, the velocities in each cell are updated 
according to 

( )t t
{ijk} {ijk} n n-1

t
u = u p p+∆ ∆

− −
ρ∆τ

   

The resulting velocity field conserves mass (is divergence free) 
and satisfies the Navier-Stokes equations. 

9. Moving Objects 
Previous techniques proposed for liquid animation could deal with 
static objects that have roughly the same resolution as the grid, 
but they have difficulty dealing with moving objects. 
Unfortunately, the CFD literature has little to offer to help resolve 
the effects of moving objects on a liquid in terms of animation. 
There are sophisticated methods available for handling such 
interactions, but they typically require highly resolved 
computational grids or a grid mechanism that can adapt itself to 
the moving object surface. Neither approach is particularly well 
suited to animation because of the additional time complexity 
involved. Therefore, we propose the following method for 
handling interactions between moving objects and the liquid. 
Consider an object (or part of an object) moving within a cell that 
contains liquid. There are two basic conditions that we want to 
enforce with respect to the computational grid, and an additional 
condition with respect to the surface tracking method. These are 

1. Liquid should not flow into the object. At any point of 
contact, the relative velocity between the liquid and 
object along the object’s surface normal should be 
greater than or equal to zero. 

2. Tangential to the surface, the liquid should flow freely 
without interference. 

3. Neither the particles nor the level set surface should pass 
through any part of the surface of the object. 



 

 

The last of these is relatively straightforward. We know where the 
polygons that comprise the object surface are and in what 
direction they are moving. We simply move the particles so that 
they are always outside the surface of the object. As long as we 
accurately take account of the velocity field within the grid then 
the isocontour will remain in the correct position relative to the 
object.   
To prevent liquid from flowing into the object we directly set the 
component of liquid velocity normal to the object. We know the 
object surface normal, ns, and can calculate the liquid velocity 
relative to that surface, vr, in a given cell. If vr.ns < 0 then liquid 
is flowing through the surface. In such cases we manipulate u in 
the cell so that vr.ns = 0 leaving the tangential (“slip”) part of the 
velocity unchanged. 
These velocities need to be applied without introducing visual 
artifacts into the flow. The following method solves for both 
normal and tangential velocity components. It’s relatively 
intuitive, and it seems to work well in practice. The steps are 

1. As a boundary condition, any cell within a solid object has 
its velocities set to that of the moving object. 

2. The velocity field is updated using (3.2). No special 
consideration is given to cells containing an object, i.e. 
they are all allowed to change freely as if they contain 
liquid. 

3. Each cell that intersects an object surface gets the 
component of the object velocity along its normal set 
explicitly as outlined above.  

4. Cells internal to the object have their velocities set back to 
the object velocity. 

5. During the mass conservation step (section 8) the velocity 
for any grid cell that intersects the object is held fixed.  

The result of this approach is that liquid is both pushed along by 
an object while being allowed to flow freely around it, causing 
realistic-looking behavior in the mean time. Obviously it’s only 
possible to accurately account for one polygon face per grid cell. 
Objects that are more detailed with respect to the grid can still be 
handled by determining an average object surface normal and 
velocity for each intersecting cell, but grid resolution remains the 
limiting factor. 

10. Control 
Animation is all about control. Having things behave according to 
some arbitrary aesthetic is the goal of most production software. 
The difficulty is in providing this level of control over a physics-
based animation while still maintaining a realistic behavioral 
component. The nature of the governing equations of motion of 
liquids means that they will always swirl, mix, and splash unless 
the applied forces are identical everywhere. This necessarily 
limits the level of control that we can have over the final motion 
and comes with the territory of non-linear simulation. 
Gates [13] has shown that mass conserving flow fields can be 
blended with calculated fields to get good non-dynamic results. 
The Navier-Stokes equations allow for the body force term, g, to 
be manipulated directly [9] much like a traditional particle 
system. Forces aren't always a very intuitive way of getting 
motion that we want however. The moving object mechanism on 
the other hand, is well suited to this. Instead of moving polygons, 
we can explicitly set velocities anywhere in the grid by 

introducing “fake” surfaces (a single point even) that have 
normals and velocities pointing in the direction that we want the 
liquid to go. Setting the normal and tangential velocities in 
individual cells is also possible if it is done before the mass 
conservation calculation. This allows the solver to smooth out any 
lack of physical correctness in applied velocities before passing 
them into (3.2).  
As a brief example, consider a set of 3D parametric space curves 
that define the desired path for the liquid to follow. We instance a 
set of points along each curve giving each point a parametric 
coordinate ϕp. A point’s spatial position is then given simply by 
the curve definition, i.e. xp=F(ϕp). The velocity of the point can 
then be described as 

( )p p p(t) d ( ) dC F= ϕ ϕv     

where C(t) is a monotonic key framed scaling function. C(t) is 
also used to update ϕp over time according to dϕp/dt = C(t). The 
“fake” surface normal of the point is then simply np = vp/|vp|. By 
manipulating xp, vp, and np over time, we can “trap” small pockets 
of liquid and control them directly. The governing equations then 
make sure that neighboring liquid attempts to follow along. 
This basic approach can be adapted to surfaces or even volumetric 
functions as long as they vary smoothly.  While still not giving 
perfect direct control over the liquid motion, when combined with 
force fields it is good enough to make it a useful animation tool. 

11. Results 
The animation system described in the preceding sections was 
used to generate all of the examples in this paper. The basic 
Navier-Stokes solver and implicit surface are demonstrated by the 
container-filling example in figure 4. The combination of particles 
and level set make sure that the resulting surface stays smooth and 
behaves in a physically believable way. The splashing object 
examples in figures 1, 5 and 6 show close interaction between the 
liquid and moving objects. They also show how the hybrid 
surface can handle extreme splashing without either the particles 
or level set being apparent. The particles play a large role in both 
cases by allowing the liquid to “splash” at a higher resolution than 
would be possible with the level set alone. All of these images 
were rendered using a ray-tracing algorithm that marches through 
the implicit surface grid as outlined in section 5.  
The final example, figure 7, makes use of just a spherical implicit 
function around each particle.  It shows the interaction between a 
thick (high viscosity) liquid and a hand animated character. The 
character surface is sampled at each grid cell and the mechanisms 
described in section 9 take account of all the motion in the scene. 
This includes the character filling his mouth with mud. The mud 
is later ejected using a 3D space curve as a controller as outlined 
in section 10. The captions to each figure give the static grid size 
used during calculation along with computation times per frame 
(for motion, not rendering) on a PentiumII 500MHz. 

12. Conclusion 
We have presented a method for modeling and animating liquids 
that is a pragmatic compromise between the numerical care that 
needs to be taken when simulating non-linear physics and the 
interaction and control animators require. Where appropriate, we 
have drawn on techniques from computational fluid dynamics and 
combined them with recent computer graphics advances as well 



 

 

as new methods for free surface evolution and interaction between 
moving objects and the liquid volume. The result is a technique 
that is very general, efficient, and offers flexible control 
mechanisms for specifying how the liquid should behave. 
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A. Courant-Friedrichs-Levy (CFL) Condition 
The CFL condition is a restriction on the size of the time step, ∆t, 
that can be used together with a time-marching numerical 
simulation. It says that ∆t must be less than the minimum time 
over which “something significant” can occur in the system for 
the simulation to remain numerically stable. The CFL condition 
depends both on the physical system being modeled as well as the 
specifics of the discretization method employed. In the context of 
the system described in this paper a good CFL condition is that a 
discrete element of liquid cannot “jump over” a cell in the 
computational grid, i.e. ∆t < ∆τ / |u|. 
Note that the viscosity related terms also impose a CFL type 
restriction. This can be avoided by locally adjusting the 
magnitude of the viscosity in cells where the viscous terms would 
dictate the necessity for a smaller time step. 
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Figure 5: An ellipsoid slips along through shallow water. The combination of particle and level set tracking allows water to flow over the 
object without any visual loss of volume. The environment for this example was 250x75x90 cells. It took approximately seven minutes to 
calculate the liquid motion (including surface evolution) per frame. 
 

 
Figure 6: A close up of the ellipsoid from figure 5 showing the implicit surface derived from combining the particle basis functions and 
level set (top), and with the addition of the freely splashing particles raytraced as small spheres (bottom). The environment for this 
example was 150x75x90 cells. Calculation times were approximately four minutes per frame. 
 

 
Figure 7: A fully articulated animated character interacts with viscous mud. The environment surrounding the character is 150x200x150 
cells. That resolution is sufficient to accurately model the character filling his mouth with mud. A 3D control curve is used to eject (spit) 
the mouthful of mud later in the sequence. This example runs at three minutes per frame. 
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Abstract

We present a new method for the animation and rendering ofphoto-
realistic water effects. Our method is designed to produce visually
plausible three dimensional effects, for example the pouring of wa-
ter into a glass (see figure 1) and the breaking of an ocean wave, in
a manner which can used in a computer animation environment. In
order to better obtain photorealism in the behavior of the simulated
water surface, we introduce a new “thickened” front tracking tech-
nique to accurately represent the water surface and a new velocity
extrapolation method to move the surface in a smooth, water-like
manner. The velocity extrapolation method allows us to provide a
degree of control to the surface motion, e.g. to generate a wind-
blown look or to force the water to settle quickly. To ensure that
the photorealism of the simulation carries over to the final images,
we have integrated our method with an advanced physically based
rendering system.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing;

Keywords: computational fluid dynamics, implicit surfaces, natu-
ral phenomena, physically based animation, rendering, volume ren-
dering

1 Introduction

Water surrounds us in our everyday lives. Given the ubiquity of wa-
ter and our constant interaction with it, the animation and rendering
of water poses one of the greatest challenges in computer graphics.
The difficulty of this challenge was underscored recently through
the use of water effects in a variety of motion pictures including the
recent feature film “Shrek” where water, mud, beer and milk effects
were seen. In response to a question concerning what was the single
hardest shot in “Shrek”, DreamWorks SKG principal and producer
of “Shrek”, Jeffrey Katzenberg, stated,It’s the pouring of milk into
a glass. [Hiltzik and Pham 2001].

The above quote illustrates the need forphotorealisticsimulation
and rendering of water (and other liquids such as milk), especially
in the case of complex, three dimensional behavior as seen when
water is poured into a glass as in figure 1. A key to achieving this
goal is the visually accurate treatment of the surface separating the

Figure 1:Water being poured into a glass (55x120x55 grid cells).

water from the air. The behavior of this surface provides the visual
impression that water is being seen. If the numerical simulation
method used to model this surface is not robust enough to capture
the essence of water, then the effect is ruined for the viewer. A va-
riety of new techniques for treatment of the surface are proposed in
this paper in order to provide visually pleasing motion and photo-
realistic results.

We propose a new “thickened” front tracking approach to model-
ing the surface, called the ”particle level set method”. It is a hybrid
surface tracking method that uses massless marker particles com-
bined with a dynamic implicit surface. This method was entirely
inspired by the hybrid liquid volume model proposed in [Foster and
Fedkiw 2001], but exhibits significantly more realistic surface be-
havior. This effect is achieved by focusing on modeling the surface
as opposed to the liquid volume as was done by [Foster and Fedkiw
2001]. This shift in philosophy away from volume modeling and to-
wards surface modeling, is the key idea behind our new techniques,
resulting in better photorealistic behavior of the water surface.

We propose a new treatment of the velocity at the surface in order
to obtain more visually realistic water surface behavior. The mo-
tion of both the massless marker particles and the implicit function
representing the surface is dependent upon the velocities contained
on the underlying computational mesh. By extrapolating veloci-
ties across the water surface and into the region occupied by the
air, we obtain more accurate and better visual results. In the limit
as the computational grid is refined, the resulting surface condition
is identical to the traditional approach of making the velocity di-
vergence free, but it gives more visually appealing and physically
plausible results on coarse grids. Furthermore, this velocity extrap-
olation procedure alows us to add a degree of control to the behav-
ior of the water surface. We can add dampening and/or churning
effects forcing it to quiet down or splash up faster than would be



allowed by a straightforward physical simulation.
Our new advances can be easily incorporated into a pre-existing

Navier-Stokes solver for water. In fact, we solve the Navier-Stokes
equations for liquid water along the lines of [Foster and Fedkiw
2001], in particular using a semi-Lagrangian “stable fluid” ap-
proach introduced to the community by Stam [Stam 1999]. Our
approach preserves as much of the realistic behavior of the water
as possible, while at the same time providing a degree of control
necessary for its use in a computer animation environment.

Photorealistic rendering is necessary in order to complete the
computational illusion of real water. In some ways water is an easy
material to render, because unlike many common materials its op-
tical properties are well understood and are easy to describe. In all
but the largest-scale scenes, surface tension prevents water surfaces
from exhibiting the microscopic features that make reflection from
many other materials so complicated. However, water invariably
creates situations in which objects are illuminated through complex
refracting surfaces, which means that the light transport problem
that is so easy to state is difficult to solve. Most widely used render-
ing algorithms disregard this sort of illumination or handle it using
simple approximations, but because water and its illumination ef-
fects are so familiar these approaches fail to achieve realism. There
are several rendering algorithms that can properly account for all
transport paths, including the illumination through the water sur-
face; some examples are path tracing [Kajiya 1986], bidirectional
path tracing [Heckbert 1990; Lafortune and Willems 1993; Veach
and Guibas 1994], Metropolis light transport [Veach and Guibas
1997], and photon mapping [Jensen 1995]. In our renderings of
clear water for this paper we have chosen photon mapping because
it is simple and it makes it easy to avoid the distracting noise that
often arises in pure path sampling algorithms from illumination
through refracting surfaces.

2 Previous Work

Early (and continuing) work by the graphics community into the
modeling of water phenomenon focused on reduced model rep-
resentations of the water surface, ranging from Fourier synthesis
methods [Masten et al. 1987] to parametric representations of the
water surface [Schachter 1980; Fournier and Reeves 1986; Peachey
1986; Ts’o and Barsky 1987]. The last three references are notable
in the way they attempt to model realistic wave behavior including
the change in wave behavior as a function of the depth of the water.
Fairly realistic two dimensional wave scenery can be developed us-
ing these methods including theillusion of breaking waves, but ulti-
mately they are all constrained by the sinusoidal modeling assump-
tion present in each of them. They are unable to easily deal with
complex three dimensional behaviors such as flow around objects
and dynamically changing boundaries. A summary of the above
methods and their application to modeling and rendering of ocean
wave environments can be found in [Tessendorf 2001].

In order to obtain water models which could potentially be used
in a dynamic animation environment, researchers turned towards
using two dimensional approximations to the full 3D Navier-Stokes
equations. [Kass and Miller 1990] use a linearized form of the 2D
shallow water equations to obtain a height field representation of
the water surface. A pressure defined height field formulation was
used by [Chen and Lobo 1994] in fluid simulations with moving
obstacles. [O’Brien and Hodgins 1995] used a height model com-
bined with a particle system in order to simulate splashing liquids.
The use of a height field gives a three dimensional look to a two
dimensional flow calculation, but it constrains the surface to be a
function, i.e. the surface passes the vertical line test where for each
(x,y) position there is at most one z value. The surface of a crash-
ing wave or of water being poured into a glass does not satisfy the
vertical line test. Use of particle systems permits the surface to

become multivalued. A viscous spring particle representation of a
liquid has been proposed by [Miller and Pearce 1989]. An alterna-
tive molecular dynamics approach to the simulation of particles in
the liquid phase has been developed by [Terzopoulos et al. 1989].
Particle methods, while quite versatile, can pose difficulties when
trying to reconstruct a smooth water surface from the locations of
the particles alone.

The simulation of complex water effects using the full 3D
Navier-Stokes equations has been based upon the large amount of
research done by the computational fluid dynamics community over
the past 50 years. [Foster and Metaxas 1996] utilized the work
of [Harlow and Welch 1965] in developing a 3D Navier-Stokes
methodology for the realistic animation of liquids. Further CFD
enhancements to the traditional marker and cell method of Har-
low and Welch which allow one to place particles only near the
surface can be found in [Chen et al. 1997]. A semi-Lagrangian
”stable fluids” treatment of the convection portion of the Navier-
Stokes equations was introduced to the computer graphics com-
munity by [Stam 1999] in order to allow the use of significantly
larger time steps without hindering stability. [Foster and Fedkiw
2001] made significant contributions to the simulation and control
of three dimensional fluid simulations through the introduction of a
hybrid liquid volume model combining implicit surfaces and mass-
less marker particles; the formulation of plausible boundary con-
ditions for moving objects in a liquid; the use of an efficient iter-
ative method to solve for the pressure; and a time step subcycling
scheme for the particle and implicit surface evolution equations in
order to reduce the amount of visual error inherent to the large semi-
Lagrangian “stable fluid” time step used for time evolving the fluid
velocity and the pressure. The combination of all of the above ad-
vances in 3D fluid simulation technology along with ever increasing
computational resources has set the stage for the inclusion of fully
3D fluid animation tools in a production environment.

Most work on simulating water at small scales has not specifi-
cally addressed rendering and has not used methods that correctly
account for all significant light transport paths. Research on the
rendering of illumination through water [Watt 1990; Nishita and
Nakamae 1994] has used methods based on processing each poly-
gon of a mesh that represents a fairly smooth water surface, so
these methods cannot be used for the very complex implicit sur-
faces that result from our simulations. For the case of 2D wave
fields in the open ocean, approaches motivated by physical cor-
rectness have produced excellent results [Premoze and Ashikhmin
2000; Tessendorf 2001].

3 Simulation Method

3.1 Motivation

[Foster and Fedkiw 2001] chose to define the liquid volume be-
ing simulated as one side of an isocontour of an implicit function,
φ . The surface of the water was defined by theφ = 0 isocontour
with φ ≤ 0 representing the water andφ > 0 representing the air.
By using an implicit function representation of the liquid volume,
they obtained a smooth, temporally coherent liquid surface. They
rejected the use of particles alone to represent the liquid surface be-
cause it is difficult to a calculate a visually desirable smooth liquid
surface from the discrete particles alone. The implicit surface was
dynamically evolved in space and time according to the underly-
ing liquid velocity~u. As shown in [Osher and Sethian 1988], the
appropriate equation to do this is

φt +~u·∇φ = 0 (1)

whereφt is the partial derivative ofφ with respect to time and∇ =
(∂/∂x,∂/∂y,∂/∂z) is the gradient operator.



An implicit function only approach to modeling the surface will
not yield realistic surface behavior due to an excessive amount of
volume loss on coarse grids. A seminal advance of [Foster and
Fedkiw 2001] in creating realistic liquids for computer animation
is the hybridization of the visually pleasing smooth implicit func-
tion modeling of the liquid volume with particles that can maintain
the liquid volume on coarse grids. The inclusion of particles pro-
vides a way for capturing the liveliness of a real liquid with spray
and splashing effects. Curvature was used as an indicator for allow-
ing particles to influence the implicit surface representation of the
water. This is a natural choice since small droplets of water have
very high curvature and dynamic implict surfaces have difficulty
resolving features with sharp corners.

Figure 2(a) shows a notched disk that we rotate for one rigid
body rotation about the point (50,50). The inside of the disk can
be thought of as a volume of liquid. Figure 2(b) shows the re-
sult of using an implicit surface only approach (after one rotation)
where both the higher and lower corners of the disk are erroneously
shaved off causing both loss of visual features and an artificially
viscous look for the liquid. This numerical result was obtained us-
ing a highly accurate fifth order WENO discretization of equation
1 (see e.g. [Jiang and Peng 2000; Osher and Fedkiw 2002]). For
the sake of comparison, we note that [Sethian 1999] only proposes
second order accurate methods for discretizing this equation. Fig-
ure 2(c) shows the result obtained with our implementation of the
method from [Foster and Fedkiw 2001]. The particles inside the
disk do not allow the implicit surface to cross over them and help
to preserve the two corners near the bottom. However, there is lit-
tle they can do to stop the implicit surface from drifting away from
them near the top corners. This represents loss of air or bubbles as
the method erroneously gains liquid volume. This is not desirable
since many complex water motions such as wave phenomenon are
due in part to differing heights of water columns adjacent to each
other. Loss of air in a water column reduces the pressure forces
from neighboring columns destroying many of the dynamic splash-
ing effects as well as the overall visually stimulating liveliness of
the liquid.

While the hybrid liquid volume model of Foster and Fedkiw at-
tempts to maintain the volume of the liquid accurately, it fails to
model the air or more generally the opposite side of the liquid sur-
face. We shift the focus away from maintaining a liquid volume
towards maintaining the liquid surface itself. An immediate advan-
tage of this approach is that it leads to symmetry in particle place-
ment. We place particles on both sides of the surface and use them
to maintain an accurate representation of the surface itself regard-
less of what may be on one side or the other. The particles are not
meant to track volume, they are intended to correct errors in the
surface representation by the implicit function. In [Enright et al.
2002] we showed that this surface only approach leads to the most
accurate 3D results for surface tracking ever achieved (in both CFD
and CG). This was done for analytical ”test” velocity fields. Fig-
ure 2(d) shows that this new method correctly computes the rigid
body rotation for the notched disk preserving both the water and
the air volumes so that more realistic water motion can be obtained.

In this current paper, we couple this new method to real velocity
fields and fluid dynamics calculations for the first time. Represen-
tative results of this new method can be seen in figure 3. A ball
is thrown into a tank of water with the same tank geometry, grid
spacing and ball speed as seen in figure 4 (courtesy of [Foster and
Fedkiw 2001]). The resulting splash after the ball impacts the sur-
face of the water is dramatically different between the two figures.
Our new method produces the well formed, thin sheet one would
visually expect. Note that the distorted look of the ball in our figure
is due to the correct calculation of the refraction of light when it
passes through the surface of the water. To give an indication of
the additional computational cost incurred using our new method,

(a) Initial Notched Disk (b) Implicit Surface Only

(c) Particles Inside Only (d) Our New Method

Figure 2:Rigid Body Rotation Test

figure 3 took about 11 minutes per frame, figure 4 took about 7 min-
utes per frame and a level set only solution takes about 3 minutes
per frame.

3.2 Particle Level Set Method

3.2.1 Initialization of Particles

Two sets of particles are randomly placed in a “thickened” surface
region (we use three grid cells on each side of the surface) with
positiveparticles in theφ > 0 region andnegativeparticles in the
φ ≤ 0 region. There is no need to place particles far away from
the surface since the sign of the level set function readily identifies
these regions gaining large computational savings. The number of
particles placed in each cell is an adjustable parameter that can be
used to control the amount of resolution, e.g. we use 64 partlces
per cell for most of our examples. Each particle possesses a radius,
rp, which is constrained to take a minimum and maximum value
based upon the size of the underlying computational cells used in
the simulation. A minimum radius of.1min(∆x,∆y,∆z) and maxi-
mum radius of.5min(∆x,∆y,∆z) appear to work well. The radius
of a particle changes dynamically throughout the simulation, since
a particle’s location relative to the surface changes. The radius is
set according to:

rp =

 rmax if spφ(~xp) > rmax
spφ(~xp) if rmin ≤ spφ(~xp) ≤ rmax ,
rmin if spφ(~xp) < rmin

(2)

wheresp is the sign of the particle (+1 for positive particles and
-1 for negative particles). This radius adjustment keeps the bound-
ary of the spherical particle tangent to the surface whenever possi-
ble. This fact combined with the overlapping nature of the particle
spheres allows for an enhanced reconstruction capability of the liq-
uid surface.



Figure 3:Our New Method (140x110x90 grid cells).

3.2.2 Time Integration

The marker particles and the implicit function are separately in-
tegrated forward in time using a forward Euler time integration
scheme. The implicit function is integrated forward using equa-
tion 1, while the particles are passively advected with the flow us-
ing d~xp/dt =~up, where~up is the fluid velocity interpolated to the
particle position~xp.

3.2.3 Error Correction of the Implicit Surface

Identification of Error: The main role of the particles is to de-
tect when the implicit surface has suffered inaccuracies due to the
coarseness of the computational grid in regions with sharp features.
Particles that are on the wrong side of the interface by more than
their radius, as determined by a locally interpolated value ofφ at
the particle position~xp, are considered to haveescapedtheir side
of the interface. This indicates errors in the implicit surface rep-
resentation. In smooth, well resolved regions of the interface, our
dynamic implicit surface is highly accurate and particles do not drift
a non-trivial distance across the interface.

Quantification of Error: We associate a spherical implicit func-
tion , designatedφp, with each particlep whose size is determined
by the particle radius, i.e.

φp(~x) = sp(rp−|~x−~xp|). (3)

Any difference inφ from φp indicates errors in the implicit function
representation of the surface. That is, the implicit version of the
surface and the particle version of the surface disagree.

Error Correction: We use escaped positive particles to rebuild
theφ > 0 region and escaped negative particles to rebuild theφ ≤ 0
region as defined by the implicit function. The reconstruction of the
implicit surface occurs locally within the cell that each escaped par-
ticle currently occupies. Using equation 3, theφp values of escaped
particles are calculated for the eight grid points on the boundary of
the cell containing the particle. This value is compared to the cur-
rent value ofφ for each grid point and we take the smaller value
(in magnitude) which is the value closest to theφ = 0 isocontour
defining the surface. We do this for all escaped positive and escaped
negative particles. The result is an improved representation of the
surface of the liquid.

Figure 4:Foster and Fedkiw 2001 (140x110x90 grid cells).

3.2.4 When To Apply Error Correction

We apply the error correction method discussed above after any
computational step in whichφ has been modified in some way.
This occurs whenφ is integrated forward in time and when the
implicit function is smoothed to obtain a visually pleasing surface.
We smooth the implicit surface with an equation of the form

φτ = −S(φτ=0)(|∇φ |−1), (4)

whereτ is a fictitious time andS(φ) is a smoothed signed distance
function given by

S(φ) =
φ√

φ2 +(∆x)2
. (5)

More details on this are given in [Foster and Fedkiw 2001].

3.2.5 Particle Reseeding

In complex flows, a liquid interface can be stretched and torn in a
dynamic fashion. The use of only an initial seeding of particles will
not capture these effects well, as regions will form that lack a suffi-
cient number of particles to adequately perform the error correction
step. Periodically, e.g. every 20 frames, we randomly reseed par-
ticles about the “thickened” interface to avoid this dilema. This
is done by randomly placing particles near the interface, and then
using geometric information contained within the implicit function
(e.g. the direction of the shortest possible path to the surface is
given by~N = ∇φ/|∇φ |) to move the particles to their respective
domains,φ > 0 or φ ≤ 0. The goal of this reseeding step is to pre-
serve the initial particle resolution of the interface, e.g. 64 particles
per cell. Thus, if a given cell has too few or too many particles,
some can be added or deleted respectively.

3.2.6 A Note on Alternative Methods

If we felt that preserving the volume of the fluid was absolutely nec-
essary in order to obtain visually pleasing fluid behavior, we would
have chosen to use a volume of fluid (VOF) [Hirt and Nichols 1981]
representation of the fluid. Although VOF methods explicitly con-
serve volume, they produce visually disturbing artifacts allowing
thin liquid sheets to artificially break up and form “blobbies” and
“flotsam” of liquid. Also, a visually desirable smooth fluid interface
is difficult to construct when using these methods.



Another alternative is to explicitly discretize the free surface with
particles and maintain a connectivity list between particles, see e.g.
[Unverdi and Tryggvason 1992]. This connectivity list is difficult
to maintain when parts of the free surface break apart or merge
together as is often seen in complex flows of water and other liquids.
Our approach avoids the especially difficult issues associated with
maintaining particle connectivity information.

3.3 Velocities at the Surface

Although the Navier-Stokes equations can be used to find the ve-
locity within the liquid volume, boundary conditions are needed for
the velocity on the air side near the free surface. These boundary
condition velocities are used in updating the Navier-Stokes equa-
tions, moving the surface, and moving the particles placed near the
surface. The velocity at the free surface of the water can be deter-
mined through the usual enforcement of the conservation of mass
(volume) constraint,∇ ·~u = 0, where~u = (u,v,w) is the velocity of
the liquid. This equation allows us to determine the velocities on
all the faces of computational cells that contain theφ = 0 isocon-
tour. Unfortunately, the procedure for doing this is not unique when
more than one face of a cell needs a boundary condition velocity. A
variety of methods have been proposed, e.g. see [Chen et al. 1995]
and [Foster and Metaxas 1996].

We propose a different approach altogether, the extrapolation of
the velocity across the surface into the surrounding air. As the com-
putational grid is refined, this method is equivalent to the usual
method, but it gives a smoother and more visually pleasing motion
of the surface on coarser (practical sized) grids. We extrapolate the
velocity out a few grid cells into the air, obtaining boundary condi-
tion velocities in a band of cells on the air side of the surface. This
allows us to use higher order accurate methods and obtain better
results when moving the implicit surface using equation 1 and also
provides velocities for updating the position of particles on the air
side of the surface. Velocity extrapolation also assists in the imple-
mentation of the semi-Lagrangian “stable fluid” method, since there
are times when characteristics generated by this approach look back
across the interface (a number of cells) into the air region for valid
velocities.

3.3.1 Extrapolation Method

The equation modeling this extrapolation for the x component of
the velocity,u, is given by

∂u
∂τ

= −~N ·∇u, (6)

where~N = (nx,ny,nz) is a unit vector perpendicular to the implicit
surface andτ is fictitious time. A similar equation holds for the
v and w components of velocity field. Since we use an implicit
surface to describe the fluid,~N = ∇φ/|∇φ |. Fast methods exist for
solving this equation inO(nlogn) time, wheren is the number of
grid points that one needs to extrapolate over, in our case a five grid
cell thick band on the air side of the interface. The fast method is
based upon the observation that information in equation 6 propa-
gates in only one direction away from the surface. This implies that
we do not have to revisit previously computed values of~uext (the
extrapolated velocity) if we perform the calculation in the correct
order. The order is determined by the value ofφ allowing us to
do anO(nlogn) sorting of the points before beginning the calcula-
tion. The value ofu itself is determined by enforcing the condition
at steady state, namely∇φ ·∇u = 0 where the derivatives are de-
termined using previously calculated values ofφ andu. From this
scalar equation, a new value ofu can be determined, and then we
proceed to the next point corresponding to the next smallest value

of φ , etc. Further details of this method are discussed in [Adal-
steinsson and Sethian 1999].

3.3.2 Velocity Advection

The momentum portion of the Navier-Stokes equations is:

~ut = −~u·∇~u+ν∇ · (∇~u)− 1
ρ

∇p+~g, (7)

whereν is the kinematic viscosity of the fluid,ρ is the density of
the fluid, p is the pressure, and~g is an externally applied gravity
field. We use the semi-Lagrangian “stable fluids” method [Stam
1999] to update the convective portion of this equation, i.e. the
~u ·∇~u term. This method calculates the first term on the left hand
side of equation 7 by following the fluid characteristics backwards
in time to determine from which computational cell the volume of
fluid came, and then taking an average of the appropriate veloci-
ties there. This allows one to stably take much larger time steps
than would be allowed using other time advancement schemes for
velocity advection. A consequence of the now allowed large semi-
Lagrangian time step is that near the surface, we might look across
the interface as many as a few grid cells into the air region to find
velocities. In a standard approach, valid velocities are not defined
in this region. However, our velocity extrapolation technique easily
handles this case ensuring that physically plausible velocities exist a
few grid cells into the air region. In fact, we extrapolate the velocity
the maximum distance from the surface that would be allowed dur-
ing a semi-Lagrangian ”stable fluids” time step guaranteeing that a
smooth, physically plausible and visually appealing velocity can be
found there.

3.3.3 Control

Our velocity extrapolation method enables us to apply a newly de-
vised method for controlling the nature of the surface motion. This
is done simply by modifying the extrapolated velocities on the air
side of the surface. For example, to model wind-blown water as a
result of air drag, we take a convex combination of the extrapolated
velocities with a pre-determined wind velocity field

~u = (1−α)~uext+α~uwind, (8)

where~uext is the extrapolated velocity,~uwind a desired air-like ve-
locity, and 0≤ α ≤ 1 the mixing constant. This can be applied
throughtout the surface or only locally in select portions of the com-
putational domain as desired. Note that setting~uwind = 0 forces
churning water to settle down faster with the fastest settling result-
ing from α = 1. All of the figures shown in the paper usedα = 0,
but we demonstrate howα can be used to force a poured glass of
water to settle more quickly in the accompanying video.

3.4 Summary

We divide up the computational domain into voxels with the com-
ponents of~u stored on the appropriate faces andp, ρ andφ stored
at the center of each cell. This arrangement of computational vari-
ables is the classic staggered MAC-style arrangement [Harlow and
Welch 1965]. The density of a given cell is given by the value ofφ

at the center of the cell. The evolution of~u, p, ρ andφ in a given
time step is performed in a series of three steps as outlined below:

1. The current surface velocity is smoothly extrapolated across
the surface into the air region as discussed in section 3.3.1.
Appropriate control behavior modifications to the velocity
field are made.



2. The water surface and marker particles are integrated forward
in time via an explicit time step subcycling method with the
appropriate corrections toφ as described in section 3.2.3.

3. The velocity field is updated with equation 7 using the up-
dated values forρ. This is done by first using the semi-
Lagrangian “stable fluid” method to find an estimate for the
velocity. This estimate is further augmented by the viscous
and forcing terms. The spatial derivatives used in calculating
these terms are calculated using a standard centered second
order accurate finite difference scheme. Then a system of lin-
ear equations is assembled and solved for the pressure in or-
der to make this intermediate velocity field divergence free.
The newly calculated pressure is applied as a correction to
the intermediate velocity in order to fully update the water’s
velocity field. Interaction of the liquid with objects, walls,
etc. is treated here as well. For this step, we follow exactly
the method of [Foster and Fedkiw 2001] and refer the reader
there for more details.

This sequence of steps is repeated until a user defined stopping
point is reached. The time step for each iteration of the above steps
is determined using the water’s velocity to calculate an appropri-
ate CFL condition which is approximately five times larger than
the traditional CFL condition used in fluid simulations (the semi-
Lagrangian ”stable fluids” method allows this). Also, any viscosity
related CFL restrictions are locally dealt with by reducing the vis-
cosity in the offending cells in order to allow for our larger time
step.

3.5 Rendering

Our results are rendered using a physically based Monte Carlo ray
tracer capable of handling all types of illumination using photon
maps and irradiance caching [Jensen 2001]. To integrate our simu-
lation system with the renderer we implemented a geometry primi-
tive that intersects rays with the implicit surface directly by solving
for the root of the signed distance along the ray. Depending on
the accuracy required by a particular scene we use either a trilin-
ear or a tricubic filter [Marschner and Lobb 1994] to reconstructφ .
The normal is computed using trilinearly interpolated central dif-
ferences for the trilinear surface, or simply using the derivative of
the reconstructed tricubic surface.

The properties ofφ have two advantages in the rendering con-
text. First, intersecting a ray with the surface is much more efficient
than it would be for an isosurface of a general function. The signed
distance function provides a lower bound on the distance to the in-
tersection along the ray, allowing us to take large steps when the
current point is far from the surface. Second, it is easy to provide
for motion blur in the standard distribution ray tracing framework.
To compute the surface at an intermediate time between two frames
we simply interpolate between the two signed distance volumes and
use the same intersection algorithm unchanged. For the small mo-
tions that occur between frames the special properties ofφ are not
significantly compromised.

4 Results

4.1 Pouring Water Into A Glass

Figures 1 and 7 show the high degree of complexity in the water
surface. Note the liveliness of the surface of the water when the
water is initially being poured. The ability to maintain the visu-
ally pleasing thin sheets of water during the turbulent mixing phase
is a consequence of our new method. We do not loose any of the
fine detail with regards to the air pockets formed, since we model

both sides of the water surface. Even though the calculation was
performed on a Cartesian computational grid, the glass was shaped
as a cylinder on the grid, with the grid points outside the cylinder
treated as an object which does not permit the fluid to interpene-
trate it. The glass was modeled as smooth and clear in order to
highlight the action of the water being poured into the glass. The
computational cost was approximately 8 minutes per frame.

To our knowledge, the only other complex, three dimensional
simulation of a liquid being poured into a glass for computer an-
imation is from the Gingerbread Man torture scene in the feature
film “Shrek”. Milk lacks the transparency of water making it diffi-
cult to clearly view the dynamic behavior of the milk surface. Also,
the modeling of a thick polygonal glass with a rough surface does
not provide a clear view of the milk making a direct comparison
difficult.

The scene used to render our result contains just a simple cylin-
drical glass, the simulated water surface, and a few texture mapped
polygons for the background. Illumination comes from a physically
based sky model and two area sources. Because water only reflects
and refracts other objects, the scene including the sky is very impor-
tant to the appearance. The glass and the water together create three
dielectric interfaces: glass-air, water-air, and air-water, so the inside
surface of the glass has two sets of material properties depending on
whether it is inside or outside the implicitly defined surface (which
is easy to determine by checking the sign ofφ ). The illumination
in the shadow of the glass is provided by a photon map, and illu-
mination from the sky on diffuse surfaces in the scene is computed
using Monte Carlo integration. We also note that milk would not
present as difficult a global illumination problem due to its lack of
transparency. Motion blur was included for these renderings.

4.2 Breaking Wave

As a second example, we have performed a breaking wave calcu-
lation in a numerical wave tank as shown in figure 8. To begin to
model this pheonmenon, we needed to chose an initial condition for
the wave. We chose to use the theoretical solution of a solitary wave
of finite amplitude propagating without shape change [Radovitzky
and Ortiz 1998]. The initial velocities u and v in the x and y direc-
tions respectively and surface heightη are given by:

u =
√

gd
H
d

sech2
[√

3H

4d3 x

]
(9)

v =
√

3gd

(
H
d

)3/2 y
d

sech2
[√

3H

4d3 x

]
tanh

[√
3H

4d3 x

]
(10)

η = d+H sech2
[√

3H

4d3 x

]
, (11)

where g is the gravitational constant 9.8 m/s. For our simulations,
we setH = 7 andd = 10. We used the same initial conditions
in three spatial dimensions, replicating the two dimensional initial
conditions along the z-axis.

Next, we needed to introduce a model of a sloping underwater
shelf in order cause the propagating pulse to actually pile up on
itself and form a breaking wave. We performed a variety of two di-
mensional tests to determine the best underwater shelf geometry to
generate a visually pleasing breaking wave. Figure 5 is a sequence
of frames from one of the two dimensional tests we ran with the
same x-y cross section as can be found in our 3D example. We
found this prototyping technique to be a fast and easy way to ex-
plore possible breaking wave behaviors in a fraction of the time it
would take to run a fully three dimensional test case.

After determining the best submerged shelf geometry to generate
a breaking wave, we generated a slight tilt in the geometry in order



Figure 5:Two Dimensional Breaking Wave

to induce a curl in the break of the wave and enhance the three
dimensional look. A sketch of the shelf geometry used in our three
dimensional calculations is shown in figure 6. An incline of slope
1:7 rises up from the seabottom to a depth of 2 m below the surface
of the water. Instead of allowing the incline to go all the way to
the surface we chose to have it flatten out at this depth in order to
illustrate the splash up effects after the initial breaking of the wave.

Next we ran a fully three dimensional simulation, the results of
which can be seen in figures 8 and 9. The wave has the intended
curling effect. The formation of a tube of air is clearly seen after
the wave splashes down, with the “air” particles maintaining the
tube even after the wave begins a secondary splash up. We observe
some solely three dimensional effects including the fingering of the
breaking wave. The computational cost was approximately 3 min-
utes per frame.

Because of the very different scale of this simulation as com-
pared to the water glass, different optical effects are important. We
model the water volume under the surface, which in surf is densely
populated with scattering particles, as a gray diffuse reflector. The
color of the water comes from a cloudy blue sky. Because the fea-
tures that can be resolved are so fine compared to the grid resolu-
tion, we used cubic interpolation for this scene.

The simulation shown captures the basic phenomena of the
breaking wave on a very coarse grid, but in real waves there are
small-scale features that, while not important to thebehaviorof the
large wave, are very important for itsappearance. Coupling a 2D
simulation for the small scale features to the wave simulation is a
promising avenue for future work. Once those waves are incorpo-
rated it will become important to treat diffusion of light through
the water more correctly. Also, no texture mapping was performed,
e.g. use of a Philips spectrum [Tessendorf 2001], or bump mapping
technique [Fournier and Reeves 1986]. Another challenge will be
to augment our method to naturally handle spray and foam.

Figure 6:Submerged Shelf

5 Conclusion and Future Work

We have presented some novel computational methods for en-
hanced surface tracking and modeling of the surface motion. Com-
bining these leads to the possibility of creating photorealistic behav-
ior in 3D water simulations for the purpose of computer graphics
animation. We discussed some advances in rendering the simulated
photorealistic behavior in order to complete the illusion that real
water is being seen. The computational methods presented can eas-
ily be included into an existing three dimensional fluid simulation
animation tool. While we have not done any texture mapping of the
water surfaces, we believe that our “thickened” front tracking ap-
proach should enable texture mapping of an implicitly defined fluid
surface, and we will pursue this as future work.
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Figure 7:Water being poured into a clear, cylindrical glass (55x55x120 grid cells). Our method makes possible the fine detail seen in
the turbulent mixing of the water and air.

Figure 8:Abstract view of wave breaking on a submerged shelf (360x50x80 grid cells). Note the ability to properly model the initial
breaking (first three frames) and secondary splash up (last frame) phases.

Figure 9:Closeup of wave action seen in figure 8.
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Figure 1: Ellipse traveling through a shallow pool of water (left), formation of a milk crown (center), smoke rising past a sphere (right).

Abstract

We present a method for simulating water and smoke on anunre-
strictedoctree data structure exploiting mesh refinement techniques
to capture the small scale visual detail. We propose a new technique
for discretizing the Poisson equation on this octree grid. The result-
ing linear system is symmetric positive definite enabling the use of
fast solution methods such as preconditioned conjugate gradients,
whereas the standard approximation to the Poisson equation on an
octree grid results in a non-symmetric linear system which is more
computationally challenging to invert. The semi-Lagrangian char-
acteristic tracing technique is used to advect the velocity, smoke
density, and even the level set making implementation on an octree
straightforward. In the case of smoke, we have multiple refine-
ment criteria including object boundaries, optical depth, and vortic-
ity concentration. In the case of water, we refine near the interface
as determined by the zero isocontour of the level set function.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: octree data structure, adaptive mesh refinement,
physics-based animation, smoke, water, level set, particles

1 Introduction
Realistic simulations of smoke and water are among the most de-
sired in the special effects industry, since they provide the direc-
tor with explicit control over the environment enabling the creation
of otherwise impossible content. These phenomena contain highly
complex motions and rich visual detail, especially when they in-
teract with inanimate objects or the actors themselves. Moreover,
a significant portion of the entertainment value and much of the

∗e-mail: losasso@graphics.stanford.edu
†e-mail: fgibou@math.stanford.edu
‡e-mail: fedkiw@cs.stanford.com

believability relies on an adequate representation and presentation
of the small scale visual details such as thin films in water, small
rolling vortices in smoke, droplets and sprays, etc. Thus, it is desir-
able to have both simulation and rendering techniques that can deal
with levels of detail.

Recent improvements in simulation techniques have led to im-
pressive simulations of both smoke and water on uniform grids.
Empowered by the semi-Lagrangian work of [Stam 1999], [Fedkiw
et al. 2001] used vorticity confinement to simulate smoke with vi-
sually rich small scale rolling motions. Similarly using both semi-
Lagrangian methods and hybridized particle and implicit surface
techniques, [Foster and Fedkiw 2001; Enright et al. 2002b] sim-
ulated splashing water with both smooth surfaces and thin sheets.
While these methods have achieved great success, their applica-
tion is limited by the computational hardware (i.e. CPU, RAM, disk
space) required for the simulations. In an attempt to alleviate this,
[Rasmussen et al. 2003] proposed a method that combines inter-
polation and two-dimensional simulation to obtain highly detailed
simulations of large scale smoke-like phenomena. While stunning
results were obtained, this method does not faithfully reproduce
the three-dimensional Navier-Stokes equations and thus is unable
to obtain results for various fully three-dimensional phenomena.
Moreover, water was not addressed.

In order to optimize the use of computational resources, we use
an adaptive mesh or a level of detail approach where more grid
cells are placed in visually interesting regions with rolling smoke or
sheeting water. Although adaptive mesh strategies for incompress-
ible flow are quite common, see e.g. [Ham et al. 2002], implemen-
tations based on recursive structures, such as the octrees we propose
here, are less common. In fact, [Popinet 2003] claims to have the
first octree implementation of incompressible flow, although there
are certainly similar works such as the nested dyadic grids used for
parabolic equations in [Roussel et al. 2003]. We extend the work
of [Popinet 2003] in two ways. First, we extend octrees to free
surface flows allowing the modeling of a liquid interface. Second,
we considerunrestrictedoctrees whereas [Popinet 2003]’s octrees
were restricted.

Adaptive meshing strategies lead to nonuniform stencils and thus
a nonsymmetric system of linear equations when solving for the
pressure, which is needed to enforce the divergence free condition.
Although [Popinet 2003] solved this nonsymmetric linear system
with a multilevel Poisson solver, [Day et al. 1998] pointed out that
these multigrid approaches can be problematic in the presence of



Figure 2: Simulation of smoke past a sphere. The rightmost two figures are close up views. The effective resolution is 10243 and the
computational time is about 4-5 minutes per frame.

objects with high frequency detail. Moreover, the situation wors-
ens in the presence of interfaces (such as that between water and
air), especially since the faithful coarse mesh representation of wa-
tertight isosurfaces is a difficult research problem in itself, see e.g.
[Lee et al. 2003]. Although multigrid solvers can be efficiently ap-
plied if the density is smeared out across the interface as in [Suss-
man et al. 1999] (resembling a one-phase variable density flow as
in [Almgren et al. 1998]), this damps out the surface wave genera-
tion that relies on horizontal pressure differences caused by stack-
ing different heights of high-density fluid. That is, damping these
high frequency pressure differentials makes multigrid efficient, but
also damps the wave motion leading to visually uninteresting overly
viscous flows.

More recently, [Sussman 2003] departed from a smeared out
density approach and instead solves a free surface problem as in
[Enright et al. 2002b]. Moreover, [Sussman 2003] switches from
multigrid to a preconditioned conjugate gradient (PCG) method
stating that the pressure can be robustly solved for with PCG since
the matrix is symmetric. However, the symmetry requirement lim-
its his work to uniform non-adaptive grids. Our new formulation
alleviates this restriction by providing a symmetric positive definite
discretization of the Poisson equation on an unrestricted octree data
structure allowing fast solvers such as PCG to be applied, even in
the presence of interfaces.

2 Previous Work
[Kass and Miller 1990] solved a linearized form of the three dimen-
sional Navier-Stokes equations, and [Chen and Lobo 1994] solved
the two dimensional Navier-Stokes equations using the pressure to
define a height field. The full three dimensional Navier-Stokes
equations were solved in [Foster and Metaxas 1996; Foster and
Metaxas 1997a; Foster and Metaxas 1997b] for both water and
smoke. Large strides in efficiency were made when [Stam 1999]
introduced the use of semi-Lagrangian numerical techniques, and
[Fedkiw et al. 2001] advocated using vorticity confinement in order
to preserve the small scale structure of the flow. [Foster and Fed-
kiw 2001; Enright et al. 2002b] proposed hybridizing particle and
level set methods for water. The incompressible form of the Navier
Stokes equations has been used and augmented to model fire [Lam-
orlette and Foster 2002; Nguyen et al. 2002], clouds [Miyazaki et al.
2002], particle explosions [Feldman et al. 2003], variable viscosity
[Carlson et al. 2002], bubbles and surface tension [Hong and Kim
2003], splash and foam [Takahashi et al. 2003], etc. [Treuille et al.
2003] proposed a method for control and used it to make letters out
of smoke, and [Stam 2003] solved these equations on surfaces cre-
ating beautiful imagery. The compressible version of these equa-
tions were used to couple fracture to explosions in [Yngve et al.
2000]. There are also other approaches such as SPH methods [Pre-
moze et al. 2003; M̈uller et al. 2003].

The representation of implicit surfaces on octree data structures
has a long history in the marching cubes community, see the re-
cent papers of [Ju et al. 2002; Ohtake et al. 2003] and the refer-
ences therein. Moreover, [Frisken et al. 2000; Perry and Frisken

2001] popularized the use of signed distance functions on octree
grids. In order to simulate water, we need to solve the partial
differential equations that govern the motion of the signed dis-
tance function. [Strain 1999b] advocated using quadtrees and semi-
Lagrangian methods to solve these equations. Reinitialization for
maintaining the signed distance property was addressed in [Strain
1999a], and extrapolation of velocities was considered in [Strain
2000]. One difficulty with semi-Lagrangian methods for solving
level set equations is that extreme mass loss (and thus visual arti-
facts) usually occurs, however [Enright et al. 2004] recently showed
that the particles in the particle level set method alleviate this diffi-
culty. A quadtree structure for level set evolution was also proposed
in [Sochnikov and Efrima 2003]. However, none of these authors
considered level sets in the context of incompressible flows with
interfaces such as water.

Starting with the seminal works of [Berger and Oliger 1984;
Berger and Colella 1989], adaptive mesh refinement (AMR) typ-
ically utilizes uniform overlapping Cartesian grids of various sizes.
This is because AMR originally focused on compressible flow with
shock waves, and a block structured approach is better able to avoid
spurious shock reflections from changing grid levels (since there are
less of them). However, in the absence of shocks, a more optimal
unrestricted octree approach can be used for incompressible flow.

3 The Octree Data Structure

Figure 3 illustrates our unrestricted octree data structure (see e.g.
[Samet 1989]) with a standard MAC grid arrangement [Harlow and
Welch 1965], except that all the scalars except the pressure are
stored on thenodesor corners of the cell. This is convenient since
interpolations are more difficult with cell centered data (see e.g.
[Strain 1999a]).

Coarsening is performed from the smaller cells to the larger cells,
i.e. from the leaves to the root. When coarsening, nodal values are
either deleted or unchanged, and the new velocity components at
the faces are computed by averaging the old values from that face.
Refinement is performed from the larger cells to the smaller cells.
The value of a new node on an edge is defined as the average of
its two neighbors, and the value of a new node at a face center is
defined as the average of the values on the four corners of that face.
The velocities on the new faces are defined by first computing the
velocities at the nodes, and then averaging back to the face cen-
ters. Nodal velocities are computed by averaging the four values
from the surrounding cell faces as long as the faces are all the same
size. Otherwise, using the coarsest neighboring face as the scale,
we compute temporary coarsened velocities on the other faces to
be used in the averaging.

For all variables, we constrain T-junction nodes on edges to be
linearly interpolated from their neighbors on that edge. Similarly,
T-junction nodes on faces are constrained to be the average of the
four surrounding corner values. See, e.g. [Westermann et al. 1999]
for more details.
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4 Navier Stokes Equations on Octrees
We use the inviscid, incompressible Navier-Stokes equations for the
conservation of mass and momentum

ut +u ·∇u = −∇p+ f, (1)

∇ ·u = 0, (2)

whereu = (u,v,w) is the velocity field,f accounts for the external
forces, and the spatially constant density of the mixture has been
absorbed into the pressurep. Equation 1 is solved in two steps.
First we compute an intermediate velocityu∗ ignoring the pressure
term, and then we compute the velocity update via

u = u∗−∆t∇p (3)

where the pressure is defined as the solution to the Poisson equa-
tion,

∇2p = ∇ ·u∗/4t. (4)

The external forces are discretized at the cell faces and we post-
pone the details of their discretization to sections 5 and 6. The
convective part of the velocity update is solved using a semi-
Lagrangian stable fluids approach as in [Stam 1999]. First we com-
pute nodal velocities, and then we average these values to the cell
faces (see section 3). The cell face values are used to trace back
characteristics, and trilinear interpolation of nodal values is used to
define the new intermediate value of the velocity component on the
face in question.

4.1 The Divergence Operator

Equation 4 is solved by first evaluating the right hand side at every
cell center in the domain. Then a linear system for the pressure is
constructed and inverted. Consider the discretization of equation
4 for a large cell with dimensions4x, 4y and4z neighboring
small cells as depicted in figure 3. Since the discretization is closely
related to the second vector form of Green’s theorem that relates a
volume integral to a surface integral, we first rescale equation 4 by
the volume of the large cell to obtain Vcell4t∇2p= Vcell∇ ·u∗. The
right hand side now represents the quantity of mass flowing in and
out of the large cell within a time step4t in m3s−1. This can be
further rewritten as

Vcell∇ · (u∗−4t∇p) = 0. (5)

This equation implies that the∇p term is most naturally evaluated
at the same location asu∗, namely at the cell faces, and that there
is a direct correspondence between the components of∇p andu∗.
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Figure 4: Discretization of the pressure gradient.

Moreover, substituting equation 3 into equation 5 implies Vcell∇ ·
u = 0 or ∇ ·u = 0 as desired.

Invoking the second vector form of Green’s theorem, one can
write

Vcell∇ ·u∗ = ∑
faces

(u∗face·n)Aface,

wheren is theoutwardunit normal of the large cell andAface rep-
resents the area of a cell face. In the case of figure 3, the dis-
cretization of thex component∂u∗/∂x of the divergence reads
4x4y4z∂u∗/∂x = u∗2A2 + u∗3A3 + u∗4A4 + u∗5A5− u∗1A1, where
the minussign in front ofu∗1A1 accounts for the fact that the unit
normal points to the left. Then∂u∗/∂x = ((u∗2 +u∗3 +u∗4 +u∗5)/4−
u∗1)/4x. They andz directions are treated similarly.

Once, the divergence is computed at the cell center, equation 4
is used to construct a linear system of equations for the pressure.
Invoking again the second vector form of Green’s theorem, one can
write

Vcell∇ · (4t∇p) = ∑
faces

((4t∇p)face·n)Aface. (6)

Therefore, once the pressure gradient is computed at every face, we
can carry out the computation in a manner similar to that of the
velocity divergence above. There exist different choices in the dis-
cretization of(∇p)face, and we seek to discretize the pressure gra-
dient in a fashion that yields a symmetric linear system. Efficient
iterative methods such as PCG (see e.g. [Saad 1996]) can be ap-
plied to symmetric positive definite matrices offering a significant
advantage over methods for nonsymmetric linear systems. More-
over, since data access for the octree is not as convenient as for
regular grids, there is a strong benefit in designing a discretization
that leads to a symmetric linear system.

4.2 The Pressure Gradient

Consider the configuration in figure 4. In the case where two cells
of the same size juxtapose each other, standard central differencing
defines the pressure gradient at the face between them, as is the case
for py = (p10− p1)/4y.

Consider the discretization of the pressure gradient in thex di-
rection at the face between cell 1 and cell 2. A standard approach
is to first compute a weighted average valuepa for the pressure, by
interpolating between the pressure valuesp1 and p10. Then, since
standard differencing of ˆpx = (p2−pa)/(.754x) does not define ˆpx
at the cell face but midway between the locations ofpa andp2, one
usually resorts to more complex discretizations. A typical choice is
to pass a quadratic interpolant throughpa, p2 and p6 and evaluate
its derivative at the cell face, see e.g. [Chen et al. 1997]. However,
this approach yields a nonsymmetric linear system that is slow to
invert. The nonsymmetric nature of the linear system comes from



Figure 5: An ellipsoid slips along through shallow water illustrating our method’s ability to resolve thin sheets. The effective resolution is
5123 and the computational time is about 4-5 minutes per frame.

the non-locality of the discretization, i.e.pa depends onp10 and
the quadratic interpolation would depend onp6. Consequently, the
equation for cell 1 involves bothp10 andp6. It is unlikely that the
equation for cell 6 depends onp1, since cell 6 juxtaposes another
cell of the same size, namely cell 2. And even if it did, the coeffi-
cients of dependence would not be symmetric.

Our approach is based on the fact thatO(4x) perturbations in
the pressure location still yield consistent approximations as in [Gi-
bou et al. 2002]. Therefore definingpx = (p2− pa)/(.754x) at
the cell face still yields a convergent approximation, since the lo-
cation of p̂x is perturbed by a small amount proportional to a grid
cell. Moreover, we can avoid the dependence ofpa on values other
thanp1 by simply settingpa = p1. This corresponds to anO(4x)
perturbation of the location ofp1, and therefore still yields a con-
vergent approximation. Thus, our discretization ofpx is simply
px = (p2− p1)/(.754x). Moreover, since onlyp1 andp2 are con-
sidered, one can definepx = (p2− p1)/4 where4 can be defined
as the size of the large cell,4x, the size of the small cell,.54x,
the Euclidean distance betweenp1 and p2, etc. We have carried
out numerical tests against known analytic solutions to the Poisson
equation demonstrating that all these choices converge. Currently,
we are investigating the impact of different4 definitions on smoke
and water simulations.

In light of equation 6,px contributes to both row 1 and row 2
of the matrix representing the linear system of equations, since it is
located at the cell face between cell 1 and cell 2. More precisely,
the contribution to row 1 occurs through the term

4t pxn1Aface=4t
p2− p1

4
(1)Aface,

sincen1, thex component of the outward normal to cell 1, points to
the right (hencen1 = 1). Likewise, the contribution to row 2 occurs
through the term

4t pxn1Aface=4t
p2− p1

4
(−1)Aface,

sincen1, thex component of the outward normal to cell 2, points
to the left (hencen1 = −1). Therefore, the coefficient forp2 in
row 1 and the coefficient forp1 for row 2 are identical, namely
4tAface/4. The same procedure is applied to all faces, and the
discretization of they andz components of the pressure gradient
are carried out in a similar manner. Hence, our discretization yields
a symmetric linear system that can be efficiently inverted with a
PCG method. The preconditioner we use is based on an incomplete

LU Cholesky factorization that we modify to ensure that the row
sum ofLU is equal to the row sum of the original matrix (see [Saad
1996]). This yields a significant speed up in the matrix inversion.

The matrix constructed above is negative definite, as is usual
when discretizing equation 4. We simply multiply all equations by
−1 to make it positive definite. We also note that Dirichlet or Neu-
mann boundary conditions do not disrupt the symmetry. In the case
of a Neumann boundary condition, the term(p2− p1)/4 disap-
pears from both row 1 and row 2. In the case of a Dirichlet boundary
condition, e.g. forp2, the equation forp2 drops out of the system
and all the terms involvingp2 are moved to the right hand side of
the linear system.

4.3 Accuracy

We stress that the dominant errors are due to the first order accu-
rate semi-Lagrangian advection scheme. The velocity averaging
is second order accurate and is required in all MAC grid methods
in order to define a full velocity vector at a common location for
the semi-Lagrangian advection. Dropping the Poisson solver from
second to first order accuracy merely puts it on par asymptotically
with the semi-Lagrangian scheme. However, we still solve for a
fully divergence free velocity field to machine precision just as in
a non-adaptive setting. We tested our Poisson solver on many ex-
act solutions and readily obtain several digits of accuracy indicating
that the errors from this part of the algorithm are small. See table 1
for a typical result.

5 Smoke
The external forces due to buoyancy and heat convection are mod-
eled asfbuoy =−αρz+β (T−Tamb)z, wherez = (0,0,1), Tamb is
the ambient temperature andα andβ are parameters controlling the
influence of the density and the temperature. The density and the
temperature are passively advected with the flow velocity and are
updated with the semi-Lagrangian method using velocities defined
at the nodes (see section 3). Both the density and the temperature
are then averaged to the faces in order to evaluate the forcing term.

The vorticity confinement force is calculated as follows. First
we define velocities at the centers of cells by using area weighted
averaging of face values. Then all the derivatives needed to com-
pute the vorticity,ω = ∇×u, are computed on cell faces using the
same method used to compute pressure derivatives. Area weighted
averaging is used (again) to define all these derivatives at the cell
center, and then we compute the vorticity and its magnitude (at



L1error order L∞error order
4.083×10−2 −− 6.332×10−2 −−
8.713×10−3 2.22 2.203×10−2 1.523
2.952×10−3 1.56 1.292×10−2 .770
9.980×10−4 1.56 7.745×10−3 .739
4.010×10−4 1.31 4.249×10−3 .866
1.820×10−4 1.14 2.287×10−3 .894

Table 1: Poisson solver accuracy on an unrestricted octree grid.

the cell center). Next, the gradients of the vorticity are computed
at the cell faces, and averaged back to the cell center to define
N = ∇|ω|/|∇|ω||. Finally, the unscaled force can be computed at
the cell centers asN×ω. Cell face values of this term are obtained
by averaging the values from the two cells that contain the face.
Then this term is scaled by the diagonal of the faceh and a tunable
parameterε.

Inside an object, we set the temperature to the object temperature
and the density to zero. For velocity, we clip the component normal
to the object so that it is guaranteed to be separating. Furthermore,
we apply Neumann boundary conditions to the cell faces that in-
tersect the object when solving for the pressure. This keeps these
velocities fixed.

In the case of smoke, we utilize three different refinement crite-
ria. First, we refine near objects since their interactions with smoke
will introduce small scales features that enhance believability. Sec-
ond, we refine near concentrations of high vorticity. Third, we re-
fine in a band of density values (for example.1< ρ < .3). This last
criteria prunes out both the low densities that cannot be seen as well
as the high densities interior to the smoke which are self-occluded.

6 Water
We use the particle level set method of [Enright et al. 2002a] with
φ ≤ 0 designating the water andφ > 0 representing the air. When
solving for the pressure, one only needs to consider cells in the
water. Dirichlet boundary conditions ofpI = pair+σκ are set in the
air cells bordering the water, whereσ is a surface tension coefficient
and κ = ∇ · (∇φ/|∇φ |) is the local interface curvature. We note
that [Hong and Kim 2003] considered surface tension in the case of
bubbles, but not for films.κ is computed by averaging nodal values
of φ to the cell center, computing derivatives ofφ on the cell faces,
averaging these back to the cell center, using these cell centered
values to obtain the normal, computing derivatives of the normal
on the cell faces, averaging these values back to the cell center,
and finally using these cell centered values to obtain the curvature.
The only external force we account for is gravity viau+ = 4tg.
The interaction with objects is similar to that of smoke. We apply
adaptive refinement to a band about the interface (focusing more
heavily on the water side), noting that the signed distance property
of φ makes this straightforward.

Recently, [Enright et al. 2004] showed that the particle level set
method relies on particles for accuracy and the level set for connec-
tivity. Moreover, they showed that one could use a simple semi-
Lagrangian method on the level set with no significant accuracy
penalty as long as the particles are evolved with at least second
order Runge-Kutta. Thus, we updateφ with the semi-Lagrangian
method using velocities defined at the nodes (see section 3). The
particles are advected using second order Runge-Kutta and trilin-
early interpolated nodal velocities.

We use the fast marching method [Tsitsiklis 1995; Sethian 1996]
to maintain the signed distance property ofφ . First, the signed
distance is computed at all the nodes around the interface, and they
are marked asupdated. The nodes adjacent to theupdatednodes
are taggedtrial . Then we compute potential values ofφ at all trial
nodes using onlyupdatednodes. The smallest of these is tagged

Figure 6: Formation of a milk crown demonstrating the effect of
surface tension. We takeσ = 0 (left) andσ = .0005 (right). The
effective resolution is 5123 and the computational time is about 4-5
minutes per frame.

asupdated, and all its non-updated neighbors are taggedtrial . This
process is repeated to fill in a band of values near the interface.
For many grid nodes there are neighboring values ofφ in all six
directions, but at T-junctions there are directions whereφ is missing
some of its neighbors. Since we coarsen as we move away from
the interface, these directions will generally not contribute to the
potential value ofφ . Thus, we trivially ignore them.

Velocity extrapolation is carried out by first defining nodal veloc-
ities, extrapolating them, and then computing the face velocities. If
we perform this algorithm as in [Enright et al. 2002a], we will oc-
casionally encounter grid points that have no neighboring values of
velocity and cannot be updated. While this is rare (but not impos-
sible) for uniform grids, T-junctions exacerbate their occurrence on
octree grids. When this happens, we skip over these nodes until one
of their neighbors is updated (and then we update them in the usual
manner).

7 Conclusions
Our new symmetric formulation reduces the pressure solver to ap-
proximately 25% of the total simulation time requiring only about
20 iterations to converge to an accuracy of machine precision. This
leaves little room for improvement and even a zero cost pressure
solver would only make the code 25% faster. On the other hand,
nonsymmetric formulations requiring BiCGSTAB or GMRES and
nonoptimal preconditioners easily lead to an order of magnitude
slowdown, or in the worst case scenario problems with robustly
finding a solution at all. The symmetric formulation enables a full
octree discretization of the equations that govern both the flow of
smoke and water. Moreover, we achieved reasonable computational
costs on grids as fine as 10243 allowing us to capture fine scale
rolling motion in smoke and thin films for water.
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