TP Visualisation *M1 info*

durée - 3h

Avril 2010

1 Introduction

1.1 Données et conteneurs particuliers du programme

- MC_int_vector : Conteneur d'entiers de taille quelconque. Utilisation particulière dans le cas de taille 3 pour désigner un voxel ou une taille. MC_int_vector a=MC_int_vector(4,5,6); //initialisation directe int ax=a[0]; //acces au kieme element par a[k] a[2]=a[1]-1; //acces et assignation
- MC_v3d: Point ou vecteur 3D stocké par 3 doubles. MC_v3d a(-0.5,1.2,1.6); //initialisation MC_v3d b=x+5*MC_v3d(1,2,-1.1); //operations classiques double ay=a[1]; //acces b[2]=a.dot(b); //b_z=dot_product(a,b)
- MC_sphere_geometry : Une sphere geometrique (point+rayon).
- MC_sphere_physic : Surcouche de la sphere geometrique avec information de vitesse, force, masse, ...
- MC_grid_3D_scalar : grille 3D contenant un double dans chaque voxel.
- MC_grid_3D_scalar_marching_cube : Classe d'aide pour extraire une isosurface d'une MC_grid_3D_scalar.
- MC_mesh_index_vector : Maillage polygonale contenant : un vecteur de points (MC_v3d), une connectivitee (vecteur de MC_int_vector).
- MC_int_pair : Pair d'entier (u0,u1)=(u1,u0) non ordonné. Un arbre peut être créé par std : :set<MC_int_pair,MC_int_pair_less>.

2 Système de particules

- Dans MC_particle_engine, localisez la fonction d'évolution temporelle.
- Complétez la méthode de contrainte de la sphere dans le cube unité (dans MC_sphere_physic : :constraint_in_unit_cube()).
- Mettez en place la détection de collision en vous aidant de la structure volumique.
- Complétez la réponse à la collision dans
 MC_sphere_physic : :constraint_no_collision_sphere(&particle_1,&particle_2).

3 Potentiel

- Localisez et comprendre la méthode de création du potentiel volumique.
- Complétez la méthode MC_grid_3d_scalar : :add_potential() pour générer le potentiel souhaité.
- Visualiser le résultat par projection sur un plan avec la touche *U*.
- Si vous êtes en avance : ajouter un potentiel d'interaction (ex. ressorts)

4 Marching cube

- Comprendre comment fonctionne le marching cube.
- Complétez la méthode MC_grid_3d_scalar_marching_cube : :create_polygon en interpolant la valeur zéro.
- Complétez la création de la triangulation évitant les doublons de sommets et visualiser une surface lisse.