Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Bangor University School of Computer Science

Folded Paper Geometry from 2D Pattern and 3D Contour

Damien Rohmer, Marie-Paule Cani, Stefanie Hahmann, Boris Thibert

Grenoble & Lyon University, INRIA, France

Folded Papers are rare in video-games & CG Movies

- Few available modeling tools!
 - Non smooth
 - Isometry preserving

Related Work

• Physically based modeling

Cloth simulators

[Choi, Ko; TOG 02] [English, Bridson; TOG 08] [Thomaszewski et al.; CGF 09]

Thin plates from folds

[Burgoon et al.; C&A 06]

Specific spring-mass system

[Kang et al.; CASA 09]

Slow, Smooth surface

Folds are user defined

Folds along existing edges

Related Work

Geometric approaches

Developable construction

[Frey; CAD 04] [Rose et al.; SGP 07]

Restricted to the convex hull

Mesh deformation

[Tang, Chen; TVCG 09] [Popa et al.; CGF 09]

Procedural generation

[Decaudin et al.; CGF 06]

Slow, smooth surface

Limited range of deformation

Our Key Idea

- New subdivision improving length preservation
- Automatic generation of folding curves

Overview

- Divide & Conquer approach
 - Localize one fold
 - Compute optimal 3D profile

Recursive subdivision

• Input

- 2D Pattern = convex polygon
- 3D Boundary = 3D polyline

• Algorithm

- 1. Localize fold curve
- 2. Split into two separated parts
- 3. Restart at 1. on the two parts

Loop until isometry is reached

Localizing fold line : straight line

Localize = Find good pair of vertices

Case 1: L=Lo

=> 2D line mapped in 3D straight line

Case 2: L<Lo : 3D profile is not a straight line !

 L_0

Localizing fold line: curved folds

• Localize = Find pair of vertices with least compression

Case 2: L<L₀

profile = cubic polynomial - ·

- precise: good approximation of conical section
- robust: does not oscillate
- fast: limited degrees of freedom

Computing folding profile

Goal: Improve length preservation

Computing folding profile

Goal: Improve length preservation => Find the **best** profile **improving length** preservation

- Optimization = non linear minimization E=f(curve)
- 6 degrees of freedom per curve (2 tangents)
- Curve is considered if E1<E0

Final surface

2D Delaunay triangulation

3D mapping

Results : comparison to real sheet

Subdivision

Our result

Real example

Results : folded paper

Results: complex folded paper

Results: complex folded paper

Results: Real time capture

Results: Residual error

	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		11 11	
Error Length	0.09 (0.21)	0.21 (0.25)	1.12 (2.2)	1.28 (2.5)
Error Angle	0.16 (1.4)	0.35 (1.9)	2.52 (18.3)	2.89 (22.8)
Error Area	0.7 (1.1)	1.3 (1.1)	6.0 (18)	8.0 (18)
Time	<0.1s	<0.1s	0.2s	0.6s
$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$				

 $E_{\text{length}} = \sum_{i} (L_i^0 - L_i)^2$; $E_{\text{angle}} = \sum_{i} (\alpha_i^0 - \alpha_i)^2$; $E_{\text{area}} = \sum_{k} (a_k^0 - a_k)^2$ a^0 $)\alpha$ $\int \alpha^0$ L^0

Results: Extension to metal material

Our result

Input

Results: Robustness to extended/compressed 3D boundary

Eurographics 2011 LLANDUDNO UK

Error residual

Static only

Conclusion

New subdivision algorithm

- creates paper looking surface
- almost isometry preserving

Main ideas:

- Localize the folds : least compression bw vertices
- Find the best profile : minimizing length error

+ Fast

+ Non smooth surface

+ Adapted mesh

Thank you

