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Figure 1: Animation wrinkling (left to right): rest-shape mesh, frames from coarse simulation, and augmented with dynamic wrinkles.

Abstract
Moving garments and other cloth objects exhibit dynamic, complex
wrinkles. Generating such wrinkles in a virtual environment cur-
rently requires either a time-consuming manual design process, or
a computationally expensive simulation, often combined with ac-
curate parameter-tuning requiring specialized animator skills. Our
work presents an alternative approach for wrinkle generation which
combines coarse cloth animation with a post-processing step for ef-
ficient generation of realistic-looking fine dynamic wrinkles. Our
method uses the stretch tensor of the coarse animation output as
a guide for wrinkle placement. To ensure temporal coherence,
the placement mechanism uses a space-time approach allowing not
only for smooth wrinkle appearance and disappearance, but also for
wrinkle motion, splitting, and merging over time. Our method gen-
erates believable wrinkle geometry using specialized curve-based
implicit deformers. The method is fully automatic and has a sin-
gle user control parameter that enables the user to mimic different
fabrics.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: Cloth, wrinkle modeling, procedural animation, im-
plicit modeling, mesh deformation

1 Introduction

Despite decades of research, efficient modeling of realistic cloth
deformation remains a challenge. Although physically based simu-
lation works well for computing dynamic effects and handling col-
lisions, accurate simulation of folds and wrinkles is computation-
ally expensive. This computational cost is particularly problematic
in production settings, where users end up rerunning the simula-
tion multiple times with different parameters to achieve the desired
look.

An alternative, used in some production settings [Cutler et al.
2005], is to augment a coarse simulation using a procedural wrin-
kle model, in which the wrinkles are designed manually. This ap-
proach has two main drawbacks. First, designing wrinkle patterns
manually is time consuming and requires specific skills. In addi-
tion, manual setting can only be done for specific frames, whereas
real cloth wrinkles move continuously and deform over time, often
exhibiting complex behaviors such as dynamic merging/separation.

Our method advances the augmentation idea one step further, in-
troducing an automated post-processing step for believable wrinkle
generation, to replace the manual intervention. The method can
be applied on top of any pre-existing cloth animation, including
soft spring animation or skinning. We observe that wrinkling be-
havior is strongly linked to cloth developability, or quasi-isometry
between the deforming cloth and the corresponding 2D patterns
or rest-shape [Popa et al. 2009]. Thus, given a coarse simulation
output we use the stretch of the deformed surface with respect to
this rest-shape as a guide for wrinkle placement. To obtain time-
coherent animated wrinkling, wrinkle locations and magnitude are
changed smoothly over time. The actual wrinkle geometry is gen-
erated using a novel implicit surface deformer mechanism which
supports complex wrinkle shapes, including variations in radii and
depth between and along wrinkles, as well as seamless transitions
between adjacent and merging wrinkles (Figures 1,10).



1.1 Previous Work

Realistic cloth simulation has received considerable attention in the
computer graphics community [Choi and Ko 2005]. Many of the is-
sues addressed, such as collision processing, are outside the scope
of this work, which focuses on realistic modeling of static and dy-
namic cloth fold and wrinkles. Previous methods addressing this
problem can be grouped into three main categories.

Several methods add isometry-related constraints directly to a
physically-based cloth model. Standard elastic models are ill-
conditioned when limited compression takes place along the cloth
surface, as shown in [Choi and Ko 2002]. Therefore using a
spring model with increased stiffness to enforce isometry is prob-
lematic. Instead, [English and Bridson 2008] propose to use non-
conforming elements to allow more degrees of freedom while mini-
mizing triangle stretch during the simulation. [Thomaszewski et al.
2009] define the stretch constraint directly in the continuum model.
These methods model various types of cloth with a high degree of
accuracy and achieve impressive results. However, creating believ-
able results requires finely tuned physical parameters and the meth-
ods are computationally very expensive (several minutes to more
than one hour per second of simulation). This restricts their use
to non-interactive, high-quality animations. [Muller and Chentanez
2010] use a second solver for adding wrinkles on a globally subdi-
vided mesh. While the approach may be used in an automatic way,
the subdivided edges may not be aligned with the wrinkles leading
to visual artifacts.

Other approaches facilitate the design of realistic cloth shapes by
minimizing energy functions that measure developability. Though
not fully physically-based, such formulations have the advantage of
allowing the specification of positional constraints. [Tang and Chen
2009] approximate a set of input points with a quasi-developable
surface, enabling static cloth design. [Popa et al. 2009] use a
weighted space-time optimization to generate coherent wrinkles
over time on capture-generated cloth surfaces. They use the video
input from the capture to obtain wrinkle locations.

A fully geometric approach for wrinkling garments is proposed
by [Decaudin et al. 2006]. They use prior knowledge of cloth buck-
ling behavior when wrapped around cylindrical body parts to gener-
ate pre-defined types of procedural folds. The method is restricted
to the case of cylindrical cloth surfaces experiencing a small set of
pre-defined deformations (compression, twisting or folding along
the cylinder’s axis) and cannot be combined with arbitrary cloth
animation.

A number of methods have been proposed to efficiently generate
procedural wrinkles on top of coarse cloth animations. [Hadap et al.
1999] compute a compression intensity map over the surface. The
map is subsequently used to locally weigh a pre-painted texture pat-
tern modeling the wrinkles. The weighting is computed such that
the area of compressed triangles is approximately restored. The
resulting texture is used as a bump-map for very fast wrinkle ren-
dering. [Kimmerle et al. 2004] extend this idea to procedurally
generated texture patterns, which are locally oriented in the triangle
compression direction. The deformation is performed using dis-
placement mapping. Both methods can be applied to animation by
blending multilayered textures at the price of violating the area con-
servation constraints. However, time-varying fold orientation can-
not be accurately modeled using texture interpolation. Moreover, in
both settings wrinkle frequency and width have to be pre-defined by
the user. We too use a procedural approach for wrinkling, but our
method generates actual geometric wrinkles on the input surface
and directly ensures wrinkle coherence over time.

[Cutler et al. 2005] define cloth wrinkles as curves on the input cloth
surface and use those as deformers for generating the final geom-
etry. The curve shapes and influence radii are manually designed

for a number of specific frames, and the associated wrinkles fade
in and out when intermediate frames are computed. This approach
enables artists to create the desired fold shapes but requires signif-
icant user time and expert design skills. Our method uses a similar
idea of encoding wrinkles as surface curves. However these curves
are automatically positioned and animated over time by analyzing
the coarse simulation output.

Recently, [Wang et al. 2010] and [de Aguiar et al. 2010] used a
machine learning approach to generate real-time wrinkles, they re-
quire training data sets with similar examples which limit the range
of application of the method.

1.2 Overview and Contributions

This paper presents a novel efficient procedural method to enhance
a pre-existing coarse cloth animation with realistic-looking ani-
mated wrinkles. Fabric wrinkles typically form in areas where the
surface is compressed to allow for preservation of material, and are
nearly perpendicular to the direction of compression. Based on this
observation our method analyzes the stretch tensor of the coarse
simulation output when compared to the user-given rest-shape and
places wrinkle curves in areas where the tensor indicates compres-
sion or shrinkage, tracing curves along streamlines of the tensor
orthogonal to the main shrinkage direction (Section 2, Figure 2,
left). In order to maintain temporal coherence between wrinkles in
dynamic scenes, the method is not applied independently in each
frame but uses the computed tensor to smoothly propagate exist-
ing curves from one frame to the next, and to add or delete curves
where necessary (Section 3, Figure 2, middle). Real-life wrinkles
form to improve isometry with respect to the cloth rest-shape with
their width or radius linked to the fabric type and thickness. Our
method uses the stretch tensor to determine local wrinkle width and
depth, such that adding wrinkles reduces the surface stretch with
respect to the rest-shape. Given the computed set of curves and the
associated depth and width values the method generates believable
wrinkle geometry using new curve-based implicit deformers (Sec-
tion 4, Figure 2, right).

The combined system provides an effective, fast, and fully au-
tomatic mechanism to create realistic-looking, complex dynamic
wrinkles augmenting the input animation. Our tensor-based wrinkle
curve tracing places curves in locations consistent with the input an-
imation, while the temporal propagation mechanism supports wrin-
kle motion and deformation over time, enabling wrinkles to slide
along the cloth surface and to smoothly change shape and orienta-
tion following cues provided by the input animation sequence. By
using the new implicit curve-based deformers we can model com-
plex wrinkle shapes with smoothly varying width and depth and
effortlessly support seamless wrinkle mergers. Finally, our compu-
tation of the wrinkle width and depth parameters reduces the stretch
between the final cloth surface and the rest-shape, reflecting real-
life wrinkle behavior, even though we do not aim to exactly pre-
serve the isometry to the rest shape.

The user can mimic the impact of different fabrics on the wrinkle
size using a single parameterRmin which defines the minimal wrin-
kle curvature radius (see Section 4.1).

2 Static wrinkle curve generation

This section describes the extraction of 1D curves representing
wrinkles given a deformed cloth mesh and the associated rest-
shape. The proposed method can be used as-is to add wrinkles
to coarse simulation outputs for static settings, such as dressing a
mannequin. In animation settings this process is combined with the
curve propagation method described in Section 3 to achieve tempo-
ral continuity.



Figure 2: Algorithm overview: The current stretch tensor field (visualized by ellipses scaled and oriented according to its eigenvalues and
eigenvectors) and the previous wrinkle curves (indicating wrinkle orientation) are used to generate the current wrinkle curves while ensuring
temporal coherence. Implicit deformers are used to generate the wrinkle geometry. The time-step length has been artificially increased for
illustration purposes.

In many cases, the rest-shape is a planar 2D pattern. If the rest-
shape is not planar, we segment it into near-developable charts and
parameterize these in the plane [Sheffer et al. 2007], in order to
simplify subsequent curve tracing. We use the ABF++ parameteri-
zation method [Sheffer et al. 2005] to get a good trade-of between
length and angle preservation. To maintain coherence along chart
boundaries we constrain the parameterization to preserve boundary
edge lengths [Sheffer et al. 2007]. We use the parameterization to
define a common coordinate frame for the rest-shape triangles and
to speed up the curve tracing.

2.1 Wrinkle vector field from stretch tensor

As noted earlier, cloth wrinkles occur in compressed regions and are
orthogonal to the main shrinkage direction. We are thus looking for
a wrinkle vector field in the cloth surface space whose magnitude
reflects the amount of compression and whose direction is orthog-
onal to the local direction of compression. In computer graphics
stretch is often measured using the formulation of [Sander et al.
2001]. However, we found that the following alternative stretch
tensor definition used in continuum mechanics [Talpaert 2003] pro-
vides more consistent vector field directions.
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Let S be the 3D mesh representing the de-

formed cloth and S the corresponding rest-
shape. The 2D affine deformation from a

triangle in S to its counterpart in S can be
expressed by the 2x2 matrix T.

Let (u1,u2) and (u1,u2) be the 2D edge
vectors representing the shape of the triangle in the local frames of

S and S respectively. Then T is given byT = [u1,u2][u1,u2]
−1 .

The deformation is isometric (zero stretch) iff TT = T−1. The

2 × 2 symmetric positive definite matrix U =
√
TTT, called the

stretch tensor corresponding to the square root of the Right Cauchy-
Green deformation tensor in continuum mechanics , is thus a good
measure of compression and elongation. Assuming that there are
no degenerate triangles in the mesh, U can be diagonalized as

U = λ1 e1e
T
1 + λ2 e2e

T
2 , (1)

where λ1 ≤ λ2 are real, positive eigenvalues, and e1, e2 are unit
eigenvectors, defining main stretch or shrinkage directions (Fig-
ures 2, 3).

To extract a wrinkle map from this per-triangle tensor field we have
to express it as a smooth per-vertex map describing well-defined
and smooth compression directions throughout.

Using the common coordinate frame, defined by the pre-computed
planar parameterization, we define the stretch tensorUi at a vertex
i as: Ui =

⊕

j∈Vi
ωjUj , where Vi denotes the index set of the tri-

angles incident to vertex i, and ωj = Aj/
∑

k∈Vi
Ak are triangle-

area based weights. A simple component-wise averaging of the
tensors dissipates much of the anisotropic information. Instead we
use an interpolation scheme based on an affine-invariant Rieman-
nian metric defined in tensor space [Pennec et al. 2006], with ⊕
being the iterative weighted means in the exponential map, where
Ui are obtained by iteratively applying the following formula until
convergence

Ui = U
1/2
i exp

(

∑

j

ωj log
(

U
−1/2
i UjU

−1/2
i

)

)

U
1/2
i (2)

This scheme provides smoothly varying eigenvalues and, more im-
portantly, smoothly rotating eigenvectors with little anisotropy dis-
sipation. We define the continuous stretch tensor field U over the
whole mesh using barycentric coordinates and the tensor weighting
operator ⊕.

For wrinkling purposes, we are only interested in areas of the mesh
where the coarse animation results in compression, i.e. locations
where the smallest eigenvalue λ1 is less than one. Hence we define
a wrinkle vector field v at any point on the surface as

v = max(1− λ1, 0) e2 . (3)

The intensity of v reflects the rate of shrinkage per unit of length
wherever shrinkage occurs and its direction is orthogonal to the
main shrinkage direction.

2.2 Tracing wrinkle curves

Our goal is to efficiently extract wrinkle curves that provide a plau-
sible interpretation of the surface behavior in response to the mea-
sured compression. Thus we aim to compute curves that capture
the shape and magnitude of the compression vector field, while
providing a good sampling of compressed regions. To this end,
one approach could be to trace curves in areas of high compres-
sion, while enforcing a minimal distance between them. However,
real-life wrinkles can in fact merge or come very close together
in some regions, violating such minimal distance constraints. In-
stead, to generate believable wrinkles we trace curves one-by-one
starting from seed points with high compression magnitude, while
constraining each new seed to be at a minimal distance from earlier
traced curves. By enforcing minimal distance for seed points only
we allow curves to come arbitrarily close-by. Our implicit deformer



method for generating wrinkle geometry (Section 4) robustly han-
dles such merging behavior.

We define wrinkle curves as parametric curves γ̄ : [0, 1] → S̄ ex-
tracted along streamlines of the wrinkle vector field v over the pa-
rameterized rest surface by integrating the 2D ordinary differential
equation:

{

γ′(u) = ±v(γ(u))
γ(0) = s
‖v(γ(u))‖ ≥ 1− λmax ,

where s is a starting seed position, and (1−λmax) ∈ [0, 1] is a com-
pression threshold characterizing regions of sufficient compression.
In practice we use λmax = 0.9.

To initiate the tracing we order the mesh vertices according to their
compression rates placing them in a priority queue. Starting with
the vertex with maximal compression as the first seed, we proceed
as follows:

1. Integration: Since v is sufficiently smooth thanks to our con-
tinuous expression for the stretch tensor U, we successfully
trace a smooth curve starting from the seed using forward Eu-
ler integration. As v is non-oriented, we propagate the curve
in both directions from the seed-point, checking that the dot
product between the previous direction and the new one stays
positive during the integration. The integration stops when the
local compression rate ‖v‖ becomes smaller than 1 − λmax,
or when the surface boundary is reached.

2. Seed Selection: The next seed point is selected by extracting
the next vertex from the queue while discarding those which
are too close to the already computed wrinkle curves. The
required minimal distance is set to twice the minimal radius of
wrinkle curvature Rmin, as any two wrinkles lying at a closer
distance than that would effectively overlap throughout.

The process terminates when the queue is empty.

The 2D curves γ

Figure 3: Wrinkle tracing: stretch ten-
sor (left); wrinkle vector field and wrinkle
curves (right).

are mapped to the
deformed surface,
with the resulting
curves γ indicat-
ing the loci and
directions where
wrinkle geometry
should be added
to compensate for
local shrinkage
(Figure 3). The
compression rate

along each curve is used to control the shape of the wrinkle as
discussed in Section 4.

3 Time coherent wrinkle curve animation

Real cloth wrinkles are continuous over time. However, using the
algorithm in Section 2 as-is to independently generate wrinkles at
each frame of an animation sequence can lead to inconsistent sets
of wrinkles popping in and out. [Popa et al. 2009] relied on in-
put video combined with fairly costly, space-time optimization to
achieve the temporal continuity. We do not have the video prior
and aim for a very fast solution to achieve the continuity. To this
end we use a combination of particle-based wrinkle-seed propaga-
tion and temporal smoothing to achieve the desired effect.

Particle-based wrinkle-seed propagation: We observe that due
to the smoothness of the input animation the wrinkle vector field

changes gradually from one frame to the next. We thus expect many
of the folds in the previous frame to remain in the current one with
possible small position or shape changes. To achieve this wrinkle
sliding effect, we initialize the wrinkle curves for each frame with
those in the previous one. Recall that our static processing placed
wrinkles by first placing wrinkle seeds at local compression max-
ima and then tracing them along the vector field streamlines. To
extend this process to the dynamic setting, we aim to attract the
wrinkle curves toward the new local maxima of compression. For
efficiency we do not search for local maxima along the entire curve
but only for the original seed point. To attract the seed to a local
maximum we use a particle-based animation setting, as follows.

The particle-based animation processes seeds in an order based on
the amount of compression, given by the wrinkle vector field at
the current frame. For each seed s previously positioned at s(t)
at time t, its new position at time t + dt is expressed as s(t) +
dp, where dp is a small displacement vector on the 2D pattern
modeling the movement of the wrinkle. We use a non-zero dp if the
compression at the seed-point location decreased from the previous
frame. In this case, the displacement vector dp is oriented in the
direction of the gradient of greatest compression ∇‖v‖ in order to
move towards the closest local maximum of compression. To find
the optimal displacement we do a line search along the gradient
direction, bounding the maximal displacement length allowed to
Rmin. This choice prevents wrinkles from sliding more than half
their width in one step, leading to visually natural-looking results.

To avoid multiple wrinkles from converging toward the same lo-
cal maximum, we force each seed to stay at a distance of at least
2 × Rmin from previously computed wrinkle curves. We then re-
trace the curves using streamline integration (Section 2.2). At the
extremities of each wrinkle we check the amount of displacement
with respect to previous position, and shorten the curve if the dis-
placement is larger than Rmin.

Adding and Deleting Curves: We add to this animation process
a mechanism to delete vanishing wrinkles and to create new ones.

If the local com-

Figure 4: Wrinkle curve propagation be-
tween frames. Curve seeds are indicated by
spheres. Several curves remain in place or
slide, two curves are deleted, and five new
ones are added in the newly compressed
area.

pression is not suf-
ficient after the al-
lowed amount of
sliding for the wrin-
kle seed, the seed
and the associated
curve are deleted
for the subsequent
frames. Finally,
after every previ-
ously existing seed
is processed, new
wrinkles are gener-
ated in newly com-
pressed regions by

applying the same procedure as in the static case.

Temporal smoothing: The algorithm we just described provides
a plausible approximation of wrinkle behavior over time. In par-
ticular, the local amplitude of compression increases and decreases
smoothly enough, so we observed no visual popping when wrinkles
are inserted of deleted. However, although we generate continu-
ous trajectories for seed points, the integration of wrinkle curves is
computed independently at each time step. Hence the trajectory of
points far from the seed may not be continuous enough.

To achieve temporal continuity we smooth the integrated trajecto-
ries in the time domain. Let the wrinkle curves be consistently pa-



rameterized is space by a parameter u. Then a given wrinkle curve
can be considered as a space time function γ(u, t). We apply a 1D
low-pass filter on each time dependent curve γ(u = const, t) in
order to ensure smooth transitions between frames.

4 Wrinkle geometry

Once the wrinkle curves are computed for all the animation frames,
the final step is to generate the actual, realistic-looking wrinkle
geometry at each frame. Real-life wrinkles have varying widths
and depths reflecting a combination of the amount of compres-
sion involved and the fabric’s thickness and structure. For instance,
compressing silk can generate very fine wrinkles while compressed
leather or felt form much coarser folds.

4.1 Wrinkle Parameters

Figure 5: a: Measurement of curvature evolution with respect to
a given compression rate on real cloth (photos at left), and a pro-
gressive wrinkle modeled with our approach (right). b: Wrinkle
merging on real cloth (left) and using our method (right).

To control wrinkle shape we use two parameters affecting its width
and depth: the curvature radiusR(u) along each wrinkle curve, and
the wrinkle offset β(u) (Figure 6, left), determining the portion of
the circular arc used for forming the wrinkle. We use the notion of
minimal radius of curvature Rmin to account for the type of fabric.
The radius is set by the user and in our experiments provides in-
tuitive control of wrinkle behavior. The actual wrinkle radii are a
function of this limit and of the compression rate computed from the
wrinkle vector field, with the wrinkle radius decreasing as the com-
pression increases. We are not aware of any existing physical law
or empirical study on this topic. We therefore conducted our own
experiments on various samples of real cloth by measuring curva-
ture radii and comparing them to the compression rate computed in
a corresponding simulation. See Figure 5 (a) for the example of a
wool scarf. Based on those experiments, we derived the following
relationship:

R(u) =

(

1− 2/π

v(u)

)

Rmin ,

where v(u) = ‖v(u)‖ is the compression rate, i.e. the norm of the
wrinkle vector field along the wrinkle curve, computed using Equa-
tion (3). This equation interpolates the surface curvature along the
wrinkle between infinity when no compression occurs, to 1/Rmin

when the compression corresponds to a half circular profile (when
v(u) = 1− 2/π).

Figure 6: Left: Relationship between the width r, the height h, and
the arc-length l of a wrinkle, generated using a given offset distance
β. Right: the projection step performed to create the wrinkle pro-
file. Mesh vertices inside the region where f > 1 are projected onto
the isosurface.

Once the radius is set, the actual width (and related height) of the
wrinkle should be such that that the shrinkage with respect to the
rest shape is minimized. We express those using the offset β which
is subsequently used by our implicit deformer. The offset β is com-
puted so that the increase in length ∆l due to the wrinkle com-
pensates for the local shrinkage of the mesh. All the relationships
needed for this computation are summarized in Figure 6, left.

4.2 Implicit Deformers

We aim to create wrinkle geometry that follows the previously com-
puted curves and conforms to the computed local wrinkle parame-
ters. We also aim to smoothly handle close-by wrinkles, avoiding
self-intersections and other artefacts. Previous procedural settings
[Cutler et al. 2005; Decaudin et al. 2006] used pre-defined or man-
ually designed wrinkle shapes, and thus cannot be used for more
general wrinkles. The deformation approach of [Popa et al. 2009]
can potentially handle diverse wrinkle parameters, but has no obvi-
ous way to process close-by and overlapping wrinkles. Instead, our
method relies on new implicit deformers specifically designed to
have the desired specifications. The implicit formulation supports
smoothly varying wrinkle parameters, robustly handles complex
wrinkle interactions such as wrinkles smoothly merging or splitting
and prevents collisions between adjacent wrinkles by implicitly re-
placing intersection with merging. Intersection between wrinkled
geometry and the character’s mesh are prevented during the same
deformation step as discussed below.

Recall that an implicit surface (see [Bloomenthal 1997] for details)
is an iso-surface f(p) of a smooth field function f , often defined as
a decreasing function of the distance to a source element, referred
to as a skeleton. In the definitions below the iso-value used to de-
fine all surfaces is one. Implicit surfaces are known for their abil-
ity to smoothly blend when they are close-by by summing up the
field contributions from the different skeletons. We define the im-
plicit geometry of the actual wrinkles by using the wrinkle curves
as the skeletons. The resulting implicit generalized cylinders are
then blended together, modeling the smooth merging and splitting
behaviors. The resulting structures are used as deformers to locally
deform the surface mesh around them, by projecting neighboring
mesh vertices to the combined iso-surface.

Wrinkle primitives: Using the convolution surface model to get
bulge-free blends we define each implicit wrinkle primitive as the
integral of a kernel function along the skeleton curve c(u):

f(p) =

∫

u

ω(u) κ(‖c(u)− p‖) du , (4)

where ω(u) is a weighting function controlling the radius of the
deformer and κ is a kernel function aligning it with the wrinkle
curve. In this paper, we use the Cauchy kernel κ(x) = 1/(1 +
s2x2)2, with s set to one hundred, for meshes scaled to fit into the
unit cube, to reduce the distance at which implicit primitives start
to blend and compute the convolution integral using a closed form
solution [Mccormack and Sherstyuk 2001].

To obtain the desired deformer radius we analyze the analytical
expression of the Cauchy integral. Due to the fast decay of the
Cauchy kernel, the radius almost reaches a limit value that depends
only on ω(u), except at the extremities of the primitive (see Fig-
ure 8 (right) for typical shapes generated with a constant ω(u)).
Using the formula giving this limit radius, we obtain ω(u) =

4s(1 + s2R(u)2)3/2/π. The offset parameter β (Section 4.1) is
used to position the wrinkle skeleton at a varying offset distance
β(u) below (or above) the associated wrinkle curves, enabling us
to model shallow to deep wrinkles mimicking real examples such
as those in Figure 5.



Surface deformation: We aim to blend the wrinkles with the ac-
tual underlying mesh surface for which we have no implicit defini-
tion. Computing such a representation, for instance a convolution
surface based on the mesh triangles, is very costly. Instead we in-
troduce a new approach for locally blending implicit and explicit
geometry based on the observation that at any point a mesh can be
locally approximated by its tangent plane.

We define an extra implicit primitive, called the mesh-deformer,
whose contribution at each point p is set equal to the contribution
of the tangent plane of the closest point on the mesh. Calling z, the
distance between p and the closest point:

fmesh(p) = fplane(p) =
π

s2(1 + s2(z(p) + z0)2)
.

with z0 = 1/s
√

π/s2 − 1 used to enforce the isovalue 1 to be
located on the mesh.

Figure 7: Wrinkle Geometry: dress mesh before and after refine-
ment, and final geometry

The actual deformation consists of locally projecting the mesh ver-
tices along their normal direction onto the iso-surface generated by
summing the field contributions of the mesh-deformer and those
of the wrinkle primitives, as shown in Figure 6 (right) for a single
wrinkle. To prevent wrinkle-deformers from affecting several mesh
layers when the mesh represents folded cloth, their contribution is
only applied to the surface in the vicinity of the associated wrin-
kle curve, up to a distance where their influence can be neglected
(2 × R(u) with our setting of the Cauchy kernel). To accurately
capture wrinkle geometry, the mesh is first locally refined in the
region of influence of the wrinkle curves. The curves are embed-
ded into the refined mesh to align mesh edges with the wrinkle top.
The refined mesh is generated using constrained Delaunay trian-
gulation [Shewchuk 2002]. The resulting refined mesh (Figure 7),
smoothly joins with the coarse triangulation.

Note that using a projection scheme is necessary, since simply
summing displacement fields associated with skeleton curves, as
in [Singh and Fiume 1998], would generate visible artifacts in our
case (Figure 8). Instead, our scheme takes advantage of the almost
bulge-free behavior of convolution surfaces when curve primitives
joint. The combined action of the wrinkle and mesh deformers
is computed at interactive rates and generates believable wrinkle
shapes, reflecting the compression applied by the coarse animation
and the fabric properties.

Wrinkling direction and collision avoidance: By choosing the
appropriate offset and projection directions each wrinkle deformer
can be used to control the direction of the wrinkles with respect
to the mesh normal . For dressed characters we by default form
outward pointing garment wrinkles thus avoiding creation of ex-
tra collisions between the deformed mesh and the character’s body.

Figure 8: Comparison between a deformation algorithm where
vertices are moved according to the sum of displacement fields as-
sociated with individual wrinkles (middle), and our solution where
vertices are projected to the iso-surface (right).

More complex collisions situations with obstacles on both sides of
the coarse mesh are handled by re-projecting the colliding wrinkle
vertices onto the external object surface when applying the deform-
ers, with the effect of locally suppressing wrinkles in these regions.

5 Results

We applied our algorithm to various cloth simulation scenarios and
analyzed the results in terms of shrinkage reduction, visual realism,
and computational time.

Figure 9: Left: rest-shape (top) and de-
formed surface (bottom). Right: Three
different cloth types compensating for
the same amount of compression.

Measurements:
Figure 9 demon-
strates simulation
of the behavior of
different types of
cloth by changing
the material constant
Rmin. It shows a
planar piece of cloth
undergoing unilat-
eral compression on
the front, with three
different values
of the minimal
curvature radius

resulting in different wrinkle magnitudes and frequencies. When
defining the wrinkle size our method aims to reduce the shrinkage
with respect to the planar patterns. To evaluate its impact we
measured the before and after stretch for the examples in Figure
9. The coarse simulation output exhibits a maximal length error
of 36% along the front. Our algorithm nearly restores the original
length with just a 2% error. This remaining error is largely due
to the blending of the implicit deformers with the mesh. In the
opposite direction, .i.e. along the wrinkle curves, shrinkage stays
below 5%. Finally, we measured the global stretch on the input
and final meshes, expressed as an L2 norm of the compression
magnitudes. We obtained a 20% reduction in the global stretch,
although restoring isometry to the rest-shape was not an explicit
goal of our method.

Visual Realism: We performed qualitative comparisons of our
results with real-life outputs for two scenarios: a piece of cloth
pushed from several directions (Figure 5) and a towel pushed for-
ward by a leg (Figure 11). As shown by these two examples our
results look quite similar to the real-life ones. Clearly exact com-
parison is not possible as the inputs conditions were not identical.
As shown in Figure 11 we also compared our result to a fine simu-
lation achieving comparable results in a fraction of the time.

Application to complex geometry: We tested our algorithm on
a number of diverse garment animations. The coarse input simu-



Figure 10: Simulating different fabrics. From left to right: frame from a coarse simulation; two frames augmented with believable wrinkles
for different types of fabric; zoom on merging wrinkles

Figure 11: While high resolution simulation takes 10 to 25s per
frame, our method takes 2s per frame and exhibits even finer details.
a: Real experiment (left), high resolution simulation (middle) and
the output of our method (right). Note the consistency between our
and real wrinkle orientations. b: High resolution simulation (left)
and our wrinkles (right).

lations were created using Blender1. Figure 1 shows a dress and
a t-shirt worn by an animated character. The wrinkles our method
creates on both are consistent with the motion. As shown in the
associated video, our approach generates a believable dynamic be-
havior for the wrinkling t-shirt when the character suddenly stops
rotating. An example of using our method to add wrinkles to skin-
ning based animation in shown in Figure 12, with realistic wrinkles
showing up on the tights as the character’s leg bends. Figure 13
shows three other interesting animations, including two dressed fe-
male characters with different dresses and motions and a dressed
bunny. The corresponding complete sequences are shown in the ac-
companying video. In all the examples the added wrinkles visibly
enhance the coarse inputs. These examples demonstrate that fast
simulation automatically augmented with fine wrinkles provides a
viable, believable alternative to full-blown simulation.

Figure 12: Wrinkling skinning animation (left), note the gradually
appearing wrinkles on the tights (right).

Runtimes: We tabulated the runtimes of our method executed on
a single CPU and compared them with the cloth simulation module
available in the open-source Blender software. This cloth simula-
tion module is based on implicit integration and uses the collision
processing method from [Bridson et al. 2002].

In our experiments, low resolution simulations were computed
at 25ms to 2s per frame depending on the collision complexity.
Adding our wrinkles generally takes 1s to 2s per frame. To compare
with, higher resolution simulations obtained after uniform mesh
subdivision such that triangle edges are not longer than our mini-
mal curvature radii run at 10 to 25 seconds per frame, so our method

1http://www.blender.org/

gains one order of magnitude. The following table summarizes our
computational time in ms per frame. We separate wrinkle curve
processing from geometry generation done by locally projecting
vertices to the implicit surface.

coarse wrinkle projected projection

vertices curve vertices time

Basic rectangle 400 100ms 475 118ms

Towel 80 50ms 300 75ms

T-shirt 1168 800ms 1500 750ms

Bunny’s dress 364 300ms 1000 700ms

Tights 1112 400ms 500 400ms

Dress Fig. 13 931 700ms 900 600ms

Dress Teaser 1249 850ms 3500 2700ms

Note that the number of projected vertices depends mainly on the
re-triangulation criteria and on the number of wrinkles. The projec-
tion algorithm is clearly the slowest part of our algorithm. Fortu-
nately, while the wrinkle curves computation needs to be performed
iteratively frame-to-frame, this more time-consuming step is inde-
pendent for each frame and thus can be run in parallel.

6 Discussion and Conclusion

We have presented a procedural method that augments a pre-
existing cloth animation with realistic-looking wrinkles at interac-
tive rates. Being able to quickly enhance a coarse dynamic simu-
lation with plausible visual details is an appealing approach when
no accuracy is required. This paper advances this approach one
step further by enabling the automatic creation of believable cloth
wrinkles using cues provided by the coarse animation. The wrinkle
placement is based on an analysis of the stretch created by the ani-
mation and the wrinkle shape and motion are continuous over time.
Although limited by the lack of accurate information on the way
real cloth wrinkles move and deform, our procedural model, tuned
from a few experiments with real cloth, achieves believable results.
Since it is used as a post-process, wrinkle generation can be tuned
independently from the coarse simulation by adjusting the wrinkle
radius parameter, simplifying user control.

One of the contributions of this work are the new implicit deformers
used for wrinkle generation. Visually realistic wrinkle shapes with
varying width and depth that smoothly merge and separate are gen-
erated thanks to the blending between curve-based primitives and
our new mesh-deformer. The shapes we generate for wrinkles look
quite believable and reduce the local compression, although they do
not ensure exact isometry with the pattern, nor do they ensure that
the created surface is developable. This was not our goal.

Although flat to rounded wrinkles can be represented by our
method, our solution does not currently handle extreme wrinkles
that can appear when a piece of cloth is highly compressed. While
those can be generated by using a positive offset to place wrinkle-



Figure 13: Wrinkling garment simulations, before (top) and after (bottom).

deformers above the mesh, the projection method used to apply the
deformation to the mesh vertices restricts us to height-field shapes.

Another geometric feature we did not address here is the sharp
wrinkles that appear where cloth is put under tension. Here, we
could use the stretch tensor to generate these wrinkles as well us-
ing lines of maximal elongation, given by the eigenvector of largest
eigenvalue larger than one in the tensor.

Lastly, our method relies on the presence of a rest-shape, which is
typically available in simulation settings. A promising future work
would be to combine our method with some pre-process extracting
such a rest-shape from a static mesh representing a worn garment
or from a motion sequence, such as cloth motion capture.
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