Constant Volume Skinning for Character Animation

Damien Rohmer, Stefanie Hahmann, Marie-Paule Cani

Aim: Quick and intuitive skin deformation for skeleton animation

Original shape with skeleton

Original shape

Classical skinning

Two methods to restore the original volume

Original shape After Volume preservation

Approximate volume compensation in 1 step

Equation to solve

$$\begin{cases} \min \sum_{k=0}^{N-1} \frac{\rho_k^2}{\gamma_k} & \text{Magnitude of the deformation} \\ \min \sum_{k=0}^{N-1} \frac{\rho_k^2}{\gamma_k} & \text{Local weighting} \\ \text{Surface normal subject to } V(\mathbf{p}_k + \rho_k \mathbf{n}_k) = V(\mathbf{\overline{p}_k}) \\ \text{Subject to } V(\mathbf{p}_k + \rho_k \mathbf{n}_k) = V(\mathbf{\overline{p}_k}) \\ \text{Change of volume} \\ \rho_k = \Delta V \frac{\gamma_k < \mathbf{n}_k, \nabla V(\mathbf{p}_k) >}{\sum_{j=0}^{N-1} \gamma_j < \mathbf{n}_k, \nabla V(\mathbf{p}_k) >^2} \end{cases}$$

Closed form solution

∆V approximated locally on each segment

Distance (bone,vertex) taken into account to compute local weights. This models the organic bulges effect. **Exact volume compensation in 3 steps**

Deformation along the three local axes

Various correction effects can be parameterized

Classical skinning

Real time No additional parameter Approximate volume preservation

Local Volume Preservation for Skinned Characters. D. Rohmer, S. Hahmann and M.-P. Cani. Computer Graphics Forum, Vol. 27, 2008.

Anisotropic correction (rubber effect)

Exact volume preservation Control using 1D profile curves Multiple iterations needed

Exact Volume Preserving Skinning with Shape Control. D. Rohmer, S. Hahmann and M.-P. Cani. Symposium on Computer Animation 2009.

