Représentations (réaliste) de vagues, Quelques applications à la visualisation de surface liquide.

Damien Rohmer, Cédric Rousset ETI 3 Image, CPE Lyon

11 février 2007

SQ (A

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon Modélisation de vagues

Programme

- 2 Cas Pseudo-Physique
 - Méthode simple et ses limites
 - Théorie linéaire des ondes de surfaces
 - Application
- Méthodes Non Physique
 - Théorie du Bruit de Perlin
 - Utilisation du Ray Tracing

Conclusion

Sar

Approches de la simulation de fluide

Approche Physique	Approche Non Physique
	< ロ > < 団 > < 三 > < ろ < つ < つ
Damien Rohmer, Cédric RoussetETL 3 Image, CPE Lyon	Modélisation de vagues

Approches de la simulation de fluide

Approche Physique	Approche Non Physique
 Navier Stockes. 	
Résolution d'EDP.	
	《ㅁ》《圖》《끝》《言》 큰 윗٩연

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon Modélisation de vagues

Approches de la simulation de fluide

Approche Physique	Approche Non Physique
Navier Stockes.	• Fonction Sinus.
• Resolution d EDP.	• Fonction de Bruit.
	< □ > < 問 > < 言 > < 言 > こ > < う < の < の

Approches de la simulation de fluide

Approche Physique	Approche Non Physique
• Navier Stockes.	 Fonction Sinus.
 Résolution d'EDP. 	 Fonction de Bruit.
\overline{r}	
$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\nabla p}{\rho} + \mu \nabla^2 \mathbf{v} + \mathbf{f} \\ \nabla \cdot \mathbf{v} = 0 \end{cases}$	< ロ > < 団 > < 三 > < 注 > 、 注 > 、 注 > 、 注 > うへの

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon

Approches de la simulation de fluide

Approche Physique	Approche Non Physique
Navier Stockes.Résolution d'EDP.	Fonction Sinus.Fonction de Bruit.
\overline{P}	$\sum f(sin)(\mathbf{x},t) + noise(\mathbf{x},t)$
$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\nabla \rho}{\rho} + \mu \nabla^2 \mathbf{v} + \mathbf{f} \\ \nabla \cdot \mathbf{v} = 0 \end{cases}$	< ロ > < 酉 > < 三 > < 注 > こ き うへの

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< 🗆

æ

500

Cas sinusoïdale.

- On considère une grille (x,y) fixe de $N_x \times N_y$ vertex.
- On calcul $z(k_x, k_y) = \sum_i A_i \sin(\mathbf{k}_i \cdot \mathbf{x} \omega_i t)$
- On affiche (x, y, z)

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< 🗆

990

Cas sinusoïdale.

- On considère une grille (x,y) fixe de $N_x \times N_y$ vertex.
- On calcul $z(k_x, k_y) = \sum_i A_i \sin(\mathbf{k}_i \cdot \mathbf{x} \omega_i t)$
- On affiche (x, y, z)

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

Cas sinusoïdale.

- On considère une grille (x,y) fixe de $N_x \times N_y$ vertex.
- On calcul $z(k_x, k_y) = \sum_i A_i \sin(\mathbf{k}_i \cdot \mathbf{x} \omega_i t)$
- On affiche (x, y, z)

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< <p>>

A.

∍

5990

Oui Mais...

- Propagation non réaliste
- Très périodique
- Comment régler les A_i et ω_i en fonction de \mathbf{k}_i .

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< 🗆

æ

5990

Oui Mais...

- Propagation non réaliste
- Très périodique
- Comment régler les A_i et ω_i en fonction de \mathbf{k}_i .

Que résolvons nous?

• Prenons le cas de
$$\|\mathbf{k}_i\| = \mu \omega_i$$
.

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< 🗆

AQ (A

Oui Mais...

- Propagation non réaliste
- Très périodique
- Comment régler les A_i et ω_i en fonction de \mathbf{k}_i .

Que résolvons nous?

- Prenons le cas de $\|\mathbf{k}_i\| = \mu \omega_i$.
- On résout en réalité l'équation de propagation des ondes :

$$\triangle z - \mu^2 \frac{\partial z}{\partial t^2} = 0$$

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< D

SQ (A

Oui Mais...

- Propagation non réaliste
- Très périodique
- Comment régler les A_i et ω_i en fonction de k_i.

Que résolvons nous?

- Prenons le cas de $\|\mathbf{k}_i\| = \mu \omega_i$.
- On résout en réalité l'équation de propagation des ondes :

$$\triangle z - \mu^2 \frac{\partial z}{\partial t^2} = 0$$

• Ce n'est pas la propagation des fluides !!

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< 🗆

5990

Ajoutons la physique : Ondes de surfaces

Repartons à la base + Hypothèses :

• Navier Stokes (surface libre) :

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< D

AQ (A

Ajoutons la physique : Ondes de surfaces

Repartons à la base + Hypothèses :

- Navier Stokes (surface libre) :
- Hypothèse 1 : Irrotationnel :

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< D

AQ (A

Ajoutons la physique : Ondes de surfaces

Repartons à la base + Hypothèses :

- Navier Stokes (surface libre) :
- Hypothèse 1 : Irrotationnel :
- Incompressibilité :

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< D

AQ (A

Ajoutons la physique : Ondes de surfaces

Repartons à la base + Hypothèses :

- Navier Stokes (surface libre) :
- Hypothèse 1 : Irrotationnel :
- Incompressibilité :
- Hypothèse 2 : La profondeur ne rentre pas en compte

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< D

5900

Ajoutons la physique : Ondes de surfaces

Repartons à la base + Hypothèses :

- Navier Stokes (surface libre) :
- Hypothèse 1 : Irrotationnel :
- Incompressibilité :

• Hypothèse 2 : La profondeur ne rentre pas en compte Mélangons le tout

$$\Rightarrow \begin{cases} \frac{\partial z}{\partial t} + v_x \frac{\partial z}{\partial x} + v_y \frac{\partial z}{\partial y} = v_z \\ \frac{\partial \phi}{\partial t} + \frac{1}{2} \mathbf{v}^2 + g \, z = 0 \end{cases}$$

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< <p>>

æ

5990

∍

Puis retirons en un peu ...

$$\frac{\partial z}{\partial t} + v_x \frac{\partial z}{\partial x} + v_y \frac{\partial z}{\partial y} = v_z \quad \text{et} \quad \frac{\partial \phi}{\partial t} + \frac{1}{2} \mathbf{v}^2 + g \, z = 0$$

• Toujours trop complexe : Non linéaire !

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< D

AQ (A

Puis retirons en un peu ...

$$\frac{\partial z}{\partial t} + v_x \frac{\partial z}{\partial x} + v_y \frac{\partial z}{\partial y} = v_z \quad \text{et} \quad \frac{\partial \phi}{\partial t} + \frac{1}{2} \mathbf{v}^2 + g \, z = 0$$

- Toujours trop complexe : Non linéaire !
- Linéarisons :

$$\Rightarrow \frac{\partial z}{\partial t} = v_z \quad \text{et} \quad \frac{\partial \phi}{\partial t} + g \, z = 0$$

Attention : Hypothèse de faible amplitude

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< 🗆 🕨

< A >

Э

∍

5990

Equation résolue

La relation est maintenant simple.

$$\frac{\partial z}{\partial t} = v_z$$
 et $\frac{\partial \phi}{\partial t} + g z = 0$

• On injecte
$$z = A \cos(\mathbf{k} \cdot \mathbf{x} - \omega t)$$

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

Relation 1

$$\begin{cases} \mathbf{X} = A \frac{\mathbf{k}}{\|\mathbf{k}\|} \sin(\mathbf{k} \cdot \mathbf{x} - \omega t) \\ z = A \cos(\mathbf{k} \cdot \mathbf{x} - \omega t) \end{cases}$$

- z n'est pas la seule coordonnée à varier.
- La forme des vagues n'est donc pas sinusoïdale.
- Modèle de trochoïdes : Houle de Gestner (1802).
 [Fournier and Reeves, A simple models of ocean waves, 1986]
- Trajectoire circulaire des particules.

5900

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

< D

990

Relation 1 (Trochoïde)

• Zone de compression (Propagation d'une onde physique)

Relation 2

Relation de Dispersion :

• Ondes de Gravitées Vitesse d'onde > Vitesse de groupe

$$\omega = \sqrt{g \|\mathbf{k}\|}$$

$$\sim \sim \sim \sim \sim$$

 \Rightarrow Les **petites crêtes** se déplacent **plus rapidement** que les trains d'ondes.

• On peux prendre en compte les ondes de capillaritées

$$\omega = \sqrt{g \|\mathbf{k}\| + rac{t}{
ho} \|\mathbf{k}\|^3}$$

< D

SQ (A

Méthode simple et ses limites Théorie linéaire des ondes de surfaces **Application**

SQ (A

Prise en compte de la Profondeur

$$\omega = \sqrt{g \|\mathbf{k}\| \operatorname{tanh}(\|\mathbf{k}\| h)}$$

- Profondeur d'eau = $\frac{\lambda}{h}$.
- La vitesse de déplacement dépend de la hauteur de la vague.
 ⇒ Attention à la brisure de vague.
- Permet de modéliser l'approche d'une plage.
- L'amplitude dépend de $\|\mathbf{k}\|$.

Méthode simple et ses limites Théorie linéaire des ondes de surfaces **Application**

< 🗆

AQ (A

Implémentation OpenGL

$$\begin{cases} \mathbf{X} = \sum A \frac{\mathbf{k}}{\|\mathbf{k}\|} \sin(\mathbf{k} \cdot \mathbf{x} - \omega t) \\ z = \sum A \cos(\mathbf{k} \cdot \mathbf{x} - \omega t) \end{cases}$$

- On défini pour chaque vertex : Position+Normal+Distance au sol
- La valeur de k défini entièrement l'onde.

Méthode simple et ses limites Théorie linéaire des ondes de surfaces Application

Implémentation OpenGL : Paramètres

Paramètres de :

- Nombre d'ondes
- Amplitude
- Hauteur du sol

RUN

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon

< 🗆

990

Méthode simple et ses limites Théorie linéaire des ondes de surfaces **Application**

< <p>>

ഹ

5990

Implémentation OpenGL

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon Modélisation de vagues

Méthode simple et ses limites Théorie linéaire des ondes de surfaces **Application**

SQ (A

Limitations de la méthode

Limitations dues aux **approximations** du modèle

- Brisure de vague (recouvrement)
- Profondeur trop faible (< λ)

Autres paramètres influants

- Vitesse du vent.
- Effet des courants

D'autres modèles physiques existent (Fournier et Reeves, Houle de Biesel, Bruit . . .)

< D

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< <p>>

A

5990

€

=

Laissons la physique

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon Modélisation de vagues

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< 🗆

æ

∍

5990

Laissons la physique

• Idée 1 : La nature ressemble à du bruit.

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< 🗆

5990

Laissons la physique

- Idée 1 : La nature ressemble à du bruit.
- Idée 2 : Le nature est de type fractal.

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< D

AQ (A

Laissons la physique

- Idée 1 : La nature ressemble à du bruit.
- Idée 2 : Le nature est de type fractal.

\Rightarrow Bruit de Perlin.

[Ken Perlin, Hypertexture, 1989]

• Bruit (Pseudo Aléatoire) continu et de nature fractale.

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Le bruit de Perlin : Comment ça marche

- On considère f : n → f(n) avec n ∈ Z
- On construit

$$\gamma: \left\{ egin{array}{cc} \mathbb{R} & o \left[0,1
ight] \ x & \mapsto \gamma(x) \end{array}
ight.$$

en **interpolant** les valeurs f(n).

< D

990

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Le bruit de Perlin : Comment ça marche

- On considère f : n → f(n) avec n ∈ Z
- On construit

$$\gamma: \left\{ egin{array}{cc} \mathbb{R} &
ightarrow \left[0,1
ight] \ x &
ightarrow \gamma(x) \end{array}
ight.$$

en **interpolant** les valeurs f(n).

< D

990

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Le Bruit de Perlin : L'aspect Fractale

• Trop lisse?

$$\Rightarrow \gamma_N(x) = \sum_{k=0}^{k=N} \frac{\gamma(a^k x)}{b^k}$$

- N : octaves
- a : frequence
- 1/b : persitence

990

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon

Modélisation de vagues

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< <p>>

A.

Sar

Le Bruit de Perlin : Le (pseudo) code (c)

```
float get_perlin(float (x,y,z),int octave,float persistence,float frequency)
for(k=0:octave)
    (x,v,z) *= frequencv^k;
    noise += interpolate_noise_3D(x,y,z)*persistence^k;
3
float interpolate_noise_1D(float x)
Ł
 x_0 = floor(x); x_1 = ceil(x); u = frac(x);
 return noise(x_0)*u+noise(x_1)*(1-u);
3
float noise_3D(int n1)
 //mess up
 n = ((n << 13) *5245465 + rand octave *23) *n *32412;
 //take abs
 n = n\&0x7FFFFFF;
 //between [0.1]
 return (n%432435136)/(432435136);
٦,
```

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< 🗆 🕨

A >

⊒

5990

€

Le Bruit de Perlin : Applications I

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon Modélisation de vagues

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Le Bruit de Perlin : Applications I

• Textures (Gimp)

< 🗆

5990

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Le Bruit de Perlin : Applications I

• Textures (Gimp)

• Textures en couleurs (Gimp toujours)

< 🗆

990

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< <p>>

æ

5990

∍

Le Bruit de Perlin : Applications II

• Jolies Montagnes (Terragen)

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< D

990

Le Bruit de Perlin : Applications II

• Jolies Montagnes (Terragen)

z = 0.3*noise.get_perlin(x,y,0,6,1/2.0,2.0);

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< 🗆

5990

Le Bruit de Perlin : Applications III (fin)

• Feu, cheveux, formes quelquonques, particules d'eau, ...

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< D

5990

Le Bruit de Perlin : Applications III (fin)

- Feu, cheveux, formes quelquonques, particules d'eau, ...
- Et de l'eau !

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Le Bruit de Perlin : Applications III (fin)

- Feu, cheveux, formes quelquonques, particules d'eau, ...
- Et de l'eau !

Par exemple :

$$z = A \gamma(x, y, 0, \text{octave}) \quad (+\sin(\mathbf{k} \cdot \mathbf{x} - \omega t))$$

z = 0.03*sin(3*x-t/7)+0.1*noise.get_perlin(2*x-t/20,2*y+0.05*cos(t/10),t/40-x/10+y/25,2 1/1.5,2);

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< <p>>

A >

⊒

₹

5990

Ridged Perlin

• Problème : Les crêtes sont lisses.

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon Modélisation de vagues

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< <p>>

æ

5990

∍

Ridged Perlin

- Problème : Les crêtes sont lisses.
- Augmentation de *octave* \Rightarrow allure de montagnes.

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Ridged Perlin

- Problème : Les crêtes sont lisses.
- Augmentation de $octave \Rightarrow$ allure de montagnes.
- Solution : Ridged (multifractal) Perlin μ. [code source Pov-Ray]

$$\begin{cases} \mu_{p}(\mathbf{x}) = \mu(\mathbf{x}) + \sum_{k=1}^{N} \omega_{k}(\mathbf{x}) a^{-kH} \mu(a^{k} \mathbf{x}) \\ \begin{cases} \omega_{k}(\mathbf{x}) = \min(\max(\alpha \, \omega_{k-1}(\mathbf{x}) \, \mu(a^{k-1}\mathbf{x}), 0), 1) \\ \omega_{0}(\mathbf{x}) = 1; \end{cases} \end{cases}$$

Avec

- N : nombre d'octave, a : multiplicateur en fréquence
- H : exposant (règle l'aspect lisse $\in [0, 1]$)
- α : Paramètre de coupure

5900

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< 🗆

5900

Ridged Perlin : L'implémentation

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Au Final

• On peux combiner : [THON et al., A simple model for realistic running waters, 2000]

$$z = A \sum_{i} \sin(\mathbf{k} \cdot \mathbf{x} - \omega t) + B \gamma_N(\mathbf{x}) + C \mu(\mathbf{x})$$

5990

∍

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< 🗆

5900

Introduction du Ray Tracing

- Limitation de la qualité du rendu
- Limitation de la grille (rendu de fractal...)

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< D

Sar

Introduction du Ray Tracing

- Limitation de la qualité du rendu
- Limitation de la grille (rendu de fractal...)

Idée : Utiliser le ray tracing

[Pov-Ray]

[merci à Christoph Hormann, Gilles Tran et Ben Weston]

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< D

SQ (A

Introduction du Ray Tracing

- Limitation de la qualité du rendu
- Limitation de la grille (rendu de fractal...)

Idée : Utiliser le ray tracing

[Pov-Ray]

[merci à Christoph Hormann, Gilles Tran et Ben Weston]

- Pas de limitations de résolution
- Effet physiques : (refraction, reflexion, (caustics), ...)

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< D

500

Introduction du Ray Tracing

- Limitation de la qualité du rendu
- Limitation de la grille (rendu de fractal...)

Idée : Utiliser le ray tracing

[Pov-Ray]

[merci à Christoph Hormann, Gilles Tran et Ben Weston]

- Pas de limitations de résolution
- Effet physiques : (refraction, reflexion, (caustics), ...)

Mais c'est très long !!

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Point de départ

• On part d'une surface plate réflechissante (et d'un ciel).

Solution de facilité : Bump Mapping (avec ridged Perlin)

990

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Autre facon : Fonction Implicite + Perlin

• On trace l'isosurface définie par

$$\left\{(x,y,z)\in\mathbb{R}^3\Big|\phi(x,y,z)=0
ight\}$$
 , $\phi=y+A\,\gamma_N+B\,\mu$

• Perlin simple : un petit lac.

y-0.5+f_noise3d(2*x,0,2*z)/10

y-0.5+f_noise3d(x,0,z)/5+f_noise3d(2*x,0,2*z)/10 +f_noise3d(4*x,0,4*z)/20+f言noise3d(8*x,0=8*z)/望 のへで

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon

Théorie du Bruit de Perlin Utilisation du Ray Tracing

Fonction Implicite : Ridged Perlin

• Et voila la mer

y-0.5 -(f_ridged_mf(x/4,0,z/4,0.8,3,6,1,0.8,3) -0.8)/10-f_noise3d(x/1.3,0,z/1.3)/2.5 anim y-0.5 -(f_ridged_mf(x/4,0,z/4,0.6,5,6,1,0.8,3)-1.5)/2 -f_noise3d(x/1.3,0,z/1.3)/1.5

< <p>>

Théorie du Bruit de Perlin Utilisation du Ray Tracing

< 🗆

5900

Fonction Implicite : Ridged Perlin

• Une coupe au travers de la surface :

Conclusion et possibilitées de poursuite

• Les rendus dépendent des applications

	Image Fixe	Animation
Rapidité	Bruit simple	Sinus+Bruit
Réalisme	Bruit fractal	Equations + Bruit fractal

• Les astuces permettent d'avoir des aspects photoréalistes.

500

- La **physique** permet d'avoir un **comportement animé** correct.
- Les interactions forcent l'utilisation des EDP.
- Reprenons Navier-Stockes à la base ...

Conclusion

... mais ceci sera pour la prochaine fois.

Merci de votre attention.

< 🗆

5990

Damien Rohmer, Cédric RoussetETI 3 Image, CPE Lyon Modélisation de vagues