(Realistic) Modelisation of Water Waves, some applications to to visualization of liquid surfaces.

> Damien Rohmer, Cédric Rousset ETI 3 Image Processing, CPE Lyon

> > February 11, 2007

SQ (A

Contents

- 2 Almost Physically Based
 - Trivial method and its limitations
 - Linear theory of the shallow water waves
 - Application
- 3 Non Physical Methods
 - Perlin Noise Theory
 - Use of the Ray Tracing

4 Conclusion

SQ (A

Physically based	Non physically based
	(日) (四) (三) (三) (三) (〇) (〇)
Rohmer and Rousset, CPE Lyon	Water waves modelisation

Physically based	Non physically based
• Navier Stockes.	
• EDP to solve.	
	< 四> < 四> < 三> < 三> < 三> < 三
Rohmer and Rousset CPE I von	Water waves modelisation

Physically based	Non physically based
• Navier Stockes.	• Sinus functions.
• EDP to solve.	 Noise functions.
	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

Physically based	Non physically based
Navier Stockes.	• Sinus functions.
• EDP to solve.	 Noise functions.
P g	
$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\nabla p}{\rho} + \mu \nabla^2 \mathbf{v} + \mathbf{f} \\ \nabla \cdot \mathbf{v} = 0 \end{cases}$	
N	(日) (四) (三) (三) (日) (日)

Physically based	Non physically based
Navier Stockes.	• Sinus functions.
• EDP to solve.	 Noise functions.
\overline{v}	$\sum f({ m sin})({f x},t) + { m noise}({f x},t)$
$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\nabla p}{\rho} + \mu \nabla^2 \mathbf{v} + \mathbf{f} \\ \nabla \cdot \mathbf{v} = 0 \end{cases}$	 < => < => < => < => < => < >< < < < => < <

Trivial method and its limitations Linear theory of the shallow water waves Application

< <p>>

A >

1

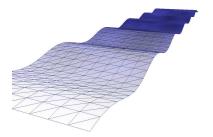
∍

5990

Sinusoïdal Case.

- Suppose a $N_x \times N_y$ mesh grid defined in (x, y).
- Calculate $z(k_x, k_y) = \sum_i A_i \sin(\mathbf{k}_i \cdot \mathbf{x} \omega_i t)$
- Draw (*x*, *y*, *z*)

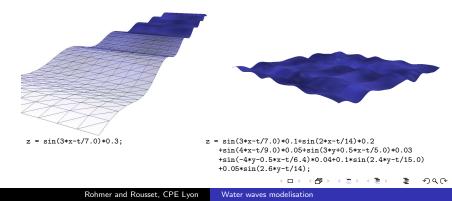
Trivial method and its limitations Linear theory of the shallow water waves Application


< 🗆

æ

5900

Sinusoïdal Case.


- Suppose a $N_x \times N_y$ mesh grid defined in (x, y).
- Calculate $z(k_x, k_y) = \sum_i A_i \sin(\mathbf{k}_i \cdot \mathbf{x} \omega_i t)$
- Draw (*x*, *y*, *z*)

Trivial method and its limitations Linear theory of the shallow water waves Application

Sinusoïdal Case.

- Suppose a $N_x \times N_y$ mesh grid defined in (x, y).
- Calculate $z(k_x, k_y) = \sum_i A_i \sin(\mathbf{k}_i \cdot \mathbf{x} \omega_i t)$
- Draw (*x*, *y*, *z*)

Trivial method and its limitations Linear theory of the shallow water waves Application

< <p>>

< 🗗 🕨

÷

Э

∍

5990

Yes But...

- Unrealistic propagation.
- Very Periodical
- How to set A_i et ω_i which depend on \mathbf{k}_i .

Trivial method and its limitations Linear theory of the shallow water waves Application

< D

æ

990

Yes But...

- Unrealistic propagation.
- Very Periodical
- How to set A_i et ω_i which depend on \mathbf{k}_i .

What are we solving?

• Take the linear case $\|\mathbf{k}_i\| = \mu \omega_i$.

Trivial method and its limitations Linear theory of the shallow water waves Application

< D

AQ (A

Yes But...

- Unrealistic propagation.
- Very **Periodical**
- How to set A_i et ω_i which depend on \mathbf{k}_i .

What are we solving?

- Take the linear case $\|\mathbf{k}_i\| = \mu \omega_i$.
- We are actually solving the Wave Propagation equation:

$$\triangle z - \mu^2 \frac{\partial z}{\partial t^2} = 0$$

Trivial method and its limitations Linear theory of the shallow water waves Application

< <p>—

SQ (A

Yes But...

- Unrealistic propagation.
- Very **Periodical**
- How to set A_i et ω_i which depend on \mathbf{k}_i .

What are we solving?

- Take the linear case $\|\mathbf{k}_i\| = \mu \omega_i$.
- We are actually solving the Wave Propagation equation:

$$\triangle z - \mu^2 \frac{\partial z}{\partial t^2} = 0$$

This is not the water waves propagation!!

Trivial method and its limitations Linear theory of the shallow water waves Application

< D

P

5990

Lets add the Physic: Shallow water waves

Lets start to the beginning + Hypothesis

• Navier Stokes (free surface) :

Trivial method and its limitations Linear theory of the shallow water waves Application

< D

AQ (A

Lets add the Physic: Shallow water waves

Lets start to the beginning + Hypothesis

- Navier Stokes (free surface) :
- Hypothesis 1: Irrotationnal:

Trivial method and its limitations Linear theory of the shallow water waves Application

AQ (A

Lets add the Physic: Shallow water waves

Lets start to the beginning + Hypothesis

- Navier Stokes (free surface) :
- Hypothesis 1: Irrotationnal:
- Uncompressible:

Trivial method and its limitations Linear theory of the shallow water waves Application

AQ (A

Lets add the Physic: Shallow water waves

Lets start to the beginning + Hypothesis

- Navier Stokes (free surface) :
- Hypothesis 1: Irrotationnal:
- Uncompressible:
- Hypothesis 2: The depth does not count.

Trivial method and its limitations Linear theory of the shallow water waves Application

5900

Lets add the Physic: Shallow water waves

Lets start to the beginning + Hypothesis

- Navier Stokes (free surface) :
- Hypothesis 1: Irrotationnal:
- Uncompressible:
- Hypothesis 2: The depth does not count.

Mix and shake it

$$\Rightarrow \begin{cases} \frac{\partial z}{\partial t} + v_x \frac{\partial z}{\partial x} + v_y \frac{\partial z}{\partial y} = v_z \\\\ \frac{\partial \phi}{\partial t} + \frac{1}{2} \mathbf{v}^2 + g \, z = 0 \end{cases}$$

Trivial method and its limitations Linear theory of the shallow water waves Application

< <p>>

P

5990

∍

Then throw some physics away

$$\frac{\partial z}{\partial t} + v_x \frac{\partial z}{\partial x} + v_y \frac{\partial z}{\partial y} = v_z \quad \text{et} \quad \frac{\partial \phi}{\partial t} + \frac{1}{2} \mathbf{v}^2 + g \, z = 0$$

• Still too complex: Non linear!

Trivial method and its limitations Linear theory of the shallow water waves Application

< D

AQ (A

Then throw some physics away

$$\frac{\partial z}{\partial t} + v_x \frac{\partial z}{\partial x} + v_y \frac{\partial z}{\partial y} = v_z \quad \text{et} \quad \frac{\partial \phi}{\partial t} + \frac{1}{2} \mathbf{v}^2 + g \, z = 0$$

- Still too complex: Non linear!
- Lets do some linearisation:

$$\Rightarrow \frac{\partial z}{\partial t} = v_z \quad \text{et} \quad \frac{\partial \phi}{\partial t} + g \, z = 0$$

Waring: Hypothesis of small amplitudes.

Trivial method and its limitations Linear theory of the shallow water waves Application

< <p>>

d

1

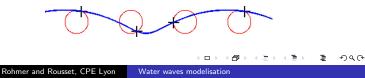
∍

5990

Solved Equation

The relation is now straightforward.

$$rac{\partial z}{\partial t} = v_z$$
 et $rac{\partial \phi}{\partial t} + g \, z = 0$

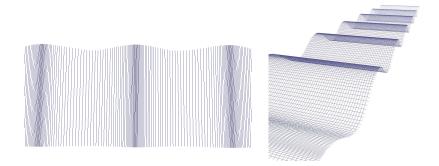

• We introduce $z = A \cos(\mathbf{k} \cdot \mathbf{x} - \omega t)$

Trivial method and its limitations Linear theory of the shallow water waves Application

Relation 1

$$\begin{cases} \mathbf{X} = A \frac{\mathbf{k}}{\|\mathbf{k}\|} \sin(\mathbf{k} \cdot \mathbf{x} - \omega t) \\ z = A \cos(\mathbf{k} \cdot \mathbf{x} - \omega t) \end{cases}$$

- z is not the single coordinate to vary.
- The water shape is **not a sinus**.
- **Trochoïdse** model: Gestner Swell (1802). [Fournier and Reeves, A simple models of ocean waves, 1986]
- Particles have Circular Trajectory.



Trivial method and its limitations Linear theory of the shallow water waves Application

5900

Relation 1 (Trochoïdes)

• Compression area (Physical wave propagation)

Trivial method and its limitations Linear theory of the shallow water waves Application

< 🗆

æ

Sac

Relation 2

Dispersion Relation:

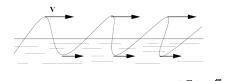
 $\bullet~$ Gravity Waves Wave speed > Group speed

$$\omega = \sqrt{g \, \|\mathbf{k}\|}$$

$$\sim\sim\sim\sim$$

- \Rightarrow Small ridges move faster than wave trains.
 - We can take in account the Capillarity Waves

$$\omega = \sqrt{g \, \|\mathbf{k}\| + \frac{t}{\rho} \|\mathbf{k}\|^3}$$


Trivial method and its limitations Linear theory of the shallow water waves Application

SQ (A

Take the depth in account

$$\omega = \sqrt{g \|\mathbf{k}\| \tanh(\|\mathbf{k}\| h)}$$

- Water Depth = $\frac{\lambda}{h}$.
- The displacement speed depends on the height of the wave.
 ⇒ Take care to the brake of the wave.
- Enable the modelisation of the beach.
- Amplitud depends on $\|\mathbf{k}\|$.

Trivial method and its limitations Linear theory of the shallow water waves Application

< D

P

5900

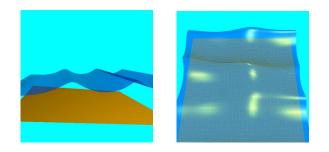
OpenGL Implementation

$$\begin{cases} \mathbf{X} = \sum A \frac{\mathbf{k}}{\|\mathbf{k}\|} \sin(\mathbf{k} \cdot \mathbf{x} - \omega t) \\ z = \sum A \cos(\mathbf{k} \cdot \mathbf{x} - \omega t) \end{cases}$$

- Define for every vertex: Position+Normal+Depth
- The value of **k** completely define the wave.

Trivial method and its limitations Linear theory of the shallow water waves Application

< D


P

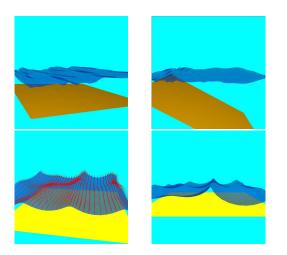
JAC.

OpenGL Implementation: Parameters

Parameters for:

- Wave number
- Amplitude
- Depth

Trivial method and its limitations Linear theory of the shallow water waves Application


< <p>>

P

5990

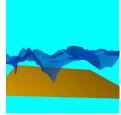
∍

OpenGL Implementation

Trivial method and its limitations Linear theory of the shallow water waves Application

SQ (A

Limits


Limitations due to the **ap**-**proximations** of the model

• Wave breaking (multi-valued function)

• **Depth** $(< \lambda)$ Other parameters to take in account

- Wind speed.
- Current effect.

Other physical model exist (Fournier et Reeves, Houle de Biesel, Bruit \dots)

< D

Perlin Noise Theory Use of the Ray Tracing

Let the physics far away

Rohmer and Rousset, CPE Lyon Water waves modelisation

< 🗆 🕨

< A >

-

⊒

₹

5990

Perlin Noise Theory Use of the Ray Tracing

Let the physics far away

• Idea 1: The nature looks like noise.

< 🗆

æ

5990

∍

Perlin Noise Theory Use of the Ray Tracing

Let the physics far away

- Idea 1: The nature looks like noise.
- Idea 2: The nature is like fractal noise.

< 🗆

æ

5990

Perlin Noise Theory Use of the Ray Tracing

Let the physics far away

- Idea 1: The nature looks like noise.
- Idea 2: The nature is like fractal noise.

\Rightarrow Perlin Noise.

[Ken Perlin, Hypertexture, 1989]

• Continuous and Fractal (Pseudo Random) Noise.

< 🗆

AQ (A

Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: How does it works

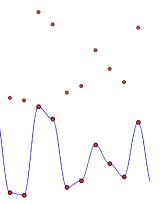
- Lets take $f : n \mapsto f(n)$ with $n \in \mathbb{Z}$
- We build

$$\gamma: \left\{ egin{array}{cc} \mathbb{R} &
ightarrow \left[0,1
ight] \ x &
ightarrow \gamma(x) \end{array}
ight.$$

< D

JAC.

by **interpolating** the values of f(n).


Perlin Noise Theory Use of the Ray Tracing

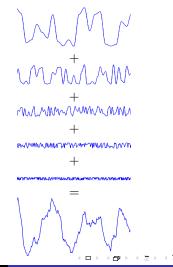
Perlin Noise: How does it works

- Lets take $f : n \mapsto f(n)$ with $n \in \mathbb{Z}$
- We build

$$\gamma: \left\{ egin{array}{cc} \mathbb{R} &
ightarrow \left[0,1
ight] \ x &
ightarrow \gamma(x) \end{array}
ight.$$

by **interpolating** the values of f(n).

JAC.


Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: Fractal Behavior

• Troo smooth?

$$\Rightarrow \gamma_N(x) = \sum_{k=0}^{k=N} \frac{\gamma(a^k x)}{b^k}$$

- N: octaves
- a: frequence
- 1/b: persitence

Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: (Pseudo) code (c)

```
float get_perlin(float (x,y,z),int octave,float persistence,float frequency)
for(k=0:octave)
    (x,v,z) *= frequencv^k;
    noise += interpolate_noise_3D(x,y,z)*persistence^k;
3
float interpolate_noise_1D(float x)
Ł
 x_0 = floor(x); x_1 = ceil(x); u = frac(x);
 return noise(x_0)*u+noise(x_1)*(1-u);
}
float noise_3D(int n1)
 //mess up
 n = ((n << 13) *5245465 + rand octave *23) *n *32412;
 //take abs
 n = n\&0x7FFFFFF;
 //between [0.1]
 return (n%432435136)/(432435136);
٦,
```

< 🗆 🕨

< A >

-

AQ (A

Perlin Noise Theory Use of the Ray Tracing

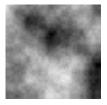
Perlin Noise: Applications I

Rohmer and Rousset, CPE Lyon Water waves modelisation

< 🗆 🕨

< A >

-


Э

Ē

Perlin Noise Theory Use of the Ray Tracing

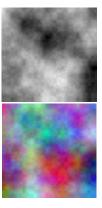
Perlin Noise: Applications I

• Textures (Gimp)

< 🗆

æ

5990


∍

Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: Applications I

• Textures (Gimp)

• Colored Textures (Gimp again)

< D

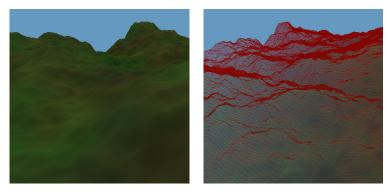
Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: Applications II

• Nice Mountains (Terragen)

< <p>>

P


∍

=

Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: Applications II

• Nice Mountains (Terragen)

z = 0.3*noise.get_perlin(x,y,0,6,1/2.0,2.0);

< D

Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: Applications III (end)

• Fire, Hairs, any shapes, water particles, ...

< <p>>

æ

5990

∍

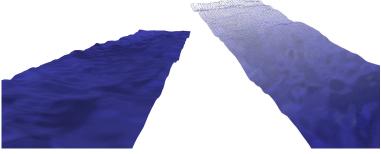
Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: Applications III (end)

- Fire, Hairs, any shapes, water particles, ...
- And the WATER!

< 🗆

æ


Perlin Noise Theory Use of the Ray Tracing

Perlin Noise: Applications III (end)

- Fire, Hairs, any shapes, water particles, ...
- And the WATER!

for instance:

$$z = A \gamma(x, y, 0, \text{octave}) \quad \left(+\sin(\mathbf{k} \cdot \mathbf{x} - \omega t)\right)$$

z = 0.03*sin(3*x-t/7)+0.1*noise.get_perlin(2*x-t/20,2*y+0.05*cos(t/10),t/40-x/10+y/25,2,1/1.5,2);

Perlin Noise Theory Use of the Ray Tracing

Ridged Perlin

• **Problem:** Ridged are too smooth.

< <p>>

r T -

Э

Ē

Perlin Noise Theory Use of the Ray Tracing

Ridged Perlin

- **Problem:** Ridged are too smooth.
- Increase of *octave* number \Rightarrow Mountain shapes.

< 🗆

d

∍

Perlin Noise Theory Use of the Ray Tracing

500

Ridged Perlin

- **Problem:** Ridged are too smooth.
- Increase of *octave* number \Rightarrow Mountain shapes.
- Solution: Ridged (multifractal) Perlin μ. [source code Pov-Ray]

$$\begin{cases} \mu_{p}(\mathbf{x}) = \mu(\mathbf{x}) + \sum_{k=1}^{N} \omega_{k}(\mathbf{x}) a^{-kH} \mu(a^{k} \mathbf{x}) \\ \begin{cases} \omega_{k}(\mathbf{x}) = \min(\max(\alpha \, \omega_{k-1}(\mathbf{x}) \, \mu(a^{k-1}\mathbf{x}), 0), 1) \\ \omega_{0}(\mathbf{x}) = 1; \end{cases} \end{cases}$$

With

- N: Octave number, a: frequency multiplier
- H: exponant (smoothing aspect \in [0, 1])
- α : Cut parameter (multifractal behavior)

Perlin Noise Theory Use of the Ray Tracing

Ridged Perlin: Implementation

< 🗆

P

Perlin Noise Theory Use of the Ray Tracing

To the End

• We can merge together: [THON et al., A simple model for realistic running waters, 2000]

$$z = A \sum_{i} \sin(\mathbf{k} \cdot \mathbf{x} - \omega t) + B \gamma_N(\mathbf{x}) + C \mu(\mathbf{x})$$

Perlin Noise Theory Use of the Ray Tracing

Introduction to Ray Tracing

- Quality limitations
- Grid limitations (how to draw fractals?)

< 🗆

æ

Perlin Noise Theory Use of the Ray Tracing

Introduction to Ray Tracing

- Quality limitations
- Grid limitations (how to draw fractals?)

Idea: Ray Tracing [Pov-Ray]

[FOV-Nay] [thanks to Christoph Hormonn

[thanks to Christoph Hormann, Gilles Tran and Ben Weston]

< D

AQ (A

Perlin Noise Theory Use of the Ray Tracing

Introduction to Ray Tracing

- Quality limitations
- Grid limitations (how to draw fractals?)

Idea: Ray Tracing

[Pov-Ray]

[thanks to Christoph Hormann, Gilles Tran and Ben Weston]

- No resolution limitations
- Physical effects: (refraction, reflection, (caustics), ...)

Perlin Noise Theory Use of the Ray Tracing

Introduction to Ray Tracing

- Quality limitations
- Grid limitations (how to draw fractals?)

Idea: Ray Tracing

[Pov-Ray]

[thanks to Christoph Hormann, Gilles Tran and Ben Weston]

- No resolution limitations
- Physical effects: (refraction, reflection, (caustics), ...)

But it's so Slow!!

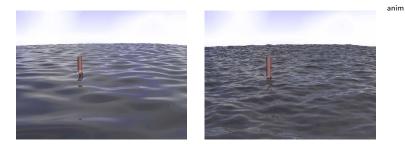
AQ (A

Perlin Noise Theory Use of the Ray Tracing

Starting point

• Start with a reflective plane surface (and a sky).

Easy solution (but false): Bump Mapping (with ridged Perlin)

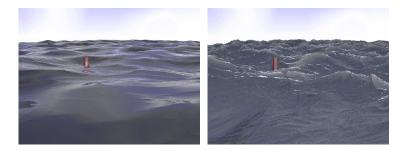

Perlin Noise Theory Use of the Ray Tracing

Other solution: Implicit Function + Perlin

• Render the isosurface defined by

$$\left\{(x,y,z)\in\mathbb{R}^3\Big|\phi(x,y,z)=0
ight\}$$
 , $\phi=y+A\,\gamma_N+B\,\mu$

• Simple Perlin: un small lake.


y-0.5+f_noise3d(2*x,0,2*z)/10

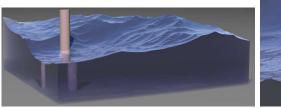
y-0.5+f_noise3d(x,0,z)/5+f_noise3d(2*x,0,2*z)/10 +f_noise3d(4*x,0,4*z)/20+fgnoise3e(8*x,0号8*z)/徨 のへで

Perlin Noise Theory Use of the Ray Tracing

Implicit Function: Ridged Perlin

• And the Sea is coming.

y-0.5 -(f_ridged_mf(x/4,0,z/4,0.8,3,6,1,0.8,3) -0.8)/10-f_noise3d(x/1.3,0,z/1.3)/2.5 anim y-0.5 -(f_ridged_mf(x/4,0,z/4,0.6,5,6,1,0.8,3)-1.5)/2 -f_noise3d(x/1.3,0,z/1.3)/1.5


P

< 🗆

Perlin Noise Theory Use of the Ray Tracing

Implicit Function: Ridged Perlin

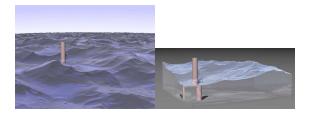
• A cut through the surface:

< 🗆

Conclusion and future works

• Visualization depends on the applications:

	Fixed Picture	Animation
Speed	Simple Noise	Sinus+Noise
Realism	Fractal Noise	Equations + Fractal Noise


- Tricks enable to get photorealistic aspects.
- Physic enable to get a correct dynamic.
- Interactions need to solve EDP.
- We need to come back to the full Navier-Stockes equation ...

SQ C

Conclusion

... but it will be for the next time.

Thank you for your attention.

< 🗆