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Abstract

Background — The human heart is composed of a helical network of muscle fibers. These fibers
are organized to form sheets that are separated by cleavage surfaces. This complex structure of fibers and
sheets is responsible for the orthotropic mechanical properties of cardiac muscle. The understanding of the
configuration of the 3D fiber and sheet structure is important for modeling the mechanical and electrical
properties of the heart and changes in this configuration may be of significant importance to understand the
remodeling after myocardial infarction.

Methods — Anisotropic least square filtering followed by fiber and sheet tracking techniques were
applied to Diffusion Tensor Magnetic Resonance Imaging (DTMRI) data of the excised human heart. The
fiber configuration was visualized by using thin tubes to increase 3-dimensional visual perception of the
complex structure. The sheet structures were reconstructed from the DTMRI data, obtaining surfaces that
span the wall from the endo- to the epicardium. All visualizations were performed using the high-quality
ray-tracing software POV-Ray.

Results — The fibers are shown to lie in sheets that have concave or convex transmural structure
which correspond to histological studies published in the literature. The fiber angles varied depending on
the position between the epi- and endocardium. The sheets had a complex structure that depended on the
location within the myocardium. In the apex region the sheets had more curvature.

Conclusion — A high-quality visualization algorithm applied to demonstrate high quality DTMRI data
is able to elicit the comprehension of the complex 3 dimensional structure of the fibers and sheets in the heart.

keywords: Cardiac Imaging, Diffusion Tensor MRI, Fiber Tracking, Laminar Architecture, Anisotropic
filtering.

1 Introduction

DIFFUSION tensor magnetic resonance imag-
ing (DTMRI) is a recently developed technique

which enables the estimation of the diffusion tensor in
biological samples. DTMRI is currently widely used
in brain imaging to relate the connectivity network of
the white matter axons to the diffusion data by esti-
mating the principal direction of diffusion [1,2]. In the
current work fiber and laminar structure of the heart
was determined from DTMRI data. A method for
estimating the fiber and sheet geometry in the heart
from DTMRI data is developed and a high quality vi-
sualization of the fiber and sheet structure inside the
left ventricle of the human heart is demonstrated.

The movement of the left ventricle is a mixture of
contraction, extension and torsion [3]. This complex
beating movement is due to a network of muscle fibers
which wrap both ventricles [4–6]. The cardiac motion
is created by contraction and extension of the cardiac
fibers along which the diffusion is the largest (similar
to the brain). However, in the cardiac muscle the
fibers are arranged in sheet bundles. These sheets
create a laminar structure that is responsible for the
mechanical properties of the cardiac muscle [7, 8].

1.1 Structure of the heart

The geometry of the cardiac left ventricle can be ap-
proximated by a portion of an ellipsoid. The ellipsoid
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geometry is well described in the cylindrical coordi-
nates (r, θ, z) (see Fig. 1). And its basis (er, eθ, ez)
where bold letters are used for vectors. er refers to
the radial component transverse to the wall, eθ is the
circumferential and ez is the axial component from
apex to base.

1.1.1 Fiber Structure

The left ventricle is organized by a collection of 3
dimensional muscular fibers composed of myocytes
(muscle cell) (see Fig. 2(a)). Each are 80 to 100 µm in
length and have a cylindrical shape with a radius of
5 to 10µm [9]. To enable the continuity of the elec-
trical conduction along the fibers, consecutive cells
are linked by gap (disc) junctions up to 8µm [10].
To preserve the tissue architecture especially during
large deformations during contractile motion, cardiac
fibers are embedded in an extracellular matrix, which
consists of collagen and prevents muscle fiber slip-
page or rupture, protects from overstretching, and
assists in the relengthening [11]. This extracellu-
lar collagen consists mainly of type I and III where
type I corresponds to high tensile strength material
and type III to highly deformable material [12]. The
network linking adjacent fibers is called the endomy-
sium (Fig. 2(a)) where the collagen of type III has the
highest proportion (62%) compared to the collagen of
type I. The collagen bundle is composed of fibrils with
diameter ranging between 120 and 150nm. Those are
aligned primarily transverse to the direction of the
muscle fiber [13].

The muscle fibers have a helical structure within
the left ventricle. We will refer to α as the fiber an-
gle: angle between eθ and the direction of the fiber
ef (see Fig. 2(b) and Fig. 3). Histological studies and
DTMRI measurements [14] have shown that the ori-
entation of the fiber angle α varies continuously from
+60◦ to −60◦ across the wall [4,6]. Hence, the fibers
turn clockwise from the apex to the base at the epi-
cardium, have circular geometry in the midwall, and
go counterclockwise close to the endocardium.

1.1.2 Laminar Structure

Fibers in the heart form another three dimensional
structure, due to the alignment of the fibers in sheets.
Histological studies show that the fibers are grouped
in a volume of three to four cells thick within a lami-
nar structure oriented transversally to the heart-wall.
The surface orientation of these sheets varies spatially
showing a complex structure inside the heart [8]. The
laminar structure can be roughly seen as twisted sur-
faces going across the wall and stacked from apex to

base (see Fig. 2(b)). The sheets are physically sepa-
rated by a coiled bundle of collagen fibers called per-
imysium [9]. These collagen fibrils are mainly ori-
ented parallel to the long axis of the myocytes in
the left ventricle [15]. This collagen consist mainly
of type I (72%) (high tensile stength). The local ge-
ometry of the cleavage plane is characterized by the
normal of the sheet at each position. We denote en

this normal vector; and with the direction ef of the
fiber, we can define an orthonormal basis (ef , es, en)
where es is perpendicular to the myocyte lying in-
side the sheet plane. We denote the angle between er

and es the sheet angle β (see Fig. 2(b) and Fig. 3).
Histology measurements have shown that this angle
varies with the position across the wall (from +45◦ to
−80◦) and the distribution changes from the apical
region (roughly convex variation across the wall) to
the basal region (concave variation) [8, 16].

1.1.3 Role of the fiber and laminar structure

The understanding of the laminar structure in the
heart is of utmost importance for understanding the
mechanical properties of the beating heart. It was
postulated by Streeter et al. in 1969 that the fibers
during cardiac contractions are subject to small ho-
mogeneous deformations in the entire left ventricle [5].
However, recent studies show that stress and strain
have an orthotropic distribution in order to explain
the change of the wall thickness between diastolic and
systolic configuration of the heart [17–19]. Not only
fiber but also the laminar structure is important to
understand the complex motion of the myocardium
and the orthotropic distribution of stress inside the
heart along fiber and sheet directions [7, 16, 20, 21].
The link between laminar architecture and mechanics
of the heart has been widely studied. Moreover, the
study of the heart after myocardial infarction shows
that there is a remodeling of the fiber orientation
and laminar structure [22–25] resulting in a less op-
timized architecture from a mechanical point of view
resulting in poor prognosis [12, 26, 27]. Understand-
ing this change is then crucial to detecting potential
risks, prognosis and potential therapy associated with
cardiac remodeling.

1.2 The Diffusion Tensor

The diffusion tensor can be measured in biologi-
cal specimens in vivo using the DTMRI technique
[1, 28, 29]. Diffusion processes inside tissue is a com-
plex problem due to the geometrical restrictions at
the microscopic level. In this report, the Einstein
representation of diffusion (developed for organized
anisotropy structure such as liquid) is considered.
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Figure 1: Heart Anatomy and cylindrical coordinate system that describes the cardiac geometry. The section represented
is the posterior wall of the left and right ventricle. er is the radial component going across the wall, eθ is the circumferential
vector turning around the cylindrical geometry and ez is the axial vector directed from the apex to the base. Each position of
the myocardium is then specified by the three coordinates (r, θ, z).

(More complex representation using higher-rank ten-
sor has been studied in [30] for instance). In this
representation, isotropic diffusion acts when the wa-
ter particles diffuse in every direction with the same
probability. In this case, the probability that a par-
ticle moves a distance r during a time τ is given by
a Gaussian law with a variance of 6 D τ , where D is
the scalar coefficient of diffusion. We can geometri-
cally represent the probability of displacement by a
sphere around the initial position. Anisotropic dif-
fusion extends the previous definition by introducing
the diffusion tensor. In this case for each direction r,
the probability varies. Assuming a Gaussian distri-
bution, the probability of displacement can now be
represented as an ellipsoid. In this case, the diffusion
tensor is a 3 × 3 symmetric positive definite matrix.
This is the matrix of a quadratic form which maps
the unit sphere into an ellipsoid. This tensor can be
decomposed as follows:

D =




D11 D12 D13

D12 D22 D23

D13 D23 D33


 = R Λ RT , (1)

where Λ = diag(λ1, λ2, λ3) and R is the rotation ma-
trix which maps the fixed global basis (ex, ey, ez) into
the local basis (e1, e2, e3) of the ellipse .

Eigenvalue decomposition of D gives the eigenval-
ues λ’s with λ1 ≥ λ2 ≥ λ3. Thus, the first (the
largest) eigenvector gives the main direction of dif-
fusion (the elongated part of the ellipsoid), and the

third, the least diffusive direction.
The analysis of the diffusion tensor measured by

DTMRI has been widely used in the brain to follow
the white matter tracks. For this purpose, it is as-
sumed that water contained inside the white matter
fiber cannot move freely, but is constrained to move in
the fiber itself. Therefore, the diffusion will be domi-
nant in this direction. Based on that assumption the
direction of the white matter tracks can be found by
assuming that the first eigenvector (the largest direc-
tion of the ellipse) is locally aligned with the direction
of the white matter tracks [31–34].

Similarly for the heart the main direction of dif-
fusion will be locally tangent to the fiber direction.
The comparison between DTMRI values and histo-
logical measurements shows an excellent correlation
between the local fiber direction and the first eigen-
vector [14,35,36].

For the brain, the white matter shows a large dif-
ference of eigenvalues between the largest eigenvalue
corresponding to the fiber direction and the two other
as the ratio between first and second can be greater
than 10. For the heart however, the ratio between
the first and second eigenvalue is not as high and is
roughly constant between 1.5 and 2 inside the left
ventricle.

Additionally, in the heart the fibers are organized
in layers (sheets) separated physically. This makes
the diffusion smaller in the normal direction of the
cleavage planes than diffusion inside them. The cleav-
age surface act like a barrier to the diffusion [35].
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Figure 2: Figure (a) shows the geometry of the fiber and endomysial collagen in the heart. The long oval structures correspond
to the fibers. Figure (b) shows the laminar structure with the cylindrical basis (er, eθ, ez) and the sheet basis (ef , es, en).

Because of that the second eigenvector of the dif-
fusion tensor is positioned inside the sheet, and the
third (the smallest one) is locally normal to the sheet
(en = e3, es = e2). These assumptions have been
only recently studied and a good correlation between
histological measurements and DTMRI values has
been shown [37].

1.3 Related Works

The visualization of the fibers in the heart is still a
new field of research. Only a few papers present-
ing graphical visualization of the heart fiber structure
have been published so far: [38] and [37] (for canine
data), [39] (for porcine heart by finite element mod-

eling) and [40] (for mouse). Some results showing
the sheet orientation in canine heart has also been
presented in [41]. In the present paper, the represen-
tation is performed on a normal human heart. To the
best of our knowledge, this is the first paper obtain-
ing the three dimensional representation of the sheet
structure from DTMRI data.

2 Methods

2.1 DTMRI Human Heart Data

The data were acquired at Johns Hopkins Medical
Center using a normal excised human heart and
was made available for downloading on the internet
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Figure 3: The definition of coordinates systems and direc-
tions used in this paper. (er, eθ, ez) is the cylindrical coordi-
nate already shown. ef = e1 is the fiber direction, es = e2 is
the sheet direction and en is the normal component. α shows
the fiber angle and β the sheet angle, where e1, e2, and e3 are
eigenvectors of the diffusion tensor.

(http://www.ccbm.jhu.edu/research/DTMRIDS.php).
The heart was placed in an acrylic container filled
with the perluoropolyether Fomblin having a low di-
electric effect and low MR signal to increase contrast.
This setup also eliminated unwanted susceptibility
artifacts near the boundaries of the heart. Images
were acquired with a 4-element phased array coil
on a 1.5 T GE CV/I MRI Scanner (GE Medical
System, Wausheka, WI) using an enhanced gradient
system with 40 mT/m maximum gradient amplitude
and a 150T/m/s slew rate. The acquisition was
performed with a direct 3D fast spin-echo [36] with
ninety diffusion gradient directions and one without
diffusion gradient for the normal MRI scan. For a
high quality image, the acquisition was performed
during almost 60 hours.

The data set was arranged in 256×256×134 array
where each voxel consisted of the three eigenvalues
and three eigenvectors and three eigenvalues. The
size of each voxel was 429.7 µm×429.7 µm×1000 µm.

We performed a manual segmentation of the left
ventricle in cylindrical coordinates with the z axis
defined as a line going from the apex to the base.
In order to obtain only the left ventricular geometry,
we used the normal MRI scan plus the information
of the fiber orientation to obtain accurate boundaries
(the boundaries of the papillary muscles are only dis-
tinguished by looking at the fiber orientation).

2.2 Fiber Tracking Algorithm

A common way to render a continuous vector field is
to use fiber tracking (or streamline). However, this
method is designed for vector fields and enables the
visualization of only one eigenvector of the tensor.
Still, it can be used to visualize since fibers can be
characterized by the principal component of the ten-
sor. Given an initial position within the myocardium,
a massless particle is moved within the vector field de-
scribed by the first eigenvector of the diffusion tensor
e1 and its trajectory is parameterized. The math-
ematical formulation of the fiber tracking is to find
the curve path s depending on the variable t, such
that

∫ t

0

ds = s(t)− s(0) =
∫ t

0

e1

(
s(τ)

)
dτ . (2)

This type of visualization is now commonly used for
the brain and many methods have been studied to
solve Eq. 2. Since the distribution of e1 is not known
analytically, numerical methods have to be used for
the integration [42–44].

Some techniques use only the vector field and oth-
ers use the complete tensor field, which provides usu-
ally more robust methods. However, the majority of
the methods are used for the specific problem of the
brain with crossing fibers. Thus in our case many
of them are not suitable to the study of the myocar-
dial fiber network. Below we outline and describe the
methods used in this paper for tracking the fibers in
the heart.

2.2.1 Integration Step

Equation (2) can be rewritten in the differential form
(with s0 being the starting position) :

{
s′(t) = e1

(
s(t)

)

s(0) = s0

, (3)

which is a first order non linear (assuming e1 is non
linear) ordinary differential equation (ODE). The in-
tegration of this equation can be accomplished in dif-
ferent ways depending on the accuracy and behavior
of the expected trajectory. In the present paper, an
explicit numerical method is implemented using the
fifth order Dormand-Prince method [45] with auto-
matic error estimation. This method can be viewed
in Eq. 4 where ∆t is the step size (automatically given
by the error estimation) and F is a linear combination
of some intermediate steps :

s(t + ∆t) = s(t) + ∆t F
(
e1, s, ∆t

)
. (4)
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2.2.2 Filtering of the data

Oscillation and fiber crossing might occur when fol-
lowing a single fiber in the heart as the microscopic
physical structure is complex, however the provided
data average the fiber direction over a voxel which
contains roughly 350 fibers (we can roughly estimate
this number by: pixel area / fiber area ' 429 µm ×
103 µm/(π 202 µm2)). We should then expect to see
a smooth orientation of the fiber bundle along the
heart without oscillations. However, all experimental
data contain noise that result in oscillations in the
trajectory. These oscillations can be noticed when
computing fiber tracks directly from the DTMRI data
without applying any method for smoothing.

In order to minimize these effects a filtering method
is used to smooth the directions of the fibers. A sim-
ple isotropic filter like a symmetric Gaussian filter
will destroy the information of anisotropy of the data.
Hence, more sophisticated methods need to be used.

Techniques based on the separation between pla-
nar, linear and spherical anisotropy [42], used espe-
cially for the brain, do not give good results for the
heart due to the low anisotropy of the diffusion in
the heart. Some other methods are more appropri-
ate by regularizing the field taking into account the
anisotropy [43, 46]. We chose to implement the Mov-
ing Least Squares (MLS) method developed in [43]
which gives a point-to-point filter with respect to the
local direction of the anisotropy.

The method minimizes the following energy func-
tional by constructing an approximate polynomial ex-
pression for the tensor field D at each position:

E(x) =
∫

y∈R3
G(y−x)

(
D̃(y−x)−D(y)

)2

dy , (5)

where G is a weighting function taking in account
the anisotropy, D is the original tensor data, D̃ is
the estimated polynomial tensor and the square is
considered as the componentwise product

D2 = D : D =
∑

α1,α2

Dα1α2 Dα1α2 .

To simplify the expression of the functions, they
are expressed in the local coordinates Ξ = (ξ1, ξ2, ξ3)
with basis (e1, e2, e3). The weighting function G is
given in this case by a Gaussian function

G(Ξ) = e−(Ξ·Ξ0)
2

,

where Ξ0 promotes the direction of the first eigen-
vector (gives the variance of the Gaussian). In this
paper, Ξ0 =

(
1
2 , 1, 1

)
. Therefore this Gaussian func-

tion is two times more elongated in the principal di-
rection of diffusion than in the other two directions.

Therefore two times more components are taken into
account in this principal direction of diffusion. The
second and third eigenvectors, which have very close
corresponding eigenvalues, were not separated. The
tensorial polynomial D̃ of degree N expressed by

D̃α1α2(Ξ) =
k1+k2+k3<N∑

k1=k2=k3=0

aα1α2
k1k2k3

ξk1
1 ξk2

2 ξk3
3 , (6)

is taken such that the energy functional is minimal.
Differentiating the energy functional in (5) gives a
linear system of unknowns in a :

∀(α1, α2) ∈ [[0, 2]] ,∑

k1,k2,k3

Mk4k5k6 ,k1k2k3 aα1α2
k1k2k3

= bα1α2
k4k5k6

, (7)

where M is the C3
N+3 × C3

N+3 square matrix :

Mk1k2k3 ,k4k5k6 =

∫

Ξ∈R3
ξk1+k4
1 ξk2+k5

2 ξk3+k6
3 G(Ξ) dΞ,

(8)

and b is a tensor such that:

bα1α2
k4k5k6

=
∫

Ξ∈R3
Dα1α2(Ξ) ξk4

1 ξk5
2 ξk6

3 G(Ξ) dΞ. (9)

A choice of a linear interpolant polynomial was used
to eliminate spurious oscillations in the fiber track.
The linear system in Eq. 7 was solved by Gaussian
quadrature for each iteration and the numerical in-
tegration of Eq. 8 and 9 was realized by Gaussian
quadrature of order four on a neighborhood of three
voxels.

2.2.3 Interpolation

Values of the vector and tensor field are only known
at discrete positions. The values need to be interpo-
lated in the integration or in the regularization step
in order to obtain e1(s). Care needs to be taken at
this point as a classical interpolation of the vector
field will give incorrect results. For instance, a linear
interpolation of a unitary vector will lead to vectors
that are not unitary anymore, as the space of nor-
malized vectors does not form a vector space. Hence,
the equation D = RΛRT no longer holds. A better
way to calculate this interpolation is to perform it
directly on the tensor itself. The space of 3× 3 sym-
metric definite positive matrices is a convex half-cone
for the operation +. Consequently, e1 exists and will
always remain normalized.

More involved techniques can be used for tensor
interpolation [47]. However, for our purpose, linear
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interpolation of the tensor field was sufficient. Higher
order interpolation may result in oscillations that are
to be avoided.

2.2.4 Sense of the progression

For the case of a vector field the positive and negative
directions along the current vector is specified. For
the case of fibers, the diffusion tensor is symmetric as
the diffusion occurs in both directions. Therefore the
sense of the eigenvector direction is not meaningful.
The DTMRI data give a local basis but the sign of the
basis vectors are randomly distributed. Thus in order
to be consistent, before moving forward, a condition
to invert or not to invert the sense of the displacement
is needed during the fiber tracking operation. This
can be done by saving the last direction e1prev at each
step. If the new direction makes an angle greater than
π with the previous one, the new direction is inverted.
This condition is easily implemented by checking that
the scalar product between the two vectors is positive.
Thus giving the new vector

ẽ1 =
{

e1 if e1.e1prev ≥ 0
−e1 if e1.e1prev < 0 . (10)

As the sign is unknown for the starting point, we
follow the fiber in both directions of this seed location.
At the end, a stop condition is checked to determine
whether the next sample is outside of the mask of the
left ventricle.

2.2.5 Algorithm

The entire heart fiber tracking algorithm imple-
mented in this paper is presented in Fig. 4.

2.3 Sheet Tracking Algorithm

The diffusion tensor can also provide information
about the laminar structure of the myocardium. The
representation of the laminar structure is more com-
plex because a surface has to be reconstructed instead
of a line as in the case of the fibers. For each position
in the left ventricle, a tangent plane to the sheet was
found. This plane was defined by the normal vector
e3 = en which corresponds to the cross product of the
two first eigenvectors e3 = e1 × e2. One strategy to
track the sheet plane could be to use only the second
eigenvector as it is positioned inside the plane. How-
ever, the direction of this eigenvector varies and it
cannot be controlled for spanning the surface. Thus,
in order to span a sheet surface the direction that
we followed was linked to the expected geometry of
the sheet surface. Since the sheet surface is supposed
to cross the ventricular wall (see Fig. 3), the best

direction along which the plane could be defined is
radially across this wall and therefore collinear to er.
The sheet was tracked in this direction by projecting
the desired er direction onto the local plane defined
by fiber and sheet directions (ef , es)(see Fig. 5). The
first spanned direction d1 was:

d1 = (er · e1) e1 + (er · e2) e2 . (11)

The vector d1 was used to define the surface in this
direction. This was done (see Fig. 6(a)) with the first
order Newton method:

xk+1 = xk + ∆Ld1(xk) , (12)

where xk is a point on the tracked surface, and ∆L
is a step size.

In order to construct a 2D surface, the expansion in
another perpendicular direction was performed. The
vector d2 was found by rotating the vector d1 by a
right angle around the normal of the sheet surface.
(Projecting a vector perpendicular to er would not
lead to a correct result here.) This can be mathe-
matically formulated using a general formula for the
rotation of a unitary vector v around a unitary vector
u with an angle θ:

Rθ,uv =
(
1−cos(θ)

)
(v · u)u+v sin(θ)−(v × u) sin(θ) ,

which leads here for θ = π
2 to:

d2 =
(
d1 · ẽ3

)
ẽ3 − d1 × ẽ3 (13)

with ẽ3 = ±e3 depending on the convention. We can
now follow the sheet along the direction d2 with the
same first order Newton iteration described by Eq. 12
with d1 replaced by d2. The construction of these
sheets is summarized in Fig. 6(b). This algorithm
built the sheet surface from any starting point (seed
point).

The algorithm for reconstruction of the sheet is
summarized in Fig. 7.

The first order Runge - Kutta method was used to
reconstruct the sheet plane. The data were also fil-
tered with the same MLS method that was used for
the fibers. Since the MSL method filters more in the
circumferential than in the cross sectional direction,
some oscillations could still persist along this direc-
tion. Therefore, to compensate for this lack of regu-
larization, a Gaussian filter was used on the surface in
order to get a smooth visualization for the more noisy
extremities (the midwall usually didn’t need it).
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Figure 4: Block diagram of the Fiber Tracking Algorithm. The brown color represents exterior information. Links between the
blocs are shown in red. The triangles are buffers which keep previous values in memory until the next iteration. Figure (a) shows
the general propagation of the information. Block (A) defines the initial position (seed point) for the fiber tracking algorithm.
The blue block in part (B) is the iteration block corresponding to one iteration. The magenta block in part (C) contains a
switch acting when the stopping condition is reached and a buffer (triangle) to save the previous value. Every new position are
stored in memory and visualized at the end. Details of the block (B) are shown in figure (b). Block (B1) corresponds to the
MLS regularization. Block (B2) represents the decomposition of the tensor obtained by the MLS algorithm into eigenvectors.
Block (B3) corresponds to the comparison process for keeping determining the correct direction. The last Block (B4) performs
a Runge-Kutta integration.
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surface and d1 is the projection of er onto the plane spanned by the vectors ef and es.

2.4 Visualization of the Fiber and
Sheet Tracking Results

The fibers were represented as tube-like surfaces
with a radius of ' 400 µm. Sheets defined as a

set of parameterized points were triangulated cre-
ating meshed surfaces. The tubes and triangulated
surfaces were displayed using the open source ray
tracer POV-Ray (Persistence Of Vision Raytracer)
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Figure 6: Steps used for the construction of the sheet. Figure (a) shows the reconstruction of in the radial direction. At
each position (blue spheres), the fiber direction ef and the sheet direction es are determined from the data. The projected
desired radial directions d1 are in transparent white. Figure (b) shows the reconstruction in the circumferential direction. The
yellow vectors en are the normals to the surface and the perpendicular directions d2 (shown in magenta) are the reconstructed
circumferential directions.

(http://www.povray.org). We choose the software for
the quality of the rendering which is by far better than
the triangle based renderer. The POV-Ray scene de-
scription in a POV-Ray script language was generated
by fiber and sheet tracking routines.

3 Results

3.1 Fiber Tracking

Reults of fiber tracking are presented and summa-
rized in Figs. 8, 9 and 10. The visualization uses a
color coding representation of the local fiber angle α.
Clockwise rotation was encoded with a blue color and
couterclockwise with a green color. The intensity of
the coloration depends on the value of α. The dark
blue and dark green represent larger angles for the
epicardium and endocardium, respectively. The light
blue in the midwall indicates fibers located in the ax-
ial plane. On each picture the color intensity is scaled
to its maximum angle.

The fiber tracking was also performed for the entire
heart. Figure 11 shows the fibers in the left and right
ventricle. The helical rotation of the fibers can also be
noticed in the right ventricle and the color encoding
of the fiber is the same as the previous visualization.

Figure 12 is the results of the fiber tracking per-
formed in the region of the anterior papillary muscle.

Smaller fibers are drawn by seeding more precisely in
the region of the papillary muscle. The color encodes
the z component of the fiber. The green color en-
codes fiber with a large vertical orientation and the
blue color orients a fiber with a more planar orienta-
tion.

3.2 Sheet Reconstruction

The surfaces of the sheet structures presented in
Figs. 13, 14, 15 and 16 were constructed starting with
seed points positioned in the midwall and grown in
four directions (see Fig. 6(b))

4 Conclusion and Future Work

We presented a method for generation of high resolu-
tion and high quality visualization of fiber and lam-
inar cardiac structures. In our implementation, the
fibers were represented as shaded 3D tubes to im-
prove the depth perception of the structure. It is well
known from the literature that the fiber angles vary
smoothly across the wall, and this work confirms that
finding as seen in Fig. 9. However, we found that the
generalization frequently used in the literature that
the angle varies from +60◦ to −60◦ is just a rough
approximation. The myocardium has a much more
complex fiber structure especially close to the bound-

9



���������
	 ���������
� ��� ����� � 	 �
����� 	 ������	 ��� � � � � � �
�!��#"$��% �� � "&� � � ���
�'	 ��� �

(A)

−→
x k

−→
x k+1

"(��� −→
d1

−→
x k

−→
x k+1

"(��� −→
d2

)#* +',.-

/�0�0�1

243�5

6�7 8(5:9�;<7 0 3
= ;<5:8<>';<7 0 3
7 3 −→

d1

2?3�5= ;<5:8<>';<7 0 3
7 3 −→

d26�7 8(5!9!;<7 0 3

(B1)

(B2)

(C1)

(C2)

−→

d2
@BA:C�D4E�F�A!GIH

−→
x 0

/#0�0�1

−→

d1
@BA:C�D4E�F�A!GIH

(a)

�����

���	��
����
���� ��� 
��

D

�������−→x k

(−→e1 ,
−→e2 ,

−→e3)

�� !
�"#�	����� 
�
−→e3 .

−→ez > 0

$%
&��'(��� 
�

∫
)(*,+ -/.�0#. 1!-/.

1

−→

d1

−→

d2

−→x k

−→x k+1

(C13)

(C14)

(C1)

(C16)

(C15)

(C11)

(C12)

−→e3

−→

ẽ3
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Figure 7: Block diagram of the sheet reconstruction algorithm. Picture (a) shows the propagation of the information around
the main blocks. Block (A) is the initial position where the sheet tracking starts. Block (B1) corresponds to the iteration in
the cross direction and bloc (C1) represents the iteration in the circumferential direction. For each iteration the position on the
surface xk+1 is stored and after triangulation is sent to the visualization module. (B2) and (C2) are the looping blocks with the
switch and the buffer to save the previous position. The two loops are synchronized to do all the iterations in the d2 directions
for each in d1. Picture (b) describes the circumferential iteration. (C11) is the MLS filtering and the decomposition is done
in (C12). There is the projection in (C13) and a positive sense is taken for e3 in (C14) to realize the rotation of d1 in (C15).
Then the integration step is performed in (C16). Picture (c) is the description of the cross section iteration. (B11) is the MLS
regularization, (B12) is the decomposition into eigenvectors, the projection to get d1 is realized in (B13) and the integration
step is performed in (B14).
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(a) (b)

Figure 8: Figure (a) is the visualization of the fiber structure in the left ventricle. The visualization was created by using a
cylindrical mesh of 1000 seed points throughout the entire volume. Clockwise to counterclockwise geometry of the fibers from
the epicardium to endocardium can be seen. The nearest wall is the septum. Figure (b) is the display of the heart with the
posterior wall on the bottom. Some differences can be seen in the angle intensity depending on the region.

���������
	���������

��������	����������

(a) (b)

Figure 9: Figure (a) represents a short section of the left ventricle which illustrates the smooth variation of the angle α and
its sign inversion across the wall from epi- to endo-cardiac wall. Figure (b.) is the orientation of the fibers by sections around
the left ventricle. For each section, the fibers are plotted closer to the endocardium. The smooth change of direction can be
seen while the fiber bundle wraps around the endocardium.
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(a) (b)

Figure 10: Figure (a) is the helical visualization of the fibers from apex to base. The global homogeneity of the angle α can
be seen. Figure (b) results of a fiber tracking close to the apex. The twist around it can be appreciated. It is worth noticing
the smooth continuity of some bundle of fibers going down from the endocardium (green), pass the midwall (in light blue) and
going up again (dark blue). The large variations between green and blue in the middle of the apex are due to the fast change
of the clockwise to counterclockwise rotation. In the center, the comparison between clockwise and counterclockwise rotation is
not accurate as the fibers become more aligned with the central axis of the left ventricle.

Figure 11: Fiber tracking performed in the left and right ventricle. The closer part is the posterior wall of the right ventricle.
The helical rotation can still be noticed in the right ventricle even though the smooth change of orientation across the wall is
not as clear as that in the left ventricle. A continuity between left and right ventricle can be noticed in the posterial wall where
the epicardial fibers of the left ventricle join smoothly to the right ventricle. However, the septal wall doesn’t seem to be diretly
linked to the right ventricle. In the basal region of the anterior wall of the right ventricle, the hole in the fibers is due to the
link of the RV with the pulmonary artery.
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Figure 12: Result of the fiber tracking in the papillary muscle. The small picture illustrates where the section is located in
the heart geometry. The section shows the interio view of the anterior wall of the heart. The yellow part represents the region of
the papillary muscle where the seeding was performed. The larger picture is a zoom on this region and shows the fiber geometry.
The color encodes the z component of the fiber direction. The blue fibers have a planar orientation (mainly the fibers of the
endocardium). The green fibers have a more vertical direction. The fiber orientation change completely in the papillary muscle
where the fibers pass from a helical rotation (at the endocardium) to a clear vertical direction in the muscle.

aries of the myocardial wall where the angles change
directions very rapidly [5]. Using our approach, the
apex of the heart was studied, and is presented in
Fig. 10(b) and 16. Interestingly, the twist of the fiber
bundles predicted by Torrent-Guasp et al. [48] was
found as visualized in Fig. 10(b). The continuity be-
tween right and left ventricle joined by the posterior
wall can also be seen with the view of both ventricles
in Fig. 11.

The structure of the sheet compares well with his-
tological measurements from apex to base transmural
sections [49], [9] (Fig. 14). The relationship between
fiber directions and laminar structure is not obvious
and our work helps to understand these relationships
by providing high quality visualizations of both of
these structures (Fig. 13(b) and 16). Fibers lie within
the sheet surfaces, but the knowledge of fiber direc-
tions is not sufficient to create visualization of the
cleavages planes. This implies that the surfaces need
parameterizations which are not related to the fiber
directions. The apex of the heart is an interesting
region where the sheets have larger curvature due to
the twist of the fibers. This rotation is especially visi-
ble in the lateral wall and contributes probably to the
twisting movement of the apex.

We found the process of fiber tracking sensitive to

the noise but it is hard to characterize it as we are un-
sure in some cases whether the variation in fiber and
sheet configuration is real or it is due to noise. An
anisotropic filtering used in this work helps to regu-
larize the process of tracking the fibers and sheets but
introduces bias due to error of interpolation. There-
fore, the following of the fiber over long distances may
introduce large errors. In order to minimize these,
we used first the Runge-Kutta method with an au-
tomatic error estimation that enabled the reduction
of the errors in the numerical solution of the differ-
ential equations. Then, the anisotropic filtering was
also performed to enable the reduction of the data
errors. This regularization was performed for each
position given by the local direction of the fiber. As
the fiber direction is obtained based on the largest
eigenvector only, the noise is not a significant prob-
lem. But it is more significant for the determination
of the sheet structure which is obtained based on the
second and third eigenvector which are smaller and
noisier. The first eigenvector has an amplitude λ1

and is significantly greater than the two others which
make it easy to distinguish the e1 from the other two
eigenvectors. For e2 and e3, however, the respective
eigenvalues are far more close to each other [36]. With
this in mind, taking λ2 > λ3, a small amount of noise
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(a) (b)

Figure 13: Figure (a) shows a parameterized reconstructed surface of one sheet. The line traveling left from the closest
corner corresponds to the epicardium. The structure is then going up circumferentialy. At the opposite end, the sheet goes
down, following the fibers. The concave movement in the z coordinate is characteristic of a region close to the base of the left
ventricle. The mesh shows the organized reconstruction of the surface. Figure (b) is the sheet surface and the corresponding
fibers are visualized to understand their relationship. It can be noticed that the fibers lie completely on the surface. The color
of the fiber is the visualization of the sense of rotation used previously. The color on the surface shows the third component
of the fiber direction (red for a flat direction and blue for a large z component). The surface goes up clockwise with the fibers
in the epicardial region, have a local maximum in the midwall where some circumferential fibers lie on it, and then goes down,
twisting in the opposite direction with the fibers.

can easily invert the relation and therefore invert en

and es. This implies that the mathematical problem
of finding the plane is ill-posed. A criteria to verify
the correct interpretation of the two last eigenvectors
could be developed to avoid this misclassification by
having an a priori constraint on the orientation of
the sheet normal. Another problem is the noise level
for e2 and e3. The two smallest eigenvectors have
lower amplitudes than the first component and there-
fore are subject to stronger noise effects. We can es-
pecially appreciate this effect close to boundaries of
the walls, where some results of the surfaces oscillate
(Figure. 14(a), 15(a)). A filter similar to the mov-
ing least square that we used for fiber tracking can
also help for sheet tracking to reduce these artifacts.
The last problem that we would like to point out is
the structure of the sheet itself. We assume that the
sheet goes mainly across the wall. If this direction
is not the real direction of the sheet, our projected
vector does not control well the directionality of the
tracking, and it can lead to an arbitrary direction of
construction with amplitude that can approach zero.
This problem appears specifically in the middle part
of the anterior wall where the normal directions of the
sheets are almost transverse to the wall. In order to

resolve this problem another parameterized direction
may be used in this region ( [37], [16]).

The noise characterization of the sheet surfaces is
therefore a complex problem. And as the precise
structure of this is not well known, conclusions con-
cerning surface oscillations based on the anatomical
or noisy origin of those cannot be taken. The sheet
tracking algorithm was performed with the same reg-
ularized field that was used for the fiber tracking.
This enabled the tracked fibers to lie exactly in-
side the surface. However another MLS regulariza-
tion could also be implemented to filter more in the
spanned direction of the sheet than in the normal di-
rection. A differentiation between the two smallest
eigenvectors should then be taken.

For this work, there are several avenues of contin-
uation . One interesting avenue is to compare the
detected planes with the directions of the major prin-
cipal strains of cardiac deformation (see for example
Fig. 10 in [3]). It is expected that the largest strains
found in the analysis of the deformation should align
with the cleavage surfaces. Another way of using our
method is to perform an analysis of the fiber direc-
tion distribution and laminar structure for the case
of the failing heart where remodeling can be stud-
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(a) (b)

Figure 14: Figure (a) represents the sheets stacked crossing the ventricular wall. The directionality of each sheet going across
the wall can be seen. The twist of the sheets is noticeable with a concave curvature in the transverse section of the heart wall.
(The color of the sheet is only used to differentiate them, the endocardium is the red surface and the epicardium is shown by
the mesh). This makes sense with the direction of the fibers on the region (going from clockwise to counterclockwise). The view
of the sheet architecture in the lateral wall is shown in Figure (b). The global movement of twist across the wall is visible as
well as the smooth variation of the normal orientation on different sheets depending on there z location. (The color here does
not indicate information).

(a) (b)

Figure 15: Figure (a) shows some large color coded sheets around the left ventricular positioned in the basal region. The
color of the sheet encodes the z component of the fiber direction (the blue intensity is for a planar fiber and red for a fiber going
up or down). Some noise can be seen in the epicardium. The color of the endocardium encodes the z component of the sheet
normal. The green color indicates a large z component, meaning that the sheet is almost in the radial plane of the ventricle. At
the opposite, the white transparent color indicates a normal directed more perpendicular to ez , in these regions, sheets are less
planar. The seeding of small sheets on the left ventricle is represented in Figure (b). The spatial variation of the orientation of
these surfaces is shown. The color encoding on the surface is the same as in (a). Some regions can be differentiated where the
cleavage planes fit well to the model crossing the wall and some other are far more vertical. The global structure is therefore
complex. The color of the endocardium is the first and second component of the fiber. Thus, the rotation of the fiber structure
around the endocardium can be seen.
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Figure 16: Seeding of sheets in the apex. Theses sheets smoothly join the epicardium to the endocardium. The color of the
surface is encoding the third component of the fiber direction. In the region where the fibers are almost flat (red regions), the
surface has very little twist and is almost planar. In the other case where the fibers have a large z component, the twist of
the sheet is greater. The structure in the septal wall are not shown. This is because at this region the heart is linked with the
right ventricle. The algorithm does not perform well due to the assumptions of how the surfaces cross the left ventricle which
probably differ from surfaces embedded in the right ventricle.

ied as a function of changes in fiber and sheet struc-
tures. The presented method can also be used to
study the effect of surgical procedures on the fiber
and sheet structures in the myocardium using some
animal model [23]. For this application, the visual-
ization aspect of our work would be very important.
Other regions of the heart could also be studied. A
more detailed study of the structure of the right ven-
tricle could be performed (Fig. 11). The regions of
the papillary muscles could also be studied. Since the
fiber clearly change orientation (Fig. 12) the correla-
tion between fiber structure and physiological char-
acteristics would be of interest.

Some limitations still remain. Some of them are
linked to the choice of POV-Ray software used for
visualization. The visualization is performed by ray
tracing and because of that it is very slow compared to
other libraries such as OpenGL. Therefore, at the cur-
rent stage of our research, interactive viewing of the
results of the fiber and sheet tracking is not possible.
Making our visualization interactive will be the next
step that we will take. Finally, we plan to validate
the hypothesis of a cardiac band [48, 50–53] where it
is postulated that the four chamber heart is built from
a single continuous band of muscle.
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